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Abstract

We present a new method for semantic role
labeling in which arguments and seman-
tic roles are jointly embedded in a shared
vector space for a given predicate. These
embeddings belong to a neural network,
whose output represents the potential func-
tions of a graphical model designed for
the SRL task. We consider both local
and structured learning methods and ob-
tain strong results on standard PropBank
and FrameNet corpora with a straightfor-
ward product-of-experts model. We fur-
ther show how the model can learn jointly
from PropBank and FrameNet annotations
to obtain additional improvements on the
smaller FrameNet dataset.

1 Introduction

Semantic role labeling (SRL) is the task of iden-
tifying the semantic arguments of a predicate and
labeling them with their semantic roles. A key chal-
lenge in this task is sparsity of labeled data: a given
predicate-role instance may only occur a handful
of times in the training set. Most existing SRL
systems model each semantic role as an atomic
unit of meaning, ignoring finer-grained semantic
similarity between roles that can be leveraged to
share context between similar labels, both within
and across annotation conventions.

Low-dimensional embedding representations
have been shown to be successful in overcoming
sparsity and representing label similarity across a
wide range of tasks (Weston et al., 2011; Sriku-
mar and Manning, 2014; Hermann et al., 2014;
Lei et al., 2015). In this paper, we present a new
model for SRL that embeds candidate arguments
and semantic roles (in context of a predicate frame)
in a shared vector space. A feed-forward neural

∗Work carried out during an internship at Google.

network is learned to capture correlations of the re-
spective embedding dimensions to create argument
and role representations. The similarity of these
two representations, as measured by their dot prod-
uct, is used to score possible roles for candidate
arguments within a graphical model. This graphical
model jointly models the assignment of semantic
roles to all arguments of a predicate, subject to
structural linguistic constraints.

Our model has several advantages. Compared
to linear multiclass classifiers used in prior work,
vector embeddings of the predictions overcome the
assumption of modeling each semantic role as a
discrete label, thus capturing fine-grained label sim-
ilarity. Moreover, since predictions and inputs are
embedded in the same vector space, and features
extracted from inputs and outputs are decoupled,
our approach is amenable to joint learning of multi-
ple annotation conventions, such as PropBank and
FrameNet, in a single model. Finally, as with other
neural network approaches, our model obviates the
need to manually engineer feature conjunctions.

Our underlying inference algorithm for SRL
follows Täckström et al. (2015), who presented
a dynamic program for structured SRL; it is tar-
geted towards the prediction of full argument spans.
Hence, we present empirical results on three span-
based SRL datasets: CoNLL 2005 and 2012 data
annotated with PropBank conventions, as well as
FrameNet 1.5 data. We also evaluate our system
on the dependency-based CoNLL 2009 shared task
by assuming single word argument spans, that rep-
resent semantic dependencies, and limit our ex-
periments to English. On all datasets, our model
performs on par with a strong linear model base-
line that uses hand-engineered conjunctive features.
Due to random parameter initialization and stochas-
ticity in the online learning algorithm used to train
our models, we observed considerable variance in
performance across datasets. To resolve this vari-
ance, we adopt a product-of-experts model that
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John stole my car .

steal.V
Theft

Perpetrator Goods

Mary lifted a purse .

lift.V
Theft

Perpetrator Goods

(a)

John stole my car .

steal.V
steal.01

A0 A1

Mary lifted a purse .

lift.V
lift.02

A0 A1

(b)

Figure 1: FrameNet (a) and PropBank (b) annota-
tions for two sentences.

combines multiple randomly-initialized instances
of our model to achieve state-of-the-art results on
the CoNLL 2009 and FrameNet datasets, while
coming close to the previous best published results
on the other two. Finally, we present even stronger
results for FrameNet data (which is scarce) by
jointly training the model with PropBank-annotated
data.

2 Background

In this section, we briefly describe the SRL task
and discuss relevant prior work.

2.1 Semantic Role Labeling

SRL annotations rely on a frame lexicon containing
frames that could be evoked by one or more lexical
units. A lexical unit consists of a word lemma con-
joined with its coarse-grained part-of-speech tag.1

Each frame is further associated with a set of pos-
sible core and non-core semantic roles which are
used to label its arguments. This description of a
frame lexicon covers both PropBank and FrameNet
conventions, but there are some differences out-
lined below. See Figure 1 for example annotations.

