
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2084–2089,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

AMR-to-text generation as a Traveling Salesman Problem

Linfeng Song1, Yue Zhang3, Xiaochang Peng1, Zhiguo Wang2 and Daniel Gildea1

1Department of Computer Science, University of Rochester, Rochester, NY 14627
2IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

3Singapore University of Technology and Design

Abstract

The task of AMR-to-text generation is to gen-
erate grammatical text that sustains the seman-
tic meaning for a given AMR graph. We at-
tack the task by first partitioning the AMR
graph into smaller fragments, and then gener-
ating the translation for each fragment, before
finally deciding the order by solving an asym-
metric generalized traveling salesman prob-
lem (AGTSP). A Maximum Entropy classifier
is trained to estimate the traveling costs, and a
TSP solver is used to find the optimized solu-
tion. The final model reports a BLEU score of
22.44 on the SemEval-2016 Task8 dataset.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism en-
coding the meaning of a sentence as a rooted, di-
rected graph. Shown in Figure 1, the nodes of
an AMR graph (e.g. “boy”, “go-01” and “want-
01”) represent concepts, and the edges (e.g. “ARG0”
and “ARG1”) represent relations between concepts.
AMR jointly encodes a set of different semantic phe-
nomena, which makes it useful in applications like
question answering and semantics-based machine
translation. AMR has served as an intermediate
representation for various text-to-text NLP applica-
tions, such as statistical machine translation (SMT)
(Jones et al., 2012).

The task of AMR-to-text generation is to gener-
ate grammatical text containing the same semantic
meaning as a given AMR graph. This task is im-
portant yet also challenging since each AMR graph

want-01

boy

go-01

ARG1

ARG0

ARG0

Figure 1: AMR graph for “The boy wants to go”.

usually has multiple corresponding sentences, and
syntactic structure and function words are abstracted
away when transforming a sentence into AMR (Ba-
narescu et al., 2013). There has been work deal-
ing with text-to-AMR parsing (Flanigan et al., 2014;
Wang et al., 2015; Peng et al., 2015; Vanderwende
et al., 2015; Pust et al., 2015; Artzi et al., 2015). On
the other hand, relatively little work has been done
on AMR-to-text generation. One recent exception
is Flanigan et al. (2016), who first generate a span-
ning tree for the input AMR graph, and then apply
a tree transducer to generate the sentence. Here, we
directly generate the sentence from an input AMR
by treating AMR-to-text generation as a variant of
the traveling salesman problem (TSP).

Given an AMR as input, our method first cuts
the graph into several rooted and connected frag-
ments (sub-graphs), and then finds the translation
for each fragment, before finally generating the sen-
tence for the whole AMR by ordering the transla-
tions. To cut the AMR and translate each fragment,
we match the input AMR with rules, each consisting
of a rooted, connected AMR fragment and a corre-
sponding translation. These rules serve in a similar
way to rules in SMT models. We learn the rules by a
modified version of the sampling algorithm of Peng

2084

et al. (2015), and use the rule matching algorithm of
Cai and Knight (2013).

For decoding the fragments and synthesizing the
output, we define a cut to be a subset of matched
rules without overlap that covers the AMR, and an
ordered cut to be a cut with the rules being or-
dered. To generate a sentence for the whole AMR,
we search for an ordered cut, and concatenate trans-
lations of all rules in the cut. TSP is used to traverse
different cuts and determine the best order. Intu-
itively, our method is similar to phrase-based SMT,
which first cuts the input sentence into phrases, then
obtains the translation for each source phrase, before
finally generating the target sentence by ordering the
translations. Although the computational cost of our
method is low, the initial experiment is promising,
yielding a BLEU score of 22.44 on a standard bench-
mark.

2 Method

We reformulate the problem of AMR-to-text gener-
ation as an asymmetric generalized traveling sales-
man problem (AGTSP), a variant of TSP.

2.1 TSP and its variants
Given a non-directed graph GN with n cities, sup-
posing that there is a traveling cost between each
pair of cities, TSP tries to find a tour of the minimal
total cost visiting each city exactly once. In contrast,
the asymmetric traveling salesman problem (ATSP)
tries to find a tour of the minimal total cost on a di-
rected graph, where the traveling costs between two
nodes are different in each direction. Given a di-
rected graph GD with n nodes, which are clustered
into m groups, the asymmetric generalized traveling
salesman problem (AGTSP) tries to find a tour of the
minimal total cost visiting each group exactly once.

