
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1143–1154,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Parsing English into Abstract Meaning Representation Using
Syntax-Based Machine Translation

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel Marcu, Jonathan May
Information Sciences Institute
Computer Science Department

University of Southern California
{pust, ulf, knight, marcu, jonmay}@isi.edu

Abstract

We present a parser for Abstract Meaning
Representation (AMR). We treat English-
to-AMR conversion within the framework
of string-to-tree, syntax-based machine
translation (SBMT). To make this work,
we transform the AMR structure into a
form suitable for the mechanics of SBMT
and useful for modeling. We introduce
an AMR-specific language model and add
data and features drawn from semantic re-
sources. Our resulting AMR parser signif-
icantly improves upon state-of-the-art re-
sults.

1 Introduction

Abstract Meaning Representation (AMR) is a
compact, readable, whole-sentence semantic an-
notation (Banarescu et al., 2013). It includes en-
tity identification and typing, PropBank semantic
roles (Kingsbury and Palmer, 2002), individual en-
tities playing multiple roles, as well as treatments
of modality, negation, etc. AMR abstracts in nu-
merous ways, e.g., by assigning the same concep-
tual structure to fear (v), fear (n), and afraid (adj).
Figure 1 gives an example.

AMR parsing is a new research problem, with
only a few papers published to date (Flani-
gan et al., 2014; Wang et al., 2015) and a
publicly available corpus of more than 10,000
English/AMR pairs.1 New research problems
can be tackled either by developing new algo-
rithms/techniques (Flanigan et al., 2014; Wang
et al., 2015) or by adapting existing algo-
rithms/techniques to the problem at hand. In this
paper, we investigate the second approach.

The AMR parsing problem bears a strong for-
mal resemblance to syntax-based machine transla-
tion (SBMT) of the string-to-tree variety, in that

1LDC Catalog number 2014T12

ins
t

fear-01

die-01

A
R
G
0 ARG1

polarity -

in
st

soldier

inst
ARG1

The soldier was not afraid of dying.
The soldier was not afraid to die.

The soldier did not fear death.

Figure 1: An Abstract Meaning Representation
(AMR) with several English renderings.

a string is transformed into a nested structure in
both cases. Because of this, it is appealing to ap-
ply the substantial body of techniques already in-
vented for SBMT2 to AMR parsing. By re-using
an SBMT inference engine instead of creating cus-
tom inference procedures, we lose the ability to
embed some task-specific decisions into a custom
transformation process, as is done by Flanigan et
al. (2014) and Wang et al. (2015). However, we
reap the efficiency gains that come from work-
ing within a tested, established framework. Fur-
thermore, since production-level SBMT systems
are widely available, anyone wishing to generate
AMR from text need only follow our recipe and
retrain an existing framework with relevant data to
quickly obtain state-of-the-art results.

Since SBMT and AMR parsing are, in fact,
distinct tasks, as outlined in Figure 2, to adapt
the SBMT parsing framework to AMR parsing,
we develop novel representations and techniques.
Some of our key ideas include:

1. Introducing an AMR-equivalent representa-
tion that is suitable for string-to-tree SBMT
rule extraction and decoding (Section 4.1).

2See e.g. the related work section of Huck et al. (2014).

1143

SBMT AMR parsing
Target tree graph
Nodes labeled unlabeled
Edges unlabeled labeled
Alignments words to leaves words to leaves

+ words to edges
Children ordered unordered
Accuracy
Metric

BLEU (Papineni
et al., 2002)

Smatch (Cai and
Knight, 2013)

Figure 2: Differences between AMR parsing and
syntax-based machine translation (SBMT).

2. Proposing a target-side reordering technique
that leverages the fact that child nodes in
AMR are unordered (Section 4.4).

3. Introducing a hierarchical AMR-specific lan-
guage model to ensure generation of likely
parent-child relationships (Section 5).

4. Integrating several semantic knowledge
sources into the task (Section 6).

5. Developing tuning methods that maximize
Smatch (Cai and Knight, 2013) (Section 7).

By applying these key ideas, which constitute
lightweight changes on a baseline SBMT system,
we achieve state-of-the-art AMR parsing results.
We next describe our baseline, and then describe
how we adapt it to AMR parsing.

2 Syntax-Based Machine Translation

Our baseline SBMT system proceeds as follows.
Given a corpus of (source string, target tree,
source-target word alignment) sentence translation
training tuples and a corpus of (source, target,
score) sentence translation tuning tuples:

1. Rule extraction: A grammar of string-to-
tree rules is induced from training tuples us-
ing the GHKM algorithm (Galley et al., 2004;
Galley et al., 2006).

2. Local feature calculation: Statistical and in-
dicator features, as described by Chiang et al.
(2009), are calculated over the rule grammar.

3. Language model calculation: A Kneser-
Ney-interpolated 5-gram language model
(Chen and Goodman, 1996) is learned from
the yield of the target training trees.

4. Decoding: A beamed bottom-up chart de-
coder (Pust and Knight, 2009; Hopkins
and Langmead, 2010) calculates the optimal
derivations given a source string and feature
parameter set.