PropBank defines frames that are essentially
sense distinctions of a given lexical unit. The set of
PropBank roles consists of seven generic core roles
(labeled A0-A5 and AA) that assume different se-
mantics for different frames, each associating with
a subset of the core roles. In addition, there are 21
non-core roles that encapsulate further arguments
of a frame, such as temporal (AM-TMP) and locative
(AM-LOC) adjuncts. The non-core roles are shared
between all frames and assume similar meaning.
In contrast, a FrameNet frame often associates
with multiple lexical units and the frame lexicon

1We borrow the term “lexical unit” from the frame seman-
tics literature. The CoNLL 2005 dataset is restricted to verbal
lexical units, while the CoNLL 2009 and 2012 datasets con-
tains both verbal and nominal lexical units. FrameNet has
lexical units of several coarse syntactic categories.

contains several hundred core and non-core roles
that are shared across frames. For example, the
FrameNet frame Theft could be evoked by the verbs
steal, pickpocket, or lift, while PropBank has dis-
tinct frames for each of them. The Theft frame also
contains the core roles Goods and Perpetrator that
additionally belong to the Commercial_transaction
and Committing_crime frames respectively.

A typical SRL dataset consists of sentence-level
annotations that identify (possibly multiple) target
predicates in each sentence, a disambiguated frame
for each predicate, and the associated argument
spans (or single word argument heads) labeled with
their respective semantic roles.

2.2 Related Work
SRL using PropBank conventions (Palmer et al.,
2005) has been widely studied. There have been
two shared tasks at CoNLL 2004-2005 to identify
the phrasal arguments of verbal predicates (Car-
reras and Màrquez, 2004; Carreras and Màrquez,
2005). The CoNLL 2008-2009 shared tasks in-
troduced a variant where semantic dependencies
are annotated rather than phrasal arguments (Sur-
deanu et al., 2008; Hajič et al., 2009). Similar
approaches (Das et al., 2014; Hermann et al., 2014)
have been applied to frame-semantic parsing us-
ing FrameNet conventions (Baker et al., 1998). We
treat PropBank and FrameNet annotations in a com-
mon framework, similar to Hermann et al. (2014).

Most prior work on SRL rely on syntactic parses
provided as input and use locally estimated classi-
fiers for each span-role pair that are only combined
at prediction time.2 This is done by picking the
highest scoring role for each span, subject to a set
of structural constraints, such as avoiding overlap-
ping arguments and repeated core roles. Typically,
these constraints have been enforced by integer lin-
ear programming (ILP), as in Punyakanok et al.
(2008). Täckström et al. (2015) interpreted this
as a graphical model with local factors for each
span-role pair, and global factors that encode the
structural constraints. They derived a dynamic pro-
gram (DP) that enforces most of the constraints
proposed by Punyakanok et al. and showed how
the DP can be used to take these constraints into
account during learning. Here, we use an identical
graphical model, but extend the model of Täck-
ström et al. by replacing its linear potential func-

2Some recent work have successfully proposed joint mod-
els for syntactic parsing and SRL instead of a pipeline ap-
proach (Lewis et al., 2015).

961



tions with a multi-layer neural network. A similar
use of non-linear potential functions in a structured
model was proposed by Do and Artières (2010)
for speech recognition, and by Durrett and Klein
(2015) for syntactic phrase-structure parsing.

Feature-based approaches to SRL employ hand-
engineered linguistically-motivated feature tem-
plates to represent the semantic structure. Some
recent work has focused on low-dimensional repre-
sentations that reduce the need for intensive feature
engineering and lead to better generalization in
the face of data sparsity. Lei et al. (2015) employ
low-rank tensor factorization to induce a compact
representation of the full cross-product of atomic
features; akin to this work, they represent seman-
tic roles as real-valued vectors, but use a different
scoring formulation for modeling potential argu-
ments. Moreover, they restrict their experiments
to CoNLL 2009 semantic dependencies. Roth and
Woodsend (2014) improve on the state-of-the-art
feature-based system of Björkelund et al. (2010) by
adding distributional word representations trained
on large unlabeled corpora as features.

Collobert and Weston (2007) use a neural net-
work and do not rely on syntactic parses as input.
While they use non-standard evaluation, they report
accuracy similar to the ASSERT system (Pradhan
et al., 2005), to which we compare in Table 4. Very
recently, Zhou and Xu (2015) proposed a deep bidi-
rectional LSTM model for SRL that does not rely
on syntax trees as input; their approach achieves
the best results on CoNLL 2005 and 2012 corpora
to date, but unlike this work, they do not report re-
sults on FrameNet and CoNLL 2009 dependencies
and do not investigate joint learning approaches
involving multiple annotation conventions.