2.2 AMR-to-text Generation as AGTSP
Given an input AMR A, each node in the AGTSP
graph can be represented as (c, r), where c is a con-
cept in A and r = (Asub, Tsub) is a rule that con-
sists of an AMR fragment containing c and a trans-
lation of the fragment. We put all nodes containing
the same concept into one group, thereby translating
each concept in the AMR exactly once.

To show a brief example, consider the AMR in
Figure 1 and the following rules,

ns (b,r4)
(w,r3)

(w,r1) (g,r2)

(g,r3)
ne

Figure 2: An example AGTSP graph

r1 (w/want-01) ||| wants
r2 (g/go-01) ||| to go
r3 (w/want-01 :ARG1 g/go-01) ||| wants to go
r4 (b/boy) ||| The boy

We build an AGTSP graph in Figure 2, where each
circle represents a group and each tuple (such as
(b, r4)) represents a node in the AGTSP graph. We
add two nodes ns and ne representing the start and
end nodes respectively. Each belongs to a specific
group that only contains that node, and a tour al-
ways starts with ns and ends with ne. Legal moves
are shown in black arrows, while illegal moves are
shown in red. One legal tour is ns → (b, r4) →
(w, r3) → (g, r3) → ne. The order in which nodes
within a rule are visited is arbitrary; for a rule with
N concepts, the number of visiting orders is O(N !).
To reduce the search space, we enforce the breadth
first order by setting costs to zero or infinity. In our
example, the traveling cost from (w, r3) to (g, r3) is
0, while the traveling cost from (g, r3) to (w, r3) is
infinity. Traveling from (g, r2) to (w, r3) also has
infinite cost, since there is overlap on the concept
“w/want-01” between them.

The traveling cost is calculated by Algorithm 1.
We first add ns and ne serving the same function
as Figure 2. The traveling cost from ns directly to
ne is infinite, since a tour has to go through other
nodes before going to the end. On the other hand,
the traveling cost from ne to ns is 0 (Lines 3-4), as
a tour always goes back to the start after reaching
the end. The traveling cost from ns to ni = (ci, ri)
is the model score only if ci is the first node of the
AMR fragment of ri, otherwise the traveling cost
is infinite (Lines 6-9). Similarly, the traveling cost
from ni to ne is the model score only if ci is the last
node of the fragment of ri. Otherwise, it is infinite
(Lines 10-13). The traveling cost from ni = (ci, ri)
to nj = (cj , rj) is 0 if ri and rj are the same rule
and cj is the next node of ci in the AMR fragment of
ri (Lines 16-17).

A tour has to travel through an AMR fragment be-

2085

Data: Nodes in AGTSP graph G
Result: Traveling Cost Matrix T

1 ns ← (“<s>”,“<s>”);
2 ne ← (“</s>”,“</s>”);
3 T[ns][ne]←∞;
4 T[ne][ns]← 0;
5 for ni ← (ci, ri) in G do
6 if ci = ri.frag.first then
7 T[ns][ni]←ModelScore(ns,ni);
8 else
9 T[ns][ni]←∞;

10 if ci = ri.frag.last then
11 T[ni][ne]←ModelScore(ni,ne);
12 else
13 T[ni][ne]←∞;
14 for ni ← (ci, ri) in G do
15 for nj ← (cj , rj) in G do
16 if ri = rj and ri.frag.next(ci) = cj then
17 T[ni][nj]← 0
18 else if ri.frag ∩ rj .frag = ∅ and ci =

ri.frag.last and cj = rj .frag.first then
19 T[ni][nj]←ModelScore(ni,nj)
20 else
21 T[ni][nj]←∞

Algorithm 1: Traveling cost algorithm

fore jumping to another fragment. We choose the
breadth-first order of nodes within the same rule,
which is guaranteed to exist, as each AMR fragment
is rooted and connected. Costs along the breadth-
first order within a rule ri are set to 0, while other
costs with a rule are infinite.

If ri is not equal to rj , then the traveling cost
is the model score if there is no overlap between
ri and rj’s AMR fragment and it moves from ri’s
last node to rj’s first node (Lines 18-19), other-
wise the traveling cost is infinite (Lines 20-21). All
other cases are illegal and we assign infinite travel-
ing cost. We do not allow traveling between overlap-
ping nodes, whose AMR fragments share common
concepts. Otherwise the traveling cost is evaluated
by a maximum entropy model, which will be dis-
cussed in detail in Section 2.4.

