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Abstract

Unsupervised dependency parsing aims to
learn a dependency grammar from text anno-
tated with only POS tags. Various features
and inductive biases are often used to incorpo-
rate prior knowledge into learning. One use-
ful type of prior information is that there exist
correlations between the parameters of gram-
mar rules involving different POS tags. Pre-
vious work employed manually designed fea-
tures or special prior distributions to encode
such information. In this paper, we propose
a novel approach to unsupervised dependen-
cy parsing that uses a neural model to predict
grammar rule probabilities based on distribut-
ed representation of POS tags. The distributed
representation is automatically learned from
data and captures the correlations between
POS tags. Our experiments show that our
approach outperforms previous approaches u-
tilizing POS correlations and is competitive
with recent state-of-the-art approaches on nine
different languages.

1 Introduction

Unsupervised structured prediction from data is an
important problem in natural language processing,
with applications in grammar induction, POS tag in-
duction, word alignment and so on. Because the
training data is unannotated in unsupervised struc-
tured prediction, learning is very hard. In this pa-
per, we focus on unsupervised dependency parsing,
which aims to identify the dependency trees of sen-
tences in an unsupervised manner.

∗This work was supported by the National Natural Science
Foundation of China (61503248).

Previous work on unsupervised dependency pars-
ing is mainly based on the dependency model with
valence (DMV) (Klein and Manning, 2004) and it-
s extension (Headden III et al., 2009; Gillenwater
et al., 2010). To effectively learn the DMV mod-
el for better parsing accuracy, a variety of induc-
tive biases and handcrafted features have been pro-
posed to incorporate prior information into learning.
One useful type of prior information is that there
exist correlations between the parameters of gram-
mar rules involving different POS tags. Cohen and
Smith (2009; 2010) employed special prior distribu-
tions to encourage learning of correlations between
POS tags. Berg-Kirkpatrick et al. (2010) encoded
the relations between POS tags using manually de-
signed features.

In this work, we propose a neural based ap-
proach to unsupervised dependency parsing. We
incorporate a neural model into the DMV model
to predict grammar rule probabilities based on dis-
tributed representation of POS tags. We learn the
neural network parameters as well as the distribut-
ed representations from data using the expectation-
maximization algorithm. The correlations between
POS tags are automatically captured in the learned
POS embeddings and contribute to the improvemen-
t of parsing accuracy. In particular, probabilities of
grammar rules involving correlated POS tags are au-
tomatically smoothed in our approach without the
need for manual features or additional smoothing
procedures.

Our experiments show that on the Wall Street
Journal corpus our approach outperforms the pre-
vious approaches that also utilize POS tag correla-
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tions, and achieves a comparable result with recent
state-of-the-art grammar induction systems. On the
datasets of eight additional languages, our approach
is able to achieve better performance than the base-
line methods without any parameter tuning.

2 Related work

2.1 Dependency Model with Valence

The dependency model with valence (DMV) (Klein
and Manning, 2004) is the first model to outperform
the left-branching baseline in unsupervised depen-
dency parsing of English. The DMV model is a
generative model of a sentence and its parse tree. It
generates a dependency parse from the root in a re-
cursive top-down manner. At each step, a decision is
first made as to whether a new child POS tag shall be
generated from the current head tag; if the decision
is yes, then a new child POS tag is sampled; other-
wise, the existing child tags are recursively visited.
There are three types of grammar rules in the mod-
el: CHILD, DECISION and ROOT, each with a set
of multinomial parameters PCHILD(c|h, dir, val),
PDECISION (dec|h, dir, val) and PROOT (c|root),
where dir is a binary variable indicating the genera-
tion direction (left or right), val is a boolean variable
indicating whether the current head POS tag already
has a child in the current direction or not, c indicates
the child POS tag, h indicates the head POS tag, and
dec indicates the decision of either STOP or CON-
TINUE. A CHILD rule indicates the probability of
generating child c given head h on direction dir and
valence val. A DECISION rule indicates the proba-
bility of STOP or CONTINUE given the head, direc-
tion and valence. A ROOT rule is the probability of
a child c generated by the root. The probability of a
dependency tree is the product of probabilities of all
the grammar rules used in generating the dependen-
cy tree. The probability of a sentence is the sum of
probabilities of all the dependency trees consistent
with the sentence.