5. Tuning: Feature parameters are optimized
using the MIRA learning approach (Chiang

Corpus Sentences Tokens
Training 10,313 218,021

Development 1,368 29,484
Test 1,371 30,263

Table 1: Data splits of AMR 1.0, used in this work.
Tokens are English, after tokenization.

et al., 2009) to maximize the objective, typi-
cally BLEU (Papineni et al., 2002), associated
with a tuning corpus.

We initially use this system with no modifica-
tions and pretend that English–AMR is a language
pair indistinct from any other.

3 Data and Comparisons

We use English–AMR data from the AMR 1.0 cor-
pus, LDC Catalog number 2014T12. In contrast
to narrow-domain data sources that are often used
in work related to semantic parsing (Price, 1990;
Zelle, 1995; Kuhlmann et al., 2004), the AMR cor-
pus covers a broad range of news and web forum
data. We use the training, development, and test
splits specified in the AMR corpus (Table 1). The
training set is used for rule extraction, language
modeling, and statistical rule feature calculation.
The development set is used both for parameter
optimization and qualitatively for hill-climbing.
The test set is held out blind for evaluation. We
preprocess the English with a simple rule-based
tokenizer and, except where noted, lowercase all
data. We obtain English–AMR alignments by us-
ing the unsupervised alignment approach of Pour-
damghani et al. (2014), which linearizes the AMR
and then applies the models of Brown et al. (1993)
with an additional symmetrization constraint.

All parsing results reported in this work are
obtained with the Smatch 1.0 software (Cai and
Knight, 2013). We compare our results to those of
Flanigan et al. (2014) on the AMR 1.0 data splits;
we run that work’s JAMR software according to
the provided instructions.3 We also compare our
results to published scores in the recent work of
Wang et al. (2015). Their work uses slightly dif-
ferent data than that used here 4 but in practice we
have not seen significant variation in results.

3https://github.com/jflanigan/jamr
4LDC2013E117, a pre-released version of LDC2014T12

that is not generally available.

1144

ins
t

fear-01

die-01

A
R
G
0 ARG1

polarity -

in
st

soldier

inst
ARG1

(a) The original AMR

ins
t

fear-01

die-01

A
R
G
0

ARG1

polarity -

ins
t

soldier

inst

ARG1

*
inst

(b) Disconnecting multiple parents of
(a)

X

Pfear-01 PARG0 PARG1X X

Psoldier
Pdie-01 PARG1

fear-01 ARG0

soldier

Ppolarity

polarity

X

-ARG1

die-01 ARG1
P*

*

X

(c) Edge labels of (b) pushed to leaves,
preterminals added

X

Pfear-01 PARG0

PARG1

X

X

Psoldier Pdie-01 PARG1
fear-01 ARG0 soldier

Ppolarity

polarity

X

-ARG1

die-01 ARG1

P*

*

fear-01

fear-01

X

(d) Restructuring (c) with concept la-
bels as intermediates

X

Pfear-01 PARG0

PARG1

X

X

Psoldier Pdie-01PARG1
fear-01 ARG0 soldier

Ppolarity

polarity

X

-ARG1

die-01 ARG1

P*

*

ARG1

ARG0

X

(e) Restructuring (c) with role labels
as intermediates

X

Pfear-01 PARG0 PARG1X X

Psoldier
Pdie-01 PARG1

fear-01 ARG0

soldier

Ppolarity

polarity

Spolarity

-ARG1

die-01 ARG1
P*

*

X

(f) String preterminal relabeling of (c)

X

Pfear-01 PARG0 PARG1X X

Psoldier
Pdie-01

PARG1
fear-01 ARG0

soldier

Ppolarity

polarity

X

-ARG1

die-01 ARG1
P*

*

The soldier was not afraid of dying

X

(g) Original alignment of English to
(c)

X

Pfear-01

PARG0

PARG1
X

X

Psoldier

Pdie-01

PARG1

fear-01

ARG0

soldier

Ppolarity

polarity

X

-
ARG1

die-01

ARG1

P*

*

The soldier was not afraid of dying

X

(h) After reordering of (g)

X

Pfear-01

PARG0
PARG1

X
X

Psoldier

Pdie-01
PARG1

fear-01

ARG0
soldier

Ppolarity

polarity

Spolarity

-

ARG1

die-01 ARG1

P*

*

ARG0

polarity
X

(i) Restructured, relabeled, and re-
ordered tree: (e), (f), and (h)

Figure 3: Transformation of AMR into tree structure that is acceptable to GHKM rule extraction (Galley
et al., 2004; Galley et al., 2006) and yields good performance.

4 AMR Transformations

In this section we discuss various transformations
to our AMR data. Initially, we concern ourselves
with converting AMR into a form that is amenable
to GHKM rule extraction and string to tree decod-
ing. We then turn to structural transformations
designed to improve system performance. Fig-
ure 3 progressively shows all the transformations
described in this section; the example we follow is
shown in its original form in Figure 3a. We note
that all transformations are done internally; the in-
put to the final system is a sentence and the output
is an AMR. We further observe that all transfor-
mations are data-driven and language agnostic.