For FrameNet-style SRL, Kshirsagar et al.
(2015) recently proposed the use of PropBank-
based features, but their system performance falls
short of the state of the art. Roth and Lapata (2015)
proposed another approach exploring linguistically
motivated features tuned towards the FrameNet lex-
icon, but their performance metrics are significantly
worse than our best results.

The inspiration behind our approach stems from
recent work on bilinear models (Mnih and Hin-
ton, 2007). There have been several recent studies
representing input observations and output labels
with distributed representations, for example, in the
WSABIE model for image annotation (Weston et
al., 2011), in models for embedding labels in struc-

tured graphical models (Srikumar and Manning,
2014), and in techniques to learn joint embeddings
of predicate words and their semantic frames in a
vector space (Hermann et al., 2014).

3 Model

Our model for SRL performs inference separately
for each marked predicate in a sentence. It assumes
that the predicate has been automatically disam-
biguated to a semantic frame drawn from a frame
lexicon, and the semantic roles of the frame are
used for labeling the candidate arguments in the
sentence. Formally, we are given a sentence x in
which a predicate t, with lexical unit `, has been
marked. Assuming that the semantic frame f of the
predicate has already been identified (see §4.2 for
this step), we seek to predict the set of spans that
correspond to its overt semantic arguments and to
label each argument with its semantic role. Specif-
ically, we model the problem as that of assigning
each span s ∈ S , from an over-generated set of can-
didate argument spans S , to a semantic role r ∈ R.
The set of semantic roles R includes the special
null role ∅, which is used to represent non-overt
arguments. Thus, our algorithm performs the SRL
task in one step for a single predicate frame. For
the span-based SRL task, in a sentence of n words,
there could be O(n2) potential arguments. For sta-
tistical and computational reasons we prune the set
of spans S using a set of syntactically-informed
heuristics from prior work (see §4.2).

3.1 Graphical Model

We make use of a graphical model that represents
global assignment of arguments to their semantic
roles, subject to linguistic constraints (Punyakanok
et al., 2008; Täckström et al., 2015). Under this
graphical model, we assume a parameterized po-
tential function that assigns a real-valued com-
patibility score g(s, r;θ) to each span-role pair
(s, r) ∈ S ×R, where θ denotes the model param-
eters. Below, we consider two types of potential
functions. As a baseline, similar to most prior work,
one could use a simple linear function of discrete
input features gL(s, r;θ) = θ> · φ(r, s, x, t, `, f),
where φ(·) denotes a feature function. In this work,
we instead propose a multi-layer feed-forward neu-
ral network potential function, specified in §3.2.
Given these local factors, we employ the dynamic
program of Täckström et al. to enforce global con-
straints on the inferred output.

962



�(s, x, t, `) if ir

input 
layer

embedding!
layer

hidden!
layer

dot!
product

es ef er

vs v(f,r)

gNN(s, r; ✓)

Figure 2: Neural network architecture.

Let R|S| denote the set of all possible assign-
ments of semantic roles to argument spans (si, ri)
for si ∈ S that satisfy the constraints. Given a
potential function g(s, r) , g(s, r;θ), the proba-
bility of a joint assignment r ∈ R|S|, subject to the
constraints, is given by

p(r | x, t, `, f) = exp

∑
si∈S

g(si, ri)−A(S)

 ,

(1)

where the log-partition function A(S) sums over
all satisfying joint role assignments:

A(S) = log
∑

r′∈R|S|
exp

∑
si∈S

g(si, r
′
i)

 . (2)

3.2 Neural Network Potentials
Our approach replaces the standard linear poten-
tial function gL(s, r;θ) with the real-valued output
of a feed forward neural network with non-linear
hidden units. The network structure is outlined in
Figure 2. The frame f and role r are initially en-
coded using a one-hot encoding as if and ir. In
other words, if and ir have all zeros except for one
position at f and r respectively. These are passed
through fully connected linear layers to give ef

and er. We call these linear layers the embedding
layers since if selects the embedding of the frame
f and ir for r. Next, ef and er are passed through
a fully connected rectified linear layer (Nair and
Hinton, 2010), to obtain the final frame-role repre-
sentation v(f,r). For the candidate span, the process
is similar. Atomic features φ(s, x, t, `) for the ar-
gument span s are extracted first. (These features
are the non-conjoined features used in the linear