The basic DMV model has the limitation of being
oversimplified and unable to capture certain linguis-
tic structures. Headden et al. (2009) incorporated
more types of valence and lexicalized information in
the DMV model to increase its representation power
and achieved better parsing accuracy than the basic
DMV model.

2.2 DMV-based Learning Algorithms for
Unsupervised Dependency Parsing

To learn a DMV model from text, the Expectation
Maximization (EM) algorithm (Klein and Manning,
2004) can be used. In the E step, the model calcu-
lates the expected number of times each grammar
rule is used in parsing the training text by using the
inside-outside algorithm. In the M-step, these ex-
pected counts are normalized to become the proba-
bilities of the grammar rules.

There have been many more advanced learning al-
gorithms of the DMV model beyond the basic EM
algorithm. In the work of Cohen and Smith (2008),
a logistic normal prior was used in the DMV model
to capture the similarity between POS tags. In the
work of Berg-Kirkpatrick et al. (2010), features that
group various morphological variants of nouns and
verbs are used to predict the DECISION and CHILD
parameters. These two approaches both utilize the
correlations between POS tags to obtain better prob-
ability estimation of grammar rules involving such
correlated POS tags. In the work of Tu and Honavar
(2012), unambiguity of parse trees is incorporated
into the training objective function of DMV to ob-
tain a better performance.

2.3 Other Approaches to Unsupervised
Dependency Parsing

There are many other approaches to unsupervised
dependency parsing that are not based on DMV.
Daumé III (2009) proposed a stochastic search based
method to do unsupervised Shift-Reduce transition
parsing. Rasooli and Faili (2012) proposed a transi-
tion based unsupervised dependency parser together
with "baby-step" training (Spitkovsky et al., 2010) to
improve parsing accuracy. Le and Zuidema (2015)
proposed a complicated reranking based unsuper-
vised dependency parsing system and achieved the
state-of-the-art performance on the Penn Treebank
dataset.

2.4 Neural based Supervised Dependency
Parser

There exist several previous approaches on using
neural networks for supervised dependency pars-
ing. Garg and Henderson (2011) proposed a Tem-
poral Restricted Boltzmann Machine to do transition
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Figure 1: Structure of the neural network. Both CHILD and

DECISION use the same architecture for the calculation of dis-

tributions.

based dependency parsing. Stenetorp (2013) applied
recursive neural networks to transitional based de-
pendency parsing. Chen and Manning (2014) built a
neural network based parser with dense features in-
stead of sparse indicator features. Dyer et al. (2015)
proposed a stack long short-term memory approach
to supervised dependency parsing. To our knowl-
edge, our work is the first attempt to incorporate
neural networks into a generative grammar for un-
supervised dependency parsing.

3 Neural DMV

In this section, we introduce our neural based gram-
mar induction approach. We describe the model in
section 3.1 and the learning method in section 3.2.

3.1 Model

Our model is based on the DMV model (section 2.1),
except that the CHILD and DECISION probabilities
are calculated through two neural networks. We do
not compute the ROOT probabilities using a neural
network because doing that complicates the mod-
el while leads to no significant improvement in the
parsing accuracy. Parsing a sentence using our mod-
el can be done in the same way as using DMV.

Below we show how the CHILD rule probabilities
are computed in our neural based DMV model. De-
note the set of all possible POS tags by T . We build
a neural network to compute the probabilities of pro-
ducing child tag c ∈ T conditioned on the head, di-
rection and valence (h, dir, val).

The full architecture of the neural network is
shown in Figure 1. First, we represent each head
tag h as a d dimensional vector vh ∈ Rd, represent
each value of valence val as a d′ dimensional vector
vval ∈ Rd′ . We concatenate vh and vval as the in-
put embedding vector. Then we map the input layer
to a hidden layer with weight matrix Wdir through a
ReLU activation function. We have two versions of
weight matrix Wdir for the direction dir being left
and right respectively.

f(h, dir, val) = ReLU(Wdir[vh; vval])

We then take the inner product of f and all the child
POS tag vectors and apply a softmax function to ob-
tain the rule probabilities:

[pc1 , pc2 , ..., pc‖T‖ ] = Softmax(WTf)

whereW = [vc1 , vc2 , ..., vc‖T‖ ] is an embedding ma-
trix composed of all the child POS tag vectors.