4.1 Massaging AMRs into Syntax-Style Trees

The relationships in AMR form a directed acyclic
graph (DAG), but GHKM requires a tree, so
we must begin our transformations by discarding
some information. We arbitrarily disconnect all
but a single parent from each node (see Figure 3b).

This is the only lossy modification we make to
our AMR data. As multi-parent relationships oc-
cur 1.05 times per training sentence and at least
once in 48% of training sentences, this is indeed a
regrettable loss. We nevertheless make this mod-
ification, since it allows us to use the rest of our
string-to-tree tools.

AMR also contains labeled edges, unlike the
constituent parse trees we are used to working with
in SBMT. These labeled edges have informative
content and we would like to use the alignment
procedure of Pourdamghani et al. (2014), which
aligns words to edges as well as to terminal nodes.
So that our AMR trees are compatible with both
our desired alignment approach and our desired
rule extraction approach, we propagate edge labels
to terminals via the following procedure:

1. For each node n in the AMR tree we create
a corresponding node m with the all-purpose
symbol ‘X’ in the SBMT-like tree. Outgoing
edges from n come in two flavors: concept

1145

edges, labeled ‘inst,’ which connect n to a
terminal concept such as fear-01, and role
edges, which have a variety of labels such as
ARG0 and name, and connect n to another
instance or to a string.5 A node has one in-
stance edge and zero or more role edges. We
consider each type of edge separately.

2. For each outgoing role edge we insert two un-
labeled edges into the corresponding trans-
formation; the first is an edge from m to a
terminal bearing the original edge’s role label
(a so-called role label edge), and the second
(a role filler edge) connects m to the trans-
formation of the original edge’s target node,
which we process recursively. String targets
of a role receive an ‘X’ preterminal to be con-
sistent with the form of role filler edges.

3. For the outgoing concept edge we insert an
unlabeled edge connecting m and the con-
cept. It is unambiguous to determine which
of m’s edges is the concept edge and which
edges constitute role label edges and their
corresponding role filler edges, as long as
paired label and filler edges are adjacent.

4. Since SBMT expects trees with preterminals,
we simply replicate the label identities of
concepts and role labels, adding a marker (‘P’
in Figure 3) to distinguish preterminals.

The complete transformation can be seen in Fig-
ure 3c. Apart from multiple parent ancestry, the
original AMR can be reconstructed deterministi-
cally from this SBMT-compliant rewrite.

4.2 Tree Restructuring
While the transformation in Figure 3c is accept-
able to GHKM, and hence an entire end-to-end
AMR parser may now be built with SBMT tools,
the resulting parser does not exhibit very good per-
formance (Table 3, first line). The trees we are
learning on are exceedingly flat, and thus yield
rules that do not generalize sufficiently. Rules pro-
duced from the top of the tree in Figure 3c, such
as that in Figure 4a, are only appropriate for cases
where fear-01 has exactly three roles: ARG0
(agent), ARG1 (patient), and polarity.

We follow the lead of Wang et al. (2010), who
in turn were influenced by similar approaches in
monolingual parsing (Collins, 1997; Charniak,
2000), and re-structure trees at nodes with more

5In Figure 3 the negative polarity marker ‘-’ is a string.
Disconnected referents labeled ‘*’ are treated as AMR in-
stances with no roles.

than three children (i.e. instances with more than
one role), to allow generalization of flat structures.

However, our trees are unlike syntactic con-
stituent trees in that they do not have labeled non-
terminal nodes, so we have no natural choice of
an intermediate (“bar”) label. We must choose a
meaningful label to characterize an instance and
its roles. We initially choose the concept label,
resulting in trees like that in Figure 3d, in which a
chain of fear-01 nodes is used to unflatten the root,
which has instance fear-01.

This attempt at re-structuring yields rules like
that in Figure 4b, which are general in form but
are tied to the concept context in which they were
extracted. This leads to many redundant rules and
blows up the nonterminal vocabulary size to ap-
proximately 8,000, the size of the concept vocabu-
lary. Furthermore, the rules elicited by this proce-
dure encourage undesirable behavior such as the
immediate juxtaposition of two rules generating
ARG1.

We next consider restructuring with the imme-
diately dominant role labels, resulting in trees like
that in Figure 3e and rules like that in Figure 4c.
The shape of the structure added is the same as in
Figure 3d but the bar nodes now take their labels
from their second children. This approach leads to
more useful rules with fewer undesirable proper-
ties.

4.3 Tree Relabeling
AMR strings have an effective preterminal label of
‘X,’ which allows them to compete with full AMR
instances at decode time. However, whether or not
a role is filled by a string or an instance is highly
dependent on the kind of role being filled. The
polarity and mode roles, for instance, are nearly
always filled by strings, but ARG0 and ARG1 are
always filled by instances. The quant role, which
is used for representation of numerical quantities,
can be filled by an instance (e.g. for approximate
quantities such as ‘about 3’) or a string. To capture
this behavior we relabel string preterminals of the
tree with labels indicating role identity and string
subsumption. This relabeling, replaces, for exam-
ple, one ‘X’ preterminal in Figure 3c with “Spo-
larity,” as shown in Figure 3f.