• first word of s • tag of the first word of s
• last word of s • tag of the last word of s
• head word of s • tag of the head word of s
• bag of words in s • bag of tags in s
• cluster of s’s head • linear distance of s from t
• t’s children words • word cluster of s’s head
• dependency path between s’s head and t
• subcategorization frame of s
• position of s w.r.t. t (before, after, overlap or same)
• predicate use voice (active, passive, or unknown)
• whether the subject of t is missing (missingsubj)
• position of s w.r.t. t (before, after, overlap or same)
• word, tag, dependency label and cluster of the words

immediately to the left and right of s

Table 1: Span features φ(s, x, t, `) in Figure 2.

model of Täckström et al.; see Table 1 for the list).
These are next passed through a fully-connected
linear embedding layer to get the span embedding
es, which is subsequently passed through a fully
connected rectified linear layer to obtain vs, the
final span representation. The final output is the
dot product of vs and v(f,r):

gNN(s, r;θ) = v>s · v(f,r) . (3)

The weights of all the layers constitute the param-
eters θ of the neural network. We initialize θ ran-
domly, with the exception of embedding parame-
ters corresponding to words, which are initialized
from pre-trained word embeddings (see §4.4 for
details). We train the network as described in §3.3.3

Note that unlike typical linear models, the atomic
span features are not explicitly conjoined with each
other, the frame or the role. Instead the hidden
layers learn to emulate span feature conjunctions
and frame and role feature conjunctions in paral-
lel.4 Moreover, note that span vs and frame-role
v(f,r) representations are decoupled in this model.
This decoupling is important as it allows us to train
a single model in a multitask setting. We demon-
strate this by successfully combining PropBank
and FrameNet training data, as described in §5.

3.3 Parameter Estimation

We consider two methods for parameter estimation.

3Various other network structures are worth investigating,
such as concatenating the span, frame and role representa-
tions and passing them through fully connected layers. This
treatment, for example, has been used by Chen and Manning
(2014) for syntactic parsing. We leave these explorations to
future work.

4We found that adding feature conjunctions to the net-
work’s input layer did not improve performance in practice.
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Local Estimation In local estimation, we treat
each span-role assignment pair (s, r) ∈ S×R as an
individual binary decision problem and maximize
the corresponding log-likelihood of the training
set.5 Denote by zs,r ∈ {0, 1} the decision vari-
able, such that zs,r = 1 iff span s is assigned role
r. By passing the potential gNN(s, r;θ) through
the logistic function, we obtain the log-likelihood
l(zs,r;θ) , log p(zs,r | x, t, `, f) of an individual
training example. Here,

p(zs,r | x, t, `, f) =


1

1+e−gNN(s,r;θ) if zs,r = 1
e−gNN(s,r;θ)

1+e−gNN(s,r;θ) if zs,r = 0

Thus, the gold role for a given span according to
the training data serves as the positive example,
while all the other potential roles serve as negatives.
To maximize the log-likelihood, we use Adagrad
(Duchi et al., 2011). This requires the gradient of
the log-likelihood with respect to the parameters θ,
which can be derived using the chain rule.

Structured Estimation In structured estimation,
we instead learn a globally normalized probabilis-
tic model that takes the structural constraints into
account during training. This method is closely
related to the linear approach of Täckström et al.
(2015), as well as to the fine-tuning of a neural
CRF described by Do and Artières (2010).

We train the model by maximizing the log-
likelihood of the training data, again using Adagrad.
From Equation (1), we have that the log-likelihood
l(r;θ) , log p(r | x, t, `, f) of a single (struc-
tured) training example (r,S, x) is given by

l(r;θ) =
∑
si∈S

g(si, ri)−A(S) . (4)

By application of the chain rule, the gradient of the
log-likelihood factorizes as

∂l(r;θ)
∂θ

=
∂l(r;θ)
∂gNN

∂gNN

∂θ
, (5)

where we have used the shorthand gNN for brevity.
It is easy to show that the first term ∂l(r;θ)/∂gNN

factors into the marginals over edges in the DP
lattice, which can be computed with the forward-
backward algorithm (recall that the potentials are in

5An alternate way to locally train the neural network would
be to treat the scores as potentials in a multiclass logistic
regression model and optimize log-likelihood, as is done with
the locally-trained linear model from Täckström et al. (2015),
but we did not investigate this alternative in this work.

simple correspondence with the edge scores in the
DP lattice, see Täckström et al. (2015, §4) for de-
tails). Again, the chain rule can be used to compute
the gradient ∂gNN/∂θ with respect to the parame-
ters of each layer in the network.