We use the same neural architecture to predict the
probabilities of DECISION rules. The difference is
that the neural network for DECISION has only t-
wo outputs (STOP and CONTINUE). Note that the
two networks share parameters such as head POS
tag embeddings and direction weight matricesWleft

and Wright. Valence embeddings are either shared
or distinct between the two networks depending on
the variant of DMV we use (i.e., whether the max-
imal valences for CHILD and DECISION are the
same).

The parameters of our neural based model in-
clude the weights of the neural network and
all the POS and valence embeddings, denoted
by a set Θ = {vh, vc, vval, vdec,Wdir;h, c ∈
T, val ∈ {0, 1, ...}, dir ∈ {left, right}, dec ∈
{STOP,CONTINUE}}.

3.2 Learning

In this section, we describe an approach based on the
EM algorithm to learn our neural DMV model. To
learn the parameters, given a set of unannotated sen-
tences x1, x2, ..., xN , our objective function is the
log-likelihood function.

L(Θ) =

N∑

α=1

log P(xα; Θ)
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Figure 2: Learning procedure of our neural based DMV model.

Green dashed lines represent the EM algorithm for learning tra-

ditional DMV. Red solid lines represent the learning procedure

of our model. P represents the rule probabilities of DMV, E

represents the expected counts of rules, and W represents the

parameters of the neural networks. In the traditional EM algo-

rithm, the expected counts are directly used to re-estimate the

rule probabilities. In our approach, parameter re-estimation is

divided into two steps: training the neural networks from the

expected counts and forward evaluation of the neural networks

to produce the rule probabilities.

The approach is visualized in the Figure 2. The E-
step computes the expected number of times each
grammar rule used in parsing each training sentence
xi, denoted by ec(xi) for CHILD rule c, ed(xi) for
DECISION rule d, and er(xi) for ROOT rule r. In
the M-step of traditional DMV learning, these ex-
pected counts are normalized to re-estimate the pa-
rameters of DMV. This maximizes the expected log
likelihood (ELL) with respect to the DMV model
parameters.

ELL(Θ) =
N∑

α=1

(∑

c

ec(xi) log pc

+
∑

d

ed(xi) log pd +
∑

r

er(xi) log pr

)

In our model, however, we do not directly as-
sign the optimal rule probabilities of CHILD and
DECISION; instead, we train the neural networks to
output rule probabilities that optimize ELL, which is
equivalent to a weighted cross-entropy loss function
for each neural network. Note that while the tradi-
tional M-step produces the global optimum of ELL,
our neural-based M-step does not. This is because a

neural network tends to produce similar outputs for
correlated inputs. In our case, the neural network
is able to capture the correlations between different
POS tags as well as different valence values and s-
mooth the probabilities involving correlated tags and
valences. In other words, our M-step can be seen as
optimizing the ELL with a regularization term tak-
ing into account the input correlations. We use mo-
mentum based batch stochastic gradient descent al-
gorithm to train the neural network and learn all the
embeddings and weight matrices.

In addition to standard EM, we can also learn our
neural based DMV model based on the Viterbi EM
algorithm. The difference from standard EM is that
in the E-step, we compute the number of times each
grammar rule is used in the best parse of a training
sentence instead of considering all possible parses.

4 Experiments

4.1 Setup

We used the Wall Street Journal corpus (with section
2-21 for training, section 22 for validation and sec-
tion 23 for testing) in section 4.2 and 4.3. Then we
reported the results on eight additional languages in
section 4.4. In each experiment, we trained our mod-
el on gold POS tags with sentences of length less
than 10 after punctuation has been stripped off. As
the EM algorithm is very sensitive to initializations,
we used the informed initialization method proposed
in (Klein and Manning, 2004).