4.4 Tree Reordering
Finally, let us consider the alignments between
English and AMR. As is known in SBMT, non-
monotone alignments can lead to large, unwieldy

1146

X

Pfear-01 PARG0 PARG1

x1:X

x2:Xfear-01 ARG0

Ppolarity

polarity

X

-
ARG1

The x1 was not afraid x2

(a) A rule extracted from the AMR tree of
Figure 3c. All roles seen in training must be
used.

PARG1 x2:X

ARG1

fear-01

x1:fear-01

x1 x2

(b) A rule from the AMR tree of
Figure 3d. Many nearly iden-
tical rules of this type are ex-
tracted, and this rule can be
used multiple times in a single
derivation.

PARG1 x2:X

ARG1

ARG1

x1:ARG0

x1 x2

(c) A rule from the AMR tree of Fig-
ure 3e. This rule can be used indepen-
dent of the concept context it was ex-
tracted from and multiple reuse is dis-
couraged.

Figure 4: Impact of restructuring on rule extraction.

rules and in general make decoding more diffi-
cult (May and Knight, 2007). While this is often
an unavoidable fact of life when trying to trans-
late between two natural languages with different
syntactic behavior, it is an entirely artificial phe-
nomenon in this case. AMR is an unordered repre-
sentation, yet in order to use an SBMT infrastruc-
ture we must declare an order of the AMR tree.
This means we are free to choose whatever order
is most convenient to us, as long as we keep role
label edges immediately adjacent to their corre-
sponding role filler edges to preserve conversion
back to the edge-labeled AMR form. We thus
choose the order that is as close as possible to
that of the source yet still preserves these con-
straints. We use a simple greedy bottom-up ap-
proach that permutes the children of each internal
node of the unrestructured tree so as to minimize
crossings. This leads to a 79% overall reduction in
crossings and is exemplified in Figure 3g (before)
and Figure 3h (after). We may then restructure our
trees, as described above, in an instance-outward
manner. The final restructured, relabeled, and re-
ordered tree is shown in Figure 3i.

5 AMR Language Models

We now turn to language models of AMRs, which
help us prefer reasonable target structures over un-
reasonable ones.

Our first language model is unintuitively
simple—we pretend there is a language called
AMRese that consists of yields of our restruc-
tured AMRs. An example AMRese string from
Figure 3i is ‘ARG0 soldier polarity -

fear-01 ARG1 die-01 ARG1 *.’ We then
build a standard n-gram model for AMRese.

It also seems sensible to judge the correctness of
an AMR by calculating the empirical probability
of the concepts and their relations to each other.
This is the motivation behind the following model
of an AMR:6

We define an AMR instance i = (c, R), where
c is a concept and R is a set of roles. We
define an AMR role r = (l, i), where l is a
role label, and i is an AMR instance labeled l.
For an AMR instance i let ĉi be the concept of
i’s parent instance, and l̂i be the label of the
role that i fills with respect to its parent. We
also define the special instance and role labels
ROOT and STOP. Then, we define PAMR(i|l̂i, ĉi),
the conditional probability of AMR instance i
given its ancestry as PAMR(i = (c, R)|l̂i, ĉi) =
P (c|l̂i, ĉi)

∏
r∈R

PRole(r|c) × P (STOP|c), where

PRole(r = (l, i)|c) = P (l|c)PAMR(i|l, c).
We define P (c|l̂i, ĉi), P (l|c), and P (STOP|c)

as empirical conditional probabilities, Witten-Bell
interpolated (Witten and Bell, 1991) to lower-
order models by progressively discarding context
from the right.7 We model exactly one STOP
event per instance. We define the probability of
a full-sentence AMR i as PAMR(i|ROOT) where
ROOT in this case serves as both parent concept
and role label.

6This model is only defined over AMRs that can be rep-
resented as trees, and not over all AMRs. Since tree AMRs
are a prerequisite of our system we did not yet investigate
whether this model could be sufficiently generalized.

7That is, P (c|l̂i, ĉi) is interpolated with P (c|l̂i) and then
P (c).

1147

System Tune Test
AMRese n-gram LM 61.7 59.7

AMR LM 59.1 57.1
both LMs 62.3 60.6

Table 2: The effect of AMRese n-gram and AMR
LMs on Smatch quality.

As an example, the instance associated
with concept die-01 in Figure 3b has l̂i =
ARG1 and ĉi = fear-01, so we may
score it as P (die-01|ARG1,fear-01) ×
P (ARG1|die-01) × P (STOP|die-01) ×
P (*|ARG1,die-01)

In Table 2 we compare the effect of varying
LMs on Smatch quality. The AMR LM by itself
is inferior to the AMRese n-gram LM, but com-
bining the two yields superior quality.