3.4 Product of Experts

As we will observe in Tables 2 to 5, random initial-
ization of the neural network parameters θ causes
variance in the performance over different runs.
We found that using a straightforward product-of-
experts (PoE) model (Hinton, 2002) at inference
time reduces this variance and results in signifi-
cantly higher performance. This PoE model is a
very simple ensemble, being the factor-wise sum
of the potential functions from K independently
trained neural networks:

gPoE(s, r;θ) =
K∑

j=1

g
(j)
NN (s, r,θ) . (6)

where g
(j)
NN (s, r,θ) is the score from model j.

4 Experimental Setup

In this section we describe the datasets used, the re-
quired preprocessing steps, the baselines compared
to and the details of our experimental setup.

4.1 Datasets and Significance Testing

We evaluate our approach on four standard datasets.
For span-based SRL using PropBank conventions
(Palmer et al., 2005), we evaluate on both the
CoNLL 2005 shared task dataset (Carreras and
Màrquez, 2005), and the larger CoNLL 2012
dataset derived from the OntoNotes 5.0 corpus
(Weischedel et al., 2011). We also evaluate our
model on the CoNLL 2009 shared task dataset (Ha-
jič et al., 2009), that annotates roles for semantic
dependencies, rather than full argument spans. For
the CoNLL datasets, we use the standard training,
development and test sets. For frame-semantic
parsing using FrameNet conventions (Baker et al.,
1998), we follow Das et al. (2014) and Hermann et
al. (2014) in using the full-text annotations of the
FrameNet 1.5 release and follow their data splits.

We use the standard evaluation scripts for each
task and use a paired bootstrap test (Efron and Tib-
shirani, 1994) to assess the statistical significance
of the results. For brevity, we only give the p-values
for the observed differences between our best and
second best models on each of the test sets.
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4.2 Preprocessing and Frame Identification

All datasets are preprocessed with a part-of-speech
tagger and a syntactic dependency parser, both
trained on the CoNLL 2012 training split, after
converting the constituency trees to Stanford-style
dependencies (De Marneffe and Manning, 2013).
The tagger is based on a second-order conditional
random field (Lafferty et al., 2001) with standard
emission and transition features; for parsing, we
use a graph-based parser with structural diversity
and cube-pruning (Zhang and McDonald, 2014).

On the WSJ development set (section 22), the la-
beled attachment score of the parser is 90.9% while
the part-of-speech tagger achieves an accuracy of
97.2%. On the CoNLL 2012 development set, the
corresponding scores are 90.2% and 97.3%. Both
the tagger and the parser, as well as the SRL mod-
els use word cluster features (see Table 1). Specif-
ically, we use the clusters with 1000 classes from
Turian et al. (2010), which are induced with the
Brown algorithm (Brown et al., 1992). To gener-
ate the candidate arguments S (see §3.2) for the
CoNLL 2005 and 2012 span-based datasets, we
follow Täckström et al. (2015) and adapt the algo-
rithm of Xue and Palmer (2004) to use dependency
syntax. For the dependency-based CoNLL 2009
experiments, we modify our approach to assume
single length spans and treat every word of the sen-
tence as a candidate argument. For FrameNet, we
follow the heuristic of Hermann et al. (2014).

As mentioned in §3, we automatically disam-
biguate the predicate frames. For FrameNet, we
use an embedding-based model described by Her-
mann et al. (2014). For PropBank, we use a multi-
class log-linear model, since Hermann et al. did not
observe better results with the embedding model.

To ensure a fair comparison with the closest lin-
ear model baseline, we ensured that the prepro-
cessing steps, the argument candidate generation
algorithm for the span-based datasets and the frame
identification methods are identical to Täckström
et al. (2015, §3.2, §6.2-§6.3).

4.3 Baseline Systems

In addition to comparing to Täckström et al. (2015),
whose setup is closest to ours, we also compare to
prior state-of-the-art systems from the literature.

For CoNLL 2005, we compare to the best non-
ensemble and ensemble systems of Surdeanu et al.
(2007), Punyakanok et al. (2008) and Toutanova et
al. (2008). The ensemble variants of these systems

use multiple parses and multiple SRL systems to
leverage diversity. In contrast to these ensemble
systems, our product-of-experts model uses only a
single architecture and one syntactic parse; the con-
stituent models differ only in random initialization.
We also compare with the recent deep bidirectional
LSTM model of Zhou and Xu (2015).

For CoNLL 2012, we compare to Pradhan et al.
(2013), who report results with the (non-ensemble)
ASSERT system (Pradhan et al., 2005), and to the
model of Zhou and Xu (2015).