The length of embeddings is set to 10 for both
POS tags and valence. We trained the neural net-
works with batch size 10 and used the change of
the validation set loss function as the stop criteria.
We ran our model for five times and reported the av-
eraged directed dependency accuracy (DDA) of the
learned grammars on the test sentences with length
less than 10 and all sentences.

4.2 Comparisons of Approaches based on POS
Correlations

We first evaluated our approach in learning the basic
DMV model and compared the results against (Co-
hen and Smith, 2009) and (Berg-Kirkpatrick et al.,
2010), both of which have very similar motivation as
ours in that they also utilize the correlation between
POS tags to learn the basic DMV model. Table 1
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Methods WSJ10 WSJ
Standard EM 46.2 34.9
Viterbi EM 58.3 39.4
LN (Cohen et al., 2008) 59.4 40.5
Shared LN (Cohen and Smith, 2009) 61.3 41.4
Feature DMV (Berg-Kirkpatrick et al., 2010) 63.0 -
Neural DMV (Standard EM) 51.3 37.1
Neural DMV (Viterbi EM) 65.9 47.0

Table 1: Comparisons of Approaches based on POS Correla-

tions

shows the results. It can be seen that our approach
with Viterbi EM significantly outperforms the EM
and viterbi EM baselines and also outperforms the
two previous approaches.

4.3 Results on the extended DMV model

We directly apply our neural approach to learning
the extended DMV model (Headden III et al., 2009;
Gillenwater et al., 2010) (with the maximum va-
lence value set to 2 for both CHILD and DECISION
rules). As shown in Table 2, we achieve comparable
accuracy with recent state-of-the-art systems. If we
initialize our model with the grammar learned by Tu
and Honavar (2012), the accuracy of our approach
can be further improved.

Most of the recent state-of-the-art systems em-
ploy more complicated models and learning algo-
rithms. For example, Spitkovsky et al. (2013) take
several grammar induction techniques as modules
and connect them in various ways; Le and Zuide-
ma (2015) use a neural-based supervised parser and
reranker that make use of high-order features and
lexical information. We expect that the performance
of our approach can be further improved when these
more advanced techniques are incorporated.

4.4 Results on other languages

We also applied our approach on datasets of eight
additional languages from the PASCAL Challenge
on Grammar Induction (Gelling et al., 2012). We
ran our approach using the hyper-parameters from
experiment 4.2 on the new datasets without any fur-
ther tuning. We tested three versions of our ap-
proach based on standard EM, softmax EM (Tu and
Honavar, 2012) and Viterbi EM respectively. The
results are shown in Table 3 for test sentence length
no longer than ten and Table 4 for all test sentences.

Methods WSJ10 WSJ
Systems with Basic Setup

EVG (Headden III et al., 2009) 65.0 -
TSG-DMV (Blunsom and Cohn, 2010) 65.9 53.1
PR-S (Gillenwater et al., 2010) 64.3 53.3
UR-A E-DMV (Tu and Honavar, 2012) 71.4 57.0
Neural E-DMV 69.7 52.5
Neural E-DMV (Good Init) 72.5 57.6

Systems Using Extra Info
LexTSG-DMV (Blunsom and Cohn, 2010) 67.7 55.7
L-EVG (Headden III et al., 2009) 68.8 -
CS (Spitkovsky et al., 2013) 72.0 64.4
MaxEnc (Le and Zuidema, 2015) 73.2 65.8

Table 2: Comparison of recent unsupervised dependency pars-

ing systems. Basic setup means learning from POS tags with

sentences of length ≤ 10 and punctuation stripped off. Extra

information may contain punctuations, longer sentences, lexi-

cal information, etc. For Neural E-DMV, “Good Init” means

using the learned DMV model from Tu and Honavar (2012) as

our initialization.

Our neural based methods achieve better results than
their corresponding baselines in 75.0% of the cases
for test sentences no longer than 10 and 77.5% for
all test sentences. The good performance of our ap-
proach without data-specific hyper-parameter tuning
demonstrates the robustness of our approach. Care-
fully tuned hyper-parameters on validation datasets,
in our experience, can further improve the perfor-
mance of our approach, in some cases by a large
margin.