2.3 Rule Acquisition

We extract rules from a corpus of (sentence, AMR)
pairs using the method of Peng et al. (2015). Given

an aligned (sentence, AMR) pair, a phrase-fragment
pair is a pair ([i, j], f), where [i, j] is a span of the
sentence and f represents a connected and rooted
AMR fragment. A fragment decomposition forest
consists of all possible phrase-fragment pairs that
satisfy the alignment agreement for phrase-based
MT (Koehn et al., 2003). The rules that we use for
generation are the result of applying an MCMC pro-
cedure to learn a set of likely phrase-fragment pairs
from the forests containing all possible pairs. One
difference from the work of Peng et al. (2015) is
that, while they require the string side to be tight
(does not include unaligned words on both sides),
we expand the tight phrases to incorporate unaligned
words on both sides. The intuition is that they do
text-to-AMR parsing, which often involves discard-
ing function words, while our task is AMR-to-text
generation, and we need to be able to fill in these un-
aligned words. Since incorporating unaligned words
will introduce noise, we rank the translation candi-
dates for each AMR fragment by their counts in the
training data, and select the top N candidates.1

We also generate concept rules which directly use
a morphological string of the concept for transla-
tion. For example, for concept “w/want-01” in Fig-
ure 1, we generate concept rules such as “(w/want-
01) ||| want”, “(w/want-01) ||| wants”, “(w/want-01)
||| wanted” and “(w/want-01) ||| wanting”. The al-
gorithm (described in section 2.2) will choose the
most suitable one from the rule set. It is similar to
most MT systems in creating a translation candidate
for each word, besides normal translation rules. It
is easy to guarantee that the rule set can fully cover
every input AMR graph.

Some concepts (such as “have-rel-role-91”) in an
AMR graph do not contribute to the final translation,
and we skip them when generating concept rules.
Besides that, we use a verbalization list2 for concept
rule generation. For rule “VERBALIZE peacekeep-
ing TO keep-01 :ARG1 peace”, we will create a con-
cept rule “(k/keep-01 :ARG1 (p/peace)) ||| peace-
keeping” if the left-hand-side fragment appears in
the target graph.

1Our code for grammar induction can be downloaded from
https://github.com/xiaochang13/AMR-generation

2http://amr.isi.edu/download/lists/verbalization-list-
v1.06.txt

2086

2.4 Traveling cost
Considering an AGTSP graph whose nodes are clus-
tered into m groups, we define the traveling cost for
a tour T in Equation 1:

cost(ns, ne) = −
m∑

i=0

log p(“yes”|nTi , nTi+1) (1)

where nT0 = ns, nTm+1 = ne and each nTi (i ∈
[1 . . .m]) belongs to a group that is different from
all others. Here p(“yes”|nj , ni) represents a learned
score for a move from nj to ni. The choices be-
fore nTi are independent from choosing nTi+1 given
nTi because of the Markovian property of the TSP
problem. Previous methods (Zaslavskiy et al., 2009)
evaluate traveling costs p(nTi+1 |nTi) by using a lan-
guage model. Inevitably some rules may only cover
one translation word, making only bigram language
models naturally applicable. Zaslavskiy et al. (2009)
introduces a method for incorporating a trigram lan-
guage model. However, as a result, the number of
nodes in the AGTSP graph grows exponentially.

To tackle the problem, we treat it as a local binary
(“yes” or “no”) classification problem whether we
should move to nj from ni. We train a maximum
entropy model, where p(“yes”|ni, nj) is defined as:

p(“yes”|ni, nj) =
1

Z(ni, nj)
exp

[k∑

i=1

λifi(“yes”, ni, nj)
]

(2)

The model uses 3 real-valued features: a language
model score, the word count of the concatenated
translation from ni to nj , and the length of the short-
est path from ni’s root to nj’s root in the input AMR.
If either ni or nj is the start or end node, we set the
path length to 0. Using this model, we can use what-
ever N-gram we have at each time. Although lan-
guage models favor shorter translations, word count
will balance the effect, which is similar to MT sys-
tems. The length of the shortest path is used as a
feature because the concepts whose translations are
adjacent usually have lower path length than others.

3 Experiments

3.1 Setup
We use the dataset of SemEval-2016 Task8 (Mean-
ing Representation Parsing), which contains 16833

System Dev Test
PBMT 13.13 16.94
OnlyConceptRule 13.15 14.93
OnlyInducedRule 17.68 18.09
OnlyBigramLM 17.19 17.75
All 21.12 22.44
JAMR-gen 23.00 23.00

Table 1: Main results.

training instances, 1368 dev instances and 1371
test instances. Each instance consists of an AMR
graph and a sentence representing the same mean-
ing. Rules are extracted from the training data, and
hyperparameters are tuned on the dev set. For tuning
and testing, we filter out sentences that have more
than 30 words, resulting in 1103 dev instances and
1055 test instances. We train a 4-gram language
model (LM) with gigaword (LDC2011T07), and use
BLEU (Papineni et al., 2002) as the evaluation met-
ric. To solve the AGTSP, we use Or-tool3.