For CoNLL 2009, we compare to the top
system from the shared task (Zhao et al.,
2009), two state-of-the-art systems that employ a
reranker (Björkelund et al., 2010; Roth and Wood-
send, 2014), and the recent tensor-based model
of Lei et al. (2015). We also trained the linear
model of Täckström et al. on this dataset (their
work omitted this experiment), as a baseline.

Finally, for the FrameNet experiments, we com-
pare to the state-of-the-art system of Hermann et
al. (2014), which combines a frame-identification
model based on WSABIE (Weston et al., 2011) with
a log-linear role labeling model.

4.4 Hyperparameters and Initialization

There are several hyperparameters in our model
(§3.2). First, the span embedding dimension of es

was fixed to 300 to match the dimension of the pre-
trained GloVe word embeddings from Pennington
et al. (2014) that we use to initialize the embed-
dings of the word-based features in φ(s, x, t, `).
Preliminary experiments showed random initial-
ization of the word-based embeddings to be in-
ferior to pre-trained embeddings. The remain-
ing model parameters were randomly initialized.
The frame embedding dimension was chosen from
{100, 200, 300, 500}, while the hidden layer di-
mension was chosen from {300, 500}. For Prop-
Bank, we fixed the role embedding dimension
to 27, which is the number of semantic roles in
PropBank datasets (ignoring the AA role, that ap-
pears with negligible frequency). For FrameNet,
the role embedding dimension was chosen from
{100, 200, 300, 500}. In the Adagrad algorithm,
the mini-batch size was fixed to 100 for local esti-
mation (§3.3). For structured estimation (§3.3), a
batch size of one was used, since each structured in-
stance contains multiple local factors. The learning
rate was chosen from {0.1, 0.2, 0.5, 1.0} for local
learning and from {0.01, 0.02, 0.05, 0.1} for struc-
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WSJ Dev WSJ Test Brown Test

Method P R F1 Comp. P R F1 Comp. P R F1 Comp.

Surdeanu (Single) – – – – 79.7 74.9 77.2 52.0 – – – –
Surdeanu (Ensemble) – – – – 87.5 74.7 80.6 51.7 81.8 61.3 70.1 34.3
Toutanova (Single) – – 77.9 57.2 – – 79.7 58.7 – – 67.8 39.4
Toutanova (Ensemble) – – 78.6 58.7 81.9 78.8 80.3 60.1 – – 68.8 40.8
Punyakanok (Single) – – – – 77.1 75.5 76.3 – – – – –
Punyakanok (Ensemble) 80.1 74.8 77.4 50.7 82.3 76.8 79.4 53.8 73.4 62.9 67.8 32.3
Täckström (Local) 81.3 74.8 77.9 52.4 82.6 76.4 79.3 54.3 74.0 66.8 70.2 38.4
Täckström (Struct.) 81.2 76.2 78.6 54.4 82.3 77.6 79.9 56.0 74.3 68.6 71.3 39.8
Zhou 79.7 79.4 79.6 – 82.9 82.8 82.8 – 70.7 68.2 69.4 –

This work (Local) 81.4 75.6 78.4 53.7 82.3±0.4 76.8±0.5 79.4±0.1 55.1±0.6 74.1±0.6 68.0±0.7 70.9±0.3 39.1±0.8

This work (Struct.) 80.7 76.1 78.3 54.1 81.8±0.5 77.3±0.3 79.4±0.2 55.6±0.5 73.8±0.7 68.8±0.6 71.2±0.3 40.5±0.8

This work (Local, PoE) 82.0 76.6 79.2 55.2 82.9 77.8 80.3∗ 56.7 75.2 69.1 72.0 40.8
This work (Struct., PoE) 81.2 76.7 78.9 55.1 82.5 78.2 80.3∗ 57.3∗ 74.5 70.0 72.2∗∗ 41.3

Table 2: PropBank-style SRL results on CoNLL 2005 data. Bold font indicates the best system using a
single or no syntactic parse, while the best scores among all systems are underlined. Results from prior
work are taken from the respective papers, and ‘–’ indicates performance metrics missing in the original
publication. Statistical significance was assessed for F1 and Comp. on the WSJ and Brown test sets with
p < 0.01 (∗) and p < 0.05 (∗∗).