6 Adding External Semantic Resources

Although we are engaged in the task of semantic
parsing, we have not yet discussed the use of any
semantic resources. In this section we rectify that
omission.

6.1 Rules from Numerical Quantities and
Named Entities

While the majority of string-to-tree rules in SBMT
systems are extracted from aligned parallel data, it
is common practice to dynamically generate addi-
tional rules to handle the translation of dates and
numerical quantities, as these follow common pat-
terns and are easily detected at decode-time. We
follow this practice here, and additionally detect
person names at decode-time using the Stanford
Named Entity Recognizer (Finkel et al., 2005).
We use cased, tokenized source data to build the
decode-time rules. We add indicator features to
these rules so that our tuning methods can decide
how favorable the resources are. We leave as fu-
ture work the incorporation of named-entity rules
for other classes, since most available named-
entity recognition beyond person names is at a
granularity level that is incompatible with AMR
(e.g. we can recognize ‘Location’ but not distin-
guish between ‘City’ and ‘Country’).

6.2 Hierarchical Semantic Categories

In order to further generalize our rules, we mod-
ify our training data AMRs once more, this time
replacing the identity preterminals over concepts

X

think

PARG0
PARG1

X
X

skilled-worker

die
PARG1

fear-01

ARG0
soldier

Ppolarity

polarity

Spolarity

-

ARG1

die-01 ARG1

P*

*

ARG0

polarity
X

Figure 5: Final modification of the AMR data; se-
mantically clustered preterminal labels are added
to concepts.

with preterminals designed to enhance the appli-
cability of our rules in semantically similar con-
texts. For each concept c expressed in AMR, we
consult WordNet (Fellbaum, 1998) and a curated
set of gazetteers and vocabulary lists to identify
a hierarchy of increasingly general semantic cat-
egories that describe the concept. So as not to
be overwhelmed by the many fine-grained distinc-
tions present in WordNet, we pre-select around
100 salient semantic categories from the WordNet
ontology. When traversing the WordNet hierarchy,
we propagate a smoothed count8 of the number
of examples seen per concept sense,9 combining
counts when paths meet. For each selected se-
mantic category s encountered in the traversal, we
calculate a weight by dividing the propagated ex-
ample count for c at s by the frequency s was pro-
posed over all AMR concepts. We then assign c
to the highest scoring semantic category s. An ex-
ample calculation for the concept computer is
shown in Figure 7.

We apply semantic categories to our data
as replacements for identity preterminals of
concepts. This leads to more general, more
widely-applicable rules. For example, with
this transformation, we can parse correctly
not only contexts in which “soldiers die,” but
also contexts in which other kinds of “skilled
workers die.” Figure 5 shows the addition of
semantic preterminals to the tree from Figure
3i. We also incorporate semantic categories
into the AMR LM. For concept c, let sc be
the semantic category of c. Then we reformu-

8We use very simple smoothing, and add 0.1 to the pro-
vided example counts.

9Since WordNet senses do not correspond directly to
PropBank or AMR senses, we simply use a lexical match and
must consider all observed senses for that match.

1148

System Sec. Tune Test
flat trees 4.1 51.6 49.9

concept restructuring 4.2 57.2 55.3
role restructuring (rr) 4.2 60.8 58.6

rr + string preterminal relabeling (rl) 4.3 61.3 59.7
rr + rl + reordering (ro) 4.4 61.7 59.7
rr + rl + ro + AMR LM 5 62.3 60.6

rr + rl + ro + AMR LM + date/number/name rules (dn) 6.1 63.3 61.3
rr + rl + ro + AMR LM + dn + semantic categories (sc) 6.2 66.2 64.3

rr + rl + ro + AMR LM + dn + sc + morphological normalization (mn) 6.3 67.3 65.4
rr + rl + ro + AMR LM + dn + sc + mn, rule-based alignments 6.4 68.3 66.3

rr + rl + ro + AMR LM + dn + sc + mn, rule-based + unsupervised alignments 6.4 69.0 67.1
JAMR (Flanigan et al., 2014) 9 58.8 58.2

dependency parse-based (Wang et al., 2015) 9 N/A 63

Table 3: AMR parsing Smatch scores for the experiments in this work. We provide a cross-reference to
the section of this paper that describes each of the evaluated systems. Entries in bold are improvements
over JAMR (Flanigan et al., 2014). Test entries underlined are improvements over the dependency-based
work of Wang et al. (2015). Human inter-annotator Smatch performance is in the 79-83 range (Cai and
Knight, 2013).

English AMRese
tigers tiger
asbestos asbestos
quietly quiet
nonexecutive executive polarity ‘-’
broke up break-up-08

Table 4: Lexical conversions to AMRese form
due to the morphological normalization rules de-
scribed in Section 6.3.

late PAMR(i|l̂i, ĉi) as PAMR(i = (c, R)|l̂i, ĉi) =
P (sc|l̂i, sĉi

, ĉi)P (c|sc, l̂i, sĉi
, ĉi)

∏
r∈R

PRole(r|c) ×
P (STOP|sc, c), where PRole(r = (l, i)|c) =
P (l|sc, c)× PAMR(i|l, c).