4.5 Effects of Hyper-parameters

We examine the influence of hyper-parameters on
the performance of our approach with the same ex-
perimental setup as in section 4.3.

Activation function We compare different linear
and non-linear functions: ReLU, Leaky ReLU, Tan-
h, Sigmoid. The results are shown in Table 5. Non-
linear activation functions can be seen to significant-
ly outperform linear activation functions.

Length of the embedding vectors The dimen-
sion of the embedding space is an important hyper-
parameter in our system. As Figure 3 illustrates,
when the dimension is too low (such as dim = 5),
the performance is bad probably because the embed-
ding vectors cannot effectively discriminate between
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Arabic Basque Czech Danish Dutch Portuguese Slovene Swedish
Standard EM

DMV 45.8 41.1 31.3 50.8 47.1 36.7 36.7 43.5
Neural DMV 43.4 46.5 33.1 55.6 49.0 30.4 42.2 44.3

Softmax EM σ = 0.25
DMV 49.3 45.6 30.4 43.6 46.1 33.5 29.8 50.3
Neural DMV 54.2 46.3 36.8 44.0 39.9 35.8 31.2 49.7

Softmax EM σ = 0.5
DMV 54.2 47.6 43.2 38.8 38.0 33.7 23.0 37.2
Neural DMV 44.6 48.9 33.4 50.3 37.5 35.3 32.2 43.3

Softmax EM σ = 0.75
DMV 42.2 48.6 22.7 41.0 33.8 33.5 23.2 41.6
Neural DMV 56.7 45.3 31.6 41.3 33.7 34.7 22.9 42.0

Viterbi EM
DMV 32.5 47.1 27.1 39.1 37.1 32.3 23.7 42.6
Neural DMV 48.2 48.1 28.6 39.8 37.2 36.5 39.9 47.9

Table 3: DDA results (on sentences no longer than 10) on eight additional languages. Our neural based approaches are compared

with traditional approaches using standard EM, softmax EM (parameterized by σ) and Viterbi EM.

Activation function WSJ10
ReLU 69.7
Leaky ReLU 67.0
Tanh 66.2
Sigmoid 62.5
Linear 55.1

Table 5: Comparison between activation functions.
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Figure 3: Parsing accuracy vs. length of POS embedding

different POS tags. On the other hand, when the di-
mension is too high (such as dim = 30), since we
have only 35 POS tags, the neural network is prone
to overfitting.

Shared parameters An alternative to our neural
network architecture is to have two separate neural
networks to compute CHILD and DECISION rule
probabilities respectively. The embeddings of the
head POS tag and the valence are not shared be-
tween the two networks. As can be seen in Table

WSJ10 WSJ
Separate Networks 68.6 52.1
Merged Network 69.7 52.5

Table 6: Comparison between using two separate networks and

using a merged network.

6, sharing POS tags embeddings attribute to better
performance.

5 Model Analysis

In this section, we investigate what information our
neural based DMV model captures and analyze how
it contributes to better parsing performance.

5.1 Correlation of POS Tags Encoded in
Embeddings

A main motivation of our approach is to encode cor-
relation between POS tags in their embeddings so
as to smooth the probabilities of grammar rules in-
volving correlated POS tags. Here we want to ex-
amine whether the POS embeddings learned by our
approach successfully capture such correlation.

We collected the POS embeddings learned in the
experiment described in section 4.3 and visualized
them on a 2D plane using the t-SNE algorithm
(Van der Maaten and Hinton, 2008). t-SNE is a
dimensionality reduction algorithm that maps data
from a high dimensional space to a low dimensional
one (2 or 3) while maintaining the distances between
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Arabic Basque Czech Danish Dutch Portuguese Slovene Swedish
Standard EM

DMV 28.0 31.2 28.1 40.3 44.2 23.5 25.2 32.0
Neural DMV 30.6 38.5 29.3 46.1 46.2 16.2 36.6 32.8

Softmax EM σ = 0.25
DMV 30.0 38.1 27.1 35.1 42.5 27.4 23.1 41.6
Neural DMV 31.5 40.5 32.6 38.0 35.7 26.7 24.2 41.3

