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Abstract

Many NLP tasks make predictions that are in-
herently coupled to syntactic relations, but for
many languages the resources required to pro-
vide such syntactic annotations are unavail-
able. For others it is unclear exactly how
much of the syntactic annotations can be ef-
fectively leveraged with current models, and
what structures in the syntactic trees are most
relevant to the current task.

We propose a novel method which avoids
the need for any syntactically annotated data
when predicting a related NLP task. Our
method couples latent syntactic representa-
tions, constrained to form valid dependency
graphs or constituency parses, with the predic-
tion task via specialized factors in a Markov
random field. At both training and test time we
marginalize over this hidden structure, learn-
ing the optimal latent representations for the
problem. Results show that this approach pro-
vides significant gains over a syntactically un-
informed baseline, outperforming models that
observe syntax on an English relation extrac-
tion task, and performing comparably to them
in semantic role labeling.

1 Introduction

Many NLP tasks are inherently tied to syntax, and
state-of-the-art solutions to these tasks often rely on
syntactic annotations as either a source for useful
features (Zhang et al., 2006, path features in relation
extraction) or as a scaffolding upon which a more
narrow, specialized classification can occur (as of-
ten done in semantic role labeling). This decou-

pling of the end task from its intermediate repre-
sentation is sometimes known as the two-stage ap-
proach (Chang et al., 2010) and comes with several
drawbacks. Most notably this decomposition pro-
hibits the learning method from utilizing the labels
from the end task when predicting the intermediate
representation, a structure which must have some
correlation to the end task to provide any benefit.

Relying on intermediate representations that are
specifically syntactic in nature introduces its own
unique set of problems. Large amounts of syntac-
tically annotated data is difficult to obtain, costly
to produce, and often tied to a particular domain
that may vary greatly from that of the desired end
task. Additionally, current systems often utilize only
a small amount of the annotation for any particular
task. For instance, performing named entity recogni-
tion (NER) jointly with constituent parsing has been
shown to improve performance on both tasks, but
the only aspect of the syntax which is leveraged by
the NER component is the location of noun phrases
(Finkel and Manning, 2009). By instead discover-
ing a latent representation jointly with the end task
we address all of these concerns, alleviating the need
for any syntactic annotations, while simultaneously
attempting to learn a latent syntax relevant to both
the particular domain and structure of the end task.

We phrase the joint model as factor graph and
marginalize over the hidden structure of the inter-
mediate representation at both training and test time,
to optimize performance on the end task. Infer-
ence is done via loopy belief propagation, making
this framework trivially extensible to most graph
structures. Computation over latent syntactic rep-
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resentations is made tractable with the use of special
combinatorial factors which implement unlabeled
variants of common dynamic-programming parsing
algorithms, constraining the hidden representation
to realize valid dependency graphs or constituency
trees.

We apply this strategy to two common NLP tasks,
coupling a model for the end task prediction with
latent and general syntactic representations via spe-
cialized logical factors which learn associations be-
tween latent and observed structure. In comparisons
with identical models which observe “gold” syntac-
tic annotations, derived from off-the-shelf parsers or
provided with the corpora, we find that our hidden
marginalization method is comparable in both tasks
and almost every language tested, sometimes signifi-
cantly outperforming models which observe the true
syntax.

The following sections serves as a preliminary,
introducing an inventory of factors and variables
for constructing factor graph representations of
syntactically-coupled NLP tasks. Section 3 explores
the benefits of this method on relation extraction
(RE), where we compare the use dependency and
constituency structure as latent representations. We
then turn to a more established semantic role label-
ing (SRL) task (§4) where we evaluate across a wide
range of languages.

2 Latent Pseudo-Syntactic Structure

The models presented in this paper are phrased in
terms of variables in an undirected graphical model,
Markov random field. More specifically, we imple-
ment the model as a factor graph, a bipartite graph
composed of factors and variables in which we can
efficiently compute the marginal beliefs of any vari-
able set with the sum-product algorithm for cyclic
graphs, loopy belief propagation,. We now intro-
duce the basic variable and factor components used
throughout the paper.

2.1 Latent Dependency Structure

Dependency grammar is a lexically-oriented syn-
tactic formalism in which syntactic relationships
are expressed as dependencies between individual
words. Each non-root word specifies another as
its head, provided that the resulting structure forms

a valid directed graph, ie. there are no cycles in
the graph. Due to the flexibility of this representa-
tion it is often used to describe free-word-order lan-
guages, and increasingly preferred in NLP for more
language-in-use scenarios. A dependency graph can
be modeled with the following nodes, as first pro-
posed by Smith and Eisner (2008):

• Let {Link(i, j) : 0 ≤ i ≤ j ≤ n, n 6= j}
be O(n2) boolean variables corresponding to
the possible links in a dependency parse. Li,j

= true implies that there is a dependency from
parent i to child j.

• Let {LINK(i, j) : 0 ≤ i ≤ j ≤ n, n 6= j}
be O(n2) unary factors, each paired with a cor-
responding Link(i, j) variable and expressing
the independent belief that Link(i, j) = true.