Excluding predicate senses Including predicate senses

WSJ Dev WSJ Test Brown Test WSJ Test Brown Test

CoNLL-2009 1st place – 82.1 69.8 86.2 74.6
Björkelund et al., 2010 + reranking 80.5 82.9 70.9 86.9 75.7
Roth and Woodsend, 2014 + reranking – 82.1 71.1 86.3 75.9
Lei et al. 2015 81.0 82.5 70.8 86.6 75.6
Täckström et al. 2015 (Local) 81.4 83.0 71.2 86.9 74.8
Täckström et al. 2015 (Struct.) 82.4 83.7 72.3 87.3 75.5

This work (Local) 81.2±0.2 82.7±0.3 71.9±0.4 86.7±0.2 75.2±0.3

This work (Struct) 82.3±0.1 83.6±0.1 71.9±0.3 87.3±0.1 75.2±0.2

This work (Local, PoE) 82.4 83.8 72.8 87.5 75.9
This work (Struct., PoE) 83.0∗ 84.3∗ 72.4 87.8∗ 75.5

Table 3: PropBank-style semantic dependency SRL results (labeled F1) on the CoNLL 2009 data set.
Bold font indicates the best system. Statistical significance was assessed with p < 0.01 (∗).

tured learning.6 All hyperparameters were tuned
on the respective development sets for each dataset
with a straightforward grid-search procedure. In
the product-of-experts setup, we train K = 10
models, each with a different random seed, and
combine them at inference time (see Equation (6)).

5 Empirical Results

Table 2 shows results on the CoNLL 2005 devel-
opment set and the WSJ and Brown test sets. Our
individual neural network models are on par with
the best linear single-system baselines that use care-
fully chosen feature combinations, but has variance
across reruns. On the WSJ test set, the product-

6We observed a strong interaction between learning rate
and mini-batch size. Since the number of factors per frame
structure is much larger than 100, lower learning rates are
better suited for structured estimation.

of-experts model featuring neural networks trained
with structured learning achieves higher F1-score
than all non-ensemble baselines, except the LSTM
model of Zhou and Xu. It is on par and at times
better than ensemble baselines that use diverse syn-
tactic parses. The PoE model outperforms all base-
lines on the Brown test set, exhibiting its gener-
alization power on out-of-domain text. Overall,
using structured learning improves recall at a slight
expense of precision when compared to local learn-
ing, leading to an increase in the complete argu-
ment structure accuracy (Comp. in the tables).

Table 3 shows results on the CoNLL 2009 task.
Following Lei et al. (2015), we present results us-
ing the official evaluation script, along with addi-
tional metrics that do not count frame predictions.
Note that the linear baseline of Täckström et al.
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CoNLL 2012 Development

Method P R F1 Comp.

Täckström (Local) 80.6 77.1 78.8 59.0
Täckström (Struct.) 80.5 77.8 79.1 60.1
Zhou – – 81.1 –

This work (Local) 80.4 77.3 78.8 59.0
This work (Struct) 80.6 77.8 79.2 59.8
This work (Local, PoE) 81.0 78.3 79.6 60.6
This work (Struct., PoE) 81.0 78.5 79.7 60.9

CoNLL 2012 Test

Method P R F1 Comp.

Pradhan 81.3 70.5 75.5 51.7
Pradhan, revised 78.5 76.6 77.5 55.8
Täckström (Local) 80.9 77.7 79.2 60.9
Täckström (Struct.) 80.6 78.2 79.4 61.8
Zhou – – 81.3 –

This work (Local) 80.6±0.3 77.8±0.2 79.2±0.1 60.8±0.3

This work (Struct.) 80.9±0.2 78.4±0.2 79.6±0.1 61.7±0.2

This work (Local, PoE) 81.3 78.8 80.0 62.4
This work (Struct., PoE) 81.2 79.0 80.1∗ 62.6∗

Table 4: PropBank-style SRL results on the
CoNLL 2012 development and test sets. Results
from prior work are taken from the respective pa-
pers, and ‘–’ indicates performance metrics miss-
ing in the original publication. Significance was
assessed for F1 and Comp. on the test set with
p < 0.01 (∗).

outperforms most prior work, including ones that
employs rerankers, except on the Brown test set.
Our neural network model performs even better,
achieving state-of-the-art results on all metrics.

Table 4 shows the results on the span-based
CoNLL 2012 data. The trends observed on the
CoNLL 2005 data hold here as well, with struc-
tured training yielding an increase in precision at
the cost of a small drop in recall. This leads to im-
provements in both F1 score and complete structure
accuracy. The product-of-experts model trained
with structured learning here yields results better
than the ASSERT system (Pradhan et al., 2013),
but akin to CoNLL 2005, our system falls short in
comparison to Zhou and Xu’s F1-score. In contrast
to the smaller CoNLL 2005 data, even our sin-
gle (non-PoE) model outperforms the linear model
of Täckström et al. (2015) on the CoNLL 2012
data. We hypothesize that the relative abundance
of the latter counteracts the risk for overfitting of
the larger number of parameters in our model.