6.3 Morphological Normalization

While we rely heavily on the relationships be-
tween words in-text and concept nodes expressed
in parallel training data, we find this is not suf-
ficient for complete coverage. Thus we also in-
clude a run-time module that generates AMRese
base forms at the lexical level, expressing relation-
ships such as those depicted in Table 4. We build
these dictionary rules using three resources:

1. An inflectional morphological normalizing
table, comprising a lexicon with 84,558 en-
tries, hand-written rules for regular inflec-
tional morphology, and hand-written lists of

irregular verbs, nouns, and adjectives.
2. Lists of derivational mappings (e.g. ‘quietly’
→ ‘quiet’, ‘naval’→ ‘navy’).

3. PropBank framesets, which we use, e.g., to
map the morphologically normalized ‘break
up’ (from ‘broke up’) into a sense match,
such as break-up-08.

6.4 Semantically informed Rule-based
Alignments

For our final incorporation of semantic resources
we revisit the English-to-AMR alignments used to
extract rules. As an alternative to the unsupervised
approach of Pourdamghani et al. (2014), we build
alignments by taking a linguistically-aware, super-
vised heuristic approach to alignment:

First, we generate a large number of poten-
tial links between English and AMR. We attempt
to link English and AMR tokens after conver-
sion through resources such as a morphological
analyzer, a list of 3,235 pertainym pairs (e.g.
adj-‘gubernatorial’ → noun-‘governor’), a list of
2,444 adverb/adjective pairs (e.g. ‘humbly’ →
‘humble’), a list of 2,076 negative polarity pairs
(e.g. ‘illegal’→ ‘legal’), and a list of 2,794 known
English-AMR transformational relationships (e.g.
‘asleep’ → sleep-01, ‘advertiser’ → person
ARG0-of advertise-01, ‘Greenwich Mean
Time’→ GMT). These links are then culled based
on context and AMR structure. For example, in
the sentence “The big fish ate the little fish,” ini-

1149

Figure 6: BLEU of AMRese and Smatch correlate
closely when tuning.

tially both English ‘fish’ are aligned to both AMR
fish. However, based on the context of ‘big’ and
‘little’ the spurious links are removed.

In our experiments we explore both replacing
the unsupervised alignments of Pourdamghani et
al. (2014) with these alignments and concatenat-
ing the two alignment sets together, essentially
doubling the size of the training corpus. Because
the different alignments yield different target-side
tree reorderings, it is necessary to build separate
5-gram AMRese language models.10 When us-
ing both alignment sets together, we also use both
AMRese language models simultaneously.

7 Tuning

We would like to tune our feature weights to max-
imize Smatch directly. However, a very con-
venient alternative is to compare the AMRese
yields of candidate AMR parses to those of ref-
erence AMRese strings, using a BLEU objective
and forest-based MIRA (Chiang et al., 2009). Fig-
ure 6 shows that MIRA tuning with BLEU over
AMRese tracks closely with Smatch. Note that,
for experiments using reordered AMR trees, this
requires obtaining similarly permuted reference
tuning AMRese and hence requires alignments on
the development corpus. When using unsuper-
vised alignments we may simply run inference
on the trained alignment model to obtain devel-
opment alignments. The rule-based aligner runs
one sentence at a time and can be employed on
the development corpus. When using both sets of
alignments, each approach’s AMRese is used as

10The AMR LM is insensitive to reordering so we do not
need to vary it when varying alignments.

computer

computing device

machine

artefact = 6.1/1143

unit

estimator

person = 0.1/814

causal-agency = 0.1/930

physical-object = 6.2/2218

entity = 6.2/4381

6.1

0.1

0.1

0.1
0.1

6.1

6.2

6.1

6.1

6.1

Figure 7: WordNet hierarchy for computer.
Pre-selected salient WordNet categories are
boxed. Smoothed sense counts are propagated
up the hierarchy and re-combined at join points.
Scores are calculated by dividing propagated
sense count by count of the category’s prevalence
over the set of AMR concepts. The double box
indicates the selection of artefact as the category
label for computer.

a development reference (i.e. each development
sentence has two possible reference translations).

8 Results and Discussion

Our AMR parser’s performance is shown in Ta-
ble 3. We progressively show the incremental im-
provements and compare to the systems of Flani-
gan et al. (2014) and Wang et al. (2015). Purely
transforming AMR data into a form that is com-
patible with the SBMT pipeline yields suboptimal
results, but by adding role-based restructuring, re-
labeling, and reordering, as described in Section
4, we are able to surpass Flanigan et al. (2014).
Adding an AMR LM and semantic resources in-
creases scores further, outperforming Wang et al.
(2015). Rule-based alignments are an improve-
ment upon unsupervised alignments, but concate-
nating the two alignments is even better. We com-
pare rule set sizes of the various systems in Ta-
ble 5; initially we improve the rule set by remov-
ing numerous overly brittle rules but then succes-
sive changes progressively add useful rules. The
parser is available for public download and use at
http://amr.isi.edu.