Our graph-to-string rules are reminiscent of
phrase-to-string rules in phrase-based MT (PBMT).
We compare our system to a baseline (PBMT) that
first linearizes the input AMR graph by breadth first
traversal, and then adopts the PBMT system from
Moses4 to translate the linearized AMR into a sen-
tence. To traverse the children of an AMR con-
cept, we use the original order in the text file. The
MT system is trained with the default setting on the
same dataset and LM. We also compare with JAMR-
gen5 (Flanigan et al., 2016), which is trained on the
same dataset but with a 5-gram LM from gigaword
(LDC2011T07).

To evaluate the importance of each module in our
system, we develop the following baselines: Only-
ConceptRule uses only the concept rules, OnlyIn-
ducedRule uses only the rules induced from the frag-
ment decomposition forest, OnlyBigramLM uses
both types of rules, but the traveling cost is evalu-
ated by a bigram LM trained with gigaword.

3.2 Results

The results are shown in Table 1. Our method
(All) significantly outperforms the baseline (PBMT)

3https://developers.google.com/optimization/
4http://www.statmt.org/moses/
5https://github.com/jflanigan/jamr/tree/Generator

2087

(w / want-01
:ARG0 (b / boy)
:ARG1 (b2 / believe-01

:ARG0 (g / girl)
:ARG1 b))

Ref: the boy wants the girl to believe him
All: a girl wanted to believe him
JAMR-gen: boys want the girl to believe

Table 2: Case study.

on both the dev and test sets. PBMT does not
outperform OnlyBigramLM and OnlyInducedRule,
demonstrating that our rule induction algorithm is
effective. We consider rooted and connected frag-
ments from the AMR graph, and the TSP solver
finds better solutions than beam search, as consis-
tent with Zaslavskiy et al. (2009). In addition, On-
lyInducedRule is significantly better than OnlyCon-
ceptRule, showing the importance of induced rules
on performance. This also confirms the reason that
All outperforms PBMT. This result confirms our ex-
pectation that concept rules, which are used for ful-
filling the coverage of an input AMR graph in case
of OOV, are generally not of high quality. More-
over, All outperforms OnlyBigramLM showing that
our maximum entropy model is stronger than a bi-
gram language model. Finally, JAMR-gen outper-
forms All, while JAMR-gen uses a higher order lan-
guage model than All (5-gram VS 4-gram).

For rule coverage, around 31% AMR graphs and
84% concepts in the development set are covered by
our induced rules extracted from the training set.

3.3 Analysis and Discussions

We further analyze All and JAMR-gen with an ex-
ample AMR and show the AMR graph, the refer-
ence, and results in Table 2. First of all, both All
and JAMR-gen outputs a reasonable translation con-
taining most of the meaning from the AMR. On the
other hand, All fails to recognize “boy” as the sub-
ject. The reason is that the feature set does not in-
clude edge labels, such as “ARG0” and “ARG1”.
Finally, neither All and JAMR-gen can handle the
situation when a re-entrance node (such as “b/boy”
in example graph of Table 2) need to be translated
twice. This limitation exists for both works.

4 Related Work

Our work is related to prior work on AMR (Ba-
narescu et al., 2013). There has been a list of work
on AMR parsing (Flanigan et al., 2014; Wang et al.,
2015; Peng et al., 2015; Vanderwende et al., 2015;
Pust et al., 2015; Artzi et al., 2015), which predicts
the AMR structures for a given sentence. On the re-
verse direction, Flanigan et al. (2016) and our work
here study sentence generation from a given AMR
graph. Different from Flanigan et al. (2016) who
map a input AMR graph into a tree before lineariza-
tion, we apply synchronous rules consisting of AMR
graph fragments and text to directly transfer a AMR
graph into a sentence. In addition to AMR parsing
and generation, there has also been work using AMR
as a semantic representation in machine translation
(Jones et al., 2012).

Our work also belongs to the task of text genera-
tion (Reiter and Dale, 1997). There has been work
on generating natural language text from a bag of
words (Wan et al., 2009; Zhang and Clark, 2015),
surface syntactic trees (Zhang, 2013; Song et al.,
2014), deep semantic graphs (Bohnet et al., 2010)
and logical forms (White, 2004; White and Rajku-
mar, 2009). We are among the first to investigate
generation from AMR, which is a different type of
semantic representation.