Finally, Table 5 shows the results on FrameNet
data, which is very small in size. Here, structured
learning does not help and in fact leads to a small

FrameNet Development

Method P R F1 Comp.

Hermann 78.3 64.5 70.8 –
Täckström (Local) 80.7 62.9 70.7 31.2
Täckström (Struct.) 79.6 64.1 71.0 33.3

This work (Local) 78.6 64.6 70.9 32.0
This work (Struct.) 79.6 63.9 70.9 31.8
This work (Local, PoE) 79.0 65.0 71.3 33.1
This work (Struct., PoE) 79.0 64.4 71.0 32.3
This work (Local, PoE, Joint) 79.4 65.8 72.0 34.5
This work (Struct., PoE, Joint) 78.8 65.4 71.5 33.5

FrameNet Test

Method P R F1 Comp.

Hermann 74.3 66.0 69.9 –
Täckström (Local) 76.1 64.9 70.1 33.0
Täckström (Struct.) 75.4 65.8 70.3 33.8

This work (Local) 73.9±0.6 66.4±0.4 69.9±0.3 33.4±0.6

This work (Struct.) 74.8±0.2 65.5±0.2 69.9±0.1 33.0±0.3

This work (Local, PoE) 74.3 66.9 70.4 33.9
This work (Struct., PoE) 74.6 66.3 70.2 33.3
This work (Local, PoE, Joint) 75.0 67.3 70.9∗∗ 35.4∗
This work (Struct., PoE, Joint) 74.2 67.2 70.5 34.2

Table 5: Joint frame and argument identification
results for FrameNet. Statistical significance was
assessed for F1 and Comp. on the test set with
p < 0.01 (∗) and p < 0.05 (∗∗).

drop in performance. Our locally-trained neural
network model performs comparably to the linear
model of Täckström et al. (2015). However we
achieve significant improvements in both F1-score
and full structure accuracy by training our model
with a dataset composed of both FrameNet and
CoNLL 2005 data.7 The ability to train in this mul-
titask setting is a unique capability of our approach,
and yields state-of-the-art results for FrameNet.

Figure 4 shows the effect of adding increasing
amount of CoNLL 2005 data to supplement the
FrameNet training corpus in this multitask setting.
The Y -axis plots F1-score on the development data
averaged across runs for the local non-PoE model.
With increasing amount of PropBank data, perfor-
mance increases in small steps, and peaks when
all the data is added. This shows that with more
PropBank data we could further improve perfor-
mance on the FrameNet task; we leave further ex-
ploration of multitask learning of predicate argu-
ment structures, including multilingual settings, to
future work.

7The joint model does not improve results for PropBank.
This is likely due to the much larger CoNLL 2005 training set,
compared to the FrameNet data (39,832 training sentences in
the former as opposed to 3,256 sentences in the latter).
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Figure 3: Two-
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training corpus. For this plot, we used the locally
trained non-PoE model.

5.1 Qualitative Analysis of Embeddings

Figure 3 shows example embeddings from the
model trained jointly on FrameNet and PropBank
annotations. Figure 3a shows the proximity of
the learned embeddings ef of frames from both
FrameNet and PropBank. Figure 3b shows the em-
beddings for frame-role pairs v(f,r) (the output of
the hidden rectified linear layer). Here, we fix the
FrameNet frame Travel and the similar PropBank
frames commute.01, tour.01 and travel.01 are visual-
ized along with their semantic roles. We observe
that the model learns very similar embeddings for
the semantically related roles across both datasets.
Note that there is a clear separation of the agentive
roles from the others for both conventions and how
the FrameNet and PropBank counterparts of each
type of role are proximate in vector space.

6 Conclusion

We presented a neural network model for seman-
tic role labeling that learns to embed both inputs
and outputs in the same vector space. We consid-
ered both local and structured training methods for
the network parameters from supervised SRL data.
Empirically, our approach achieves state-of-the-art
results on two standard datasets with a product of
experts model, while approaching the performance
of a recent deep recurrent neural network model on
two other datasets. By training the model jointly
on both FrameNet and PropBank data, we achieve
the best result to date on the FrameNet test set. Fi-
nally, qualitative analysis indicates that the model
represents semantically similar annotations with
proximate vector-space embeddings.
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