1150

System Rules
flat trees 1,430,124

concept restructuring 678,265
role restructuring (rr) 660,582

rr + preterminal relabeling (rl) 661,127
rr + rl + semantic categories (sc) 765,720

rr + rl + sc + reordering (ro) 790,624
rr + rl + sc + ro + rule-based alignments 908,318

rr + rl + sc + ro + both alignments 1,306,624

Table 5: Comparison of extracted rule set size on the systems evaluated in this work. Note that, as
compared to Table 3, only systems that affect the rule size are listed.

9 Related Work
The first work that addressed AMR parsing was
that of Flanigan et al. (2014). In that work, mul-
tiple discriminatively trained models are used to
identify individual concept instances and then a
minimum spanning tree algorithm connects the
concepts. That work was extended and improved
upon by Werling et al. (2015). Recent work by
Wang et al. (2015) also uses a two-pass approach;
dependency parses are modified by a tree-walking
algorithm that adds edge labels and restructures to
resolve discrepancies between dependency stan-
dards and AMR’s specification. In contrast to
these works, we use a single-pass approach and
re-use existing machine translation architecture,
adapting to the AMR parsing task by modify-
ing training data and adding lightweight AMR-
specific features.

Several other recent works have used a ma-
chine translation approach to semantic parsing,
but all have been applied to domain data that is
much narrower and an order of magnitude smaller
than that of AMR, primarily the Geoquery cor-
pus (Zelle and Mooney, 1996). The WASP sys-
tem of Wong and Mooney (2006) uses hierarchi-
cal SMT techniques and does not apply semantic-
specific improvements; its extension (Wong and
Mooney, 2007) incorporates a target-side reorder-
ing component much like the one presented in
Section 4.4. Jones et al. (2012a) cast semantic
parsing as an instance of hyperedge replacement
grammar transduction; like this work they use an
IBM model-influenced alignment algorithm and a
GHKM-based extraction algorithm. Andreas et
al. (2013) use phrase-based and hierarchical SMT
techniques on Geoquery. Like this work, they per-
form a transformation of the input semantic repre-
sentation so that it is amenable to use in an exist-

ing machine translation system. However, they are
unable to reach the state of the art in performance.
Li et al. (2013) directly address GHKM’s word-to-
terminal alignment requirement by extending that
algorithm to handle word-to-node alignment.

Our SBMT system is grounded in the theory of
tree transducers, which were applied to the task of
semantic parsing by Jones et al. (2011; 2012b).

Semantic parsing in general and AMR parsing
specifically can be considered a subsumption of
many semantic resolution sub-tasks, e.g. named
entity recognition (Nadeau and Sekine, 2007), se-
mantic role labeling (Gildea and Jurafsky, 2002),
word sense disambiguation (Navigli, 2009) and re-
lation finding (Bach and Badaskar, 2007).

10 Conclusion

By restructuring our AMRs we are able to convert
a sophisticated SBMT engine into a baseline se-
mantic parser with little additional effort. By fur-
ther restructuring our data to appropriately model
the behavior we want to capture, we are able to
rapidly achieve state-of-the-art results. Finally, by
incorporating novel language models and external
semantic resources, we are able to increase quality
even more. This is not the last word on AMR pars-
ing, as fortunately, machine translation technology
provides more low-hanging fruit to pursue.

Acknowledgments

Thanks to Julian Schamper and Allen Schmaltz
for early attempts at this problem. This work
was sponsored by DARPA DEFT (FA8750-13-2-
0045), DARPA BOLT (HR0011-12-C-0014), and
DARPA Big Mechanism (W911NF-14-1-0364).

1151

References
Jacob Andreas, Andreas Vlachos, and Stephen Clark.

2013. Semantic parsing as machine translation. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 47–52, Sofia, Bulgaria, Au-
gust. Association for Computational Linguistics.

Nguyen Bach and Sameer Badaskar. 2007. A Review
of Relation Extraction. Unpublished. http:
//www.cs.cmu.edu/˜nbach/papers/
A-survey-on-Relation-Extraction.
pdf.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria, August.
Association for Computational Linguistics.

Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993.
The mathematics of statistical machine translation:
parameter estimation. Computational Linguistics,
19(2):263–311.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria, August.
Association for Computational Linguistics.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the 1st North
American Chapter of the Association for Computa-
tional Linguistics Conference, NAACL 2000, pages
132–139, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Stanley F. Chen and Joshua Goodman. 1996. An em-
pirical study of smoothing techniques for language
modeling. In Proceedings of the 34th Annual Meet-
ing on Association for Computational Linguistics,
ACL ’96, pages 310–318, Stroudsburg, PA, USA.
Association for Computational Linguistics.