Softmax EM σ = 0.5
DMV 32.3 41.0 33.0 32.2 33.9 27.6 15.0 29.6
Neural DMV 22.5 42.6 30.6 40.8 37.5 28.6 25.0 33.7

Softmax EM σ = 0.75
DMV 30.1 43.0 15.6 33.9 29.9 25.8 15.2 32.7
Neural DMV 34.9 37.4 24.7 34.2 29.5 28.9 15.1 33.3

Viterbi EM
DMV 23.9 40.9 20.4 32.6 33.0 26.9 16.5 36.2
Neural DMV 31.0 41.8 23.8 34.2 33.6 29.4 30.8 40.2

Table 4: DDA results (on all the sentences) on eight additional languages. Our neural based approaches are compared with

traditional approaches using standard EM, softmax EM (parameterized by σ) and viterbi EM.

the data points in the high dimensional space. The
"perplexity" hyper-parameter of the algorithm was
set to 20.0 and the distance metric we used is the
Euclidean distance.

Figure 4 shows the visualization result. It can be
seen that in most cases, nearby POS tags in the figure
are indeed similar. For example, VBP (Verb, non-
3rd person singular present), VBD (Verb, past tense)
and VBZ (Verb, 3rd person singular present) can be
seen to be close to each other, and they indeed have
very similar syntactic behavior. Similar observation
can be made to NN (Noun, singular or mass ), NNPS
(Proper noun, plural) and NNS (Noun, plural).

5.2 Smoothing of Grammar Rule Probabilities

By using similar embeddings to represent correlat-
ed POS tags, we hope to smooth the probabilities of
rules involving correlated POS tags. Here we an-
alyze whether our neural networks indeed predict
more similar probabilities for rules with correlated
POS tags.

We conducted a case study on all types of verb-
s: VBP (Verb, non-3rd person singular present),
VBZ (Verb, 3rd person singular present), VBD (Ver-
b, past tense), VBN (Verb, past participle), VB (Verb,
base form), VBG (Verb, gerund or present participle).
We used the neural networks in our N-DMV model
learned in the experiment described in section 4.2 to
predict the probabilities of all the CHILD rules head-
ed by a verb. For each pair of verb tags, we com-
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Figure 4: A visualization of the distances between embeddings

of different POS tags.

puted the total variation distance between the multi-
nomial distributions of CHILD rules headed by the
two verb tags. We also computed the total variation
distances between CHILD rules of verb tags in the
baseline DMV model learned by EM.

In Figure 5, We report the differences between the
total variation distances computed from our model
and from the baseline. A positive value means the
distance is reduced in our model compared with that
in the baseline. It can be seen that overall the dis-
tances between CHILD rules of different verb tags
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Figure 5: The change of the total variation distances between

probabilities of CHILD rules headed by different verb tags in

our model vs. the baseline. A positive value means the distance

is reduced in our model compared with that in the baseline.

become smaller in our model. This verifies that our
approach smooths the probabilities of rules involv-
ing correlated POS tags. From the figure one can
see that the distance that reduces the most is be-
tween VBG and VBN. These two verb tags indeed
have very similar syntactic behaviors and thus have
similar embeddings as shown in figure 4. One the
other hand, the distances between VB and VBZ/VBP
become larger. This is reasonable since VB is syn-
tactically different from VBZ/VBP in that it is very
likely to generate a child tag TO to the left while
VBZ/VBP always generate a subject (e.g., a noun or
a pronoun) to the left.

6 Conclusion

We propose a neural based DMV model to do unsu-
pervised dependency parsing. Our approach learn-
s neural networks with continuous representations
of POS tags to predict the probabilities of grammar
rules, thus automatically taking into account the cor-
relations between POS tags. Our experiments show
that our approach outperforms previous approaches
utilizing POS correlations and is competitive with
recent state-of-the-art approaches on nine different
languages.

For future work, we plan to extend our approach
in learning lexicalized DMV models. In addition,

we plan to apply our approach to other unsupervised
tasks such as word alignment and sentence cluster-
ing.
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