5 Conclusion

In conclusion, we showed that a TSP solver with a
few real-valued features can be useful for AMR-to-
text generation. Our method is based on a set of
graph to string rules, yet significantly better than
a PBMT-based baseline. This shows that our rule
induction algorithm is effective and that the TSP
solver finds better solutions than beam search.

Acknowledgments

We are grateful for the help of Jeffrey Flanigan, Lin
Zhao, and Yifan He. This work was funded by
NSF IIS-1446996, and a Google Faculty Research
Award. Yue Zhang is funded by NSFC61572245
and T2MOE201301 from Singapore Ministry of Ed-
ucation.

2088

References
Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.

Broad-coverage CCG semantic parsing with AMR. In
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-15), pages 1699–1710.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186.

Bernd Bohnet, Leo Wanner, Simon Mill, and Alicia
Burga. 2010. Broad coverage multilingual deep sen-
tence generation with a stochastic multi-level real-
izer. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (COLING-10),
pages 98–106.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceedings
of the 51st Annual Meeting of the Association for Com-
putational Linguistics (ACL-13), pages 748–752.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the abstract meaning represen-
tation. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (ACL-
14), pages 1426–1436.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime
Carbonell. 2016. Generation from abstract mean-
ing representation using tree transducers. In Proceed-
ings of the 2016 Meeting of the North American chap-
ter of the Association for Computational Linguistics
(NAACL-16), pages 731–739.

Bevan Jones, Jacob Andreas, Daniel Bauer, Karl Moritz
Hermann, and Kevin Knight. 2012. Semantics-
based machine translation with hyperedge replacement
grammars. In Proceedings of the International Con-
ference on Computational Linguistics (COLING-12),
pages 1359–1376.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of the 2003 Meeting of the North American chap-
ter of the Association for Computational Linguistics
(NAACL-03), pages 48–54.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Conference of the Association for Com-
putational Linguistics (ACL-02), pages 311–318.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for AMR parsing. In Proceedings

of the Nineteenth Conference on Computational Natu-
ral Language Learning (CoNLL-15), pages 731–739.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing English into
abstract meaning representation using syntax-based
machine translation. In Conference on Empirical
Methods in Natural Language Processing (EMNLP-
15), pages 1143–1154.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Linfeng Song, Yue Zhang, Kai Song, and Qun Liu.
2014. Joint morphological generation and syntactic
linearization. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI-14), pages 1522–
1528.

Lucy Vanderwende, Arul Menezes, and Chris Quirk.
2015. An AMR parser for English, French, German,
Spanish and Japanese and a new AMR-annotated cor-
pus. In Proceedings of the 2015 Meeting of the North
American chapter of the Association for Computa-
tional Linguistics (NAACL-15), pages 26–30.

Stephen Wan, Mark Dras, Robert Dale, and Cécile Paris.
2009. Improving grammaticality in statistical sentence
generation: Introducing a dependency spanning tree
algorithm with an argument satisfaction model. In
Proceedings of the 12th Conference of the European
Chapter of the ACL (EACL-09), pages 852–860.

Chuan Wang, Nianwen Xue, and Sameer Pradhan. 2015.
A transition-based algorithm for AMR parsing. In
Proceedings of the 2015 Meeting of the North Ameri-
can chapter of the Association for Computational Lin-
guistics (NAACL-15), pages 366–375.

Michael White and Rajakrishnan Rajkumar. 2009. Per-
ceptron reranking for CCG realization. In Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP-09), pages 410–419.

Michael White. 2004. Reining in CCG chart realiza-
tion. In International Conference on Natural Lan-
guage Generation (INLG-04), pages 182–191.

Mikhail Zaslavskiy, Marc Dymetman, and Nicola Can-
cedda. 2009. Phrase-based statistical machine trans-
lation as a traveling salesman problem. In Proceed-
ings of the 47th Annual Meeting of the Association for
Computational Linguistics (ACL-09), pages 333–341.

Yue Zhang and Stephen Clark. 2015. Discriminative
syntax-based word ordering for text generation. Com-
putational Linguistics, 41(3):503–538.

Yue Zhang. 2013. Partial-tree linearization: Generalized
word ordering for text synthesis. In Proceedings of
the International Joint Conference on Artificial Intelli-
gence (IJCAI-13), pages 2232–2238.

2089