David Chiang, Kevin Knight, and Wei Wang. 2009.
11,001 new features for statistical machine trans-
lation. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 218–226, Boulder, Col-
orado, June. Association for Computational Linguis-
tics.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of the
35th Annual Meeting of the Association for Com-
putational Linguistics, pages 16–23, Madrid, Spain,
July. Association for Computational Linguistics.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05), pages 363–370, Ann Arbor, Michi-
gan, June. Association for Computational Linguis-
tics.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1426–
1436, Baltimore, Maryland, June. Association for
Computational Linguistics.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation
rule? In Daniel Marcu Susan Dumais and Salim
Roukos, editors, HLT-NAACL 2004: Main Proceed-
ings, pages 273–280, Boston, Massachusetts, USA,
May 2 - May 7. Association for Computational Lin-
guistics.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In Pro-
ceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 961–968, Sydney, Australia, July. Asso-
ciation for Computational Linguistics.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational Linguis-
tics, 28(3):245–288, September.

Mark Hopkins and Greg Langmead. 2010. SCFG de-
coding without binarization. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing, pages 646–655, Cambridge,
MA, October. Association for Computational Lin-
guistics.

Matthias Huck, Hieu Hoang, and Philipp Koehn. 2014.
Augmenting string-to-tree and tree-to-string transla-
tion with non-syntactic phrases. In Proceedings of
the Ninth Workshop on Statistical Machine Trans-
lation, pages 486–498, Baltimore, Maryland, USA,
June. Association for Computational Linguistics.

Bevan Jones, Mark Johnson, and Sharon Goldwa-
ter. 2011. Formalizing semantic parsing with tree
transducers. In Proceedings of the Australasian
Language Technology Association Workshop 2011,
pages 19–28, Canberra, Australia, December.

Bevan Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012a.

1152

Semantics-based machine translation with hy-
peredge replacement grammars. In Proceedings
of COLING 2012, pages 1359–1376, Mumbai,
India, December. The COLING 2012 Organizing
Committee.

Bevan Jones, Mark Johnson, and Sharon Goldwater.
2012b. Semantic parsing with bayesian tree trans-
ducers. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 488–496, Jeju
Island, Korea, July. Association for Computational
Linguistics.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In In Language Resources and
Evaluation.

Gregory Kuhlmann, Peter Stone, Raymond J. Mooney,
and Jude W. Shavlik. 2004. Guiding a reinforce-
ment learner with natural language advice: Initial
results in robocup soccer. In The AAAI-2004 Work-
shop on Supervisory Control of Learning and Adap-
tive Systems, July.

Peng Li, Yang Liu, and Maosong Sun. 2013. An ex-
tended ghkm algorithm for inducing lambda-scfg.
In Marie desJardins and Michael L. Littman, editors,
AAAI. AAAI Press.

Jonathan May and Kevin Knight. 2007. Syntactic
re-alignment models for machine translation. In
Jason Eisner and Taku Kudo, editors, Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 360–368,
Prague, Czech Republic, June 28 – June 30. Associ-
ation for Computational Linguistics.

David Nadeau and Satoshi Sekine. 2007. A survey
of named entity recognition and classification. Lin-
guisticae Investigationes, 30(1):3–26, January. Pub-
lisher: John Benjamins Publishing Company.

Roberto Navigli. 2009. Word sense disambiguation:
A survey. ACM Comput. Surv., 41(2):10:1–10:69,
February.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning English strings with
Abstract Meaning Representation graphs. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 425–429, Doha, Qatar, October. Association
for Computational Linguistics.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: The ATIS domain. In Proceedings of the
Workshop on Speech and Natural Language, HLT
’90, pages 91–95, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Michael Pust and Kevin Knight. 2009. Faster mt
decoding through pervasive laziness. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
Companion Volume: Short Papers, pages 141–144,
Boulder, Colorado, June. Association for Computa-
tional Linguistics.

Wei Wang, Jonathan May, Kevin Knight, and Daniel
Marcu. 2010. Re-structuring, re-labeling, and
re-aligning for syntax-based machine translation.
Computational Linguistics, 36(2):247–277, June.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015. A transition-based algorithm for amr parsing.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 366–375, Denver, Colorado, May–June. As-
sociation for Computational Linguistics.

Keenon Werling, Gabor Angeli, and Christopher D.
Manning. 2015. Robust subgraph generation im-
proves abstract meaning representation parsing. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
982–991, Beijing, China, July. Association for Com-
putational Linguistics.

I.H. Witten and T.C. Bell. 1991. The zero-frequency
problem: Estimating the probabilities of novel
events in adaptive text compression. IEEE Trans-
actions on Information Theory, 37(4).

Yuk Wah Wong and Raymond Mooney. 2006. Learn-
ing for semantic parsing with statistical machine
translation. In Proceedings of the Human Language
Technology Conference of the NAACL, Main Con-
ference, pages 439–446, New York City, USA, June.
Association for Computational Linguistics.

Yuk Wah Wong and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing
with lambda calculus. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 960–967, Prague, Czech Repub-
lic, June. Association for Computational Linguis-
tics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’96, pages 1050–1055. AAAI Press.

1153

John Marvin Zelle. 1995. Using Inductive Logic Pro-
gramming to Automate the Construction of Natural
Language Parsers. Ph.D. thesis, University of Texas
at Austin, Austin, TX, USA.

1154