2.2 Latent Constituency Structure
Alternatively we can describe the more structured
constituency formalism by setting up a representa-
tion over span variables:

• Let {Span(i, j) : 0 ≤ i < j ≤ n} be O(n2)
boolean variables such that Span(i, j) = true
iff there is a bracket spanning i to j 1.

• Let {SPAN(i, j) : 0 ≤ i < j ≤ n} be O(n2)
unary factors, each attached to the correspond-
ing Span(i, j) variable. These factors score the
independent suitability of each span to appear
in an unlabeled constituency tree.

All boolean variables presented in this paper will
be paired to unary factors in this manner, which
we will omit in future descriptions. This encom-
passes the necessary representational structure for
both syntactic formalisms, but nothing introduced
up to this point guarantees that either of these rep-
resentations will form a valid tree or DAG.

2.3 Combinatorial Factors
Naively constraining these latent representations
through the introduction of many interconnected
ternary factors is possible, but would likely be com-
putationally intractable. However, as observed in

1In practice, we do not need to include variables for spans
of width 1 or n, since they will always be true.
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Smith and Eisner (2008), we can encapsulating
common dynamic programming algorithms within
special-purpose factors to efficiently globally con-
strain variable configurations . Since the outgoing
messages from such factors to a variable can be com-
puted from the factor’s posterior beliefs about that
variable, there is no difficulty in exchanging beliefs
between these special-purpose factors and the rest
of the graph, and inference can proceed using the
standard sum-product or max-product belief prop-
agation. Here we present two combinatorial factors
that provide efficient ways of constraining the model
to fit common syntactic frameworks.

• Let CKYTREE be a global combinatorial fac-
tor, as used in previous work in efficient pars-
ing (Naradowsky and Smith, 2012), attached to
all the Span(i, j) variables. This factor con-
tributes a factor of 1 to the model’s score iff the
span variables collectively form a legal, binary
bracketing and a factor of 0 otherwise. It en-
forces, therefore, a hard constraint on the vari-
ables, computing beliefs via an unlabeled vari-
ant of the inside-outside algorithm.

• Let DEP-TREE be a global combinatorial fac-
tor, as presented in Smith and Eisner (2008),
which attaches to all Link(i, j) variables and
similarly contributes a factor of 1 iff the config-
uration of Link variables forms a valid projec-
tive dependency graph. A graph is projective if
its edges do not cross.

2.4 Marginal MAP Inference

It is straightforward to train these latent variable
models to maximize the marginal probability of their
outputs, conditioning on their inputs, and marginal-
izing out the latent syntactic variables. To compute
feature expectations, we can use marginal inference
techniques such as sampling and sum-product belief
propagation to compute marginal probabilities.

A knottier problem arises when we want to find
the best assignment to the variables of interest
while marginalizing out “nuisance” latent variables.
This is the problem of marginal MAP inference—
sometimes known as consensus decoding—which
has been shown to be NP-hard and without a poly-
nomial time approximation scheme (Sima’an, 1996;

Casacuberta and Higuera, 2000). In the NLP com-
munity, these inference problems often arise when
dealing with spurious ambiguity where multiple
derivations can lead to the same derived structure. In
tree substitution grammars, for instance, there may
be many ways of combining elementary trees to pro-
duce the same output tree; in machine translation,
many different elementary phrases or elementary
tree pairs might produce the same output string. For
syntactic parsing, Goodman (1996) proposed a vari-
ational method for summing out spurious ambiguity
that was equivalent to minimum Bayes risk decoding
(Goel and Byrne, 2000; Kumar and Byrne, 2004)
with a constituent-recall loss function. For MT,
May and Knight (2006) proposed methods for de-
terminizing tree automata to reduce ambiguity, and
Li et al. (2009) proposed a variational method based
on n-gram loss functions. More recently, Liu and Ih-
ler (2011) analyzed message-passing algorithms for
marginal MAP.

In this paper, we adopt a simple minimum Bayes
risk decoding scheme. First, we perform sum-
product belief propagation on the full factor graph.
Then, we maximize the expected accuracy of the
variables of interest, subject to any hard constraints
on them (such as mutual exclusion among labels). In
some cases with complex combinatorial constraints,
this simple MBR scheme has proved more effec-
tive than exact decoding over all variables (Auli and
Lopez, 2011).

3 Relation Extraction

Performing a syntax-based NLP task in most real-
world scenarios requires that the incoming data first
be parsed using a pre-trained parsing model. For
some tasks, like relation extraction, many data sets
lack syntactic annotation and these circumstances
persist even into the training phase. In this sec-
tion we explore such scenarios and contrast the use
of parser-provided syntactic annotation to marginal-
izing over latent representations of constituency or
dependency syntax. We show the hidden syntactic
models are not just competitive with these “oracle”
models, but in some configurations can actually out-
perform them.

Relation extraction is the task of identifying se-
mantic relations between sets of entities in text (as
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illustrated in Fig. 1b), and a good proving ground
for latent syntactic methods for two reasons. First,
because entities share a semantic relationship, un-
der most linguistic analyses these entities will also
share some syntactic relation. Indeed, syntactic fea-
tures have long been an extremely useful source
of information for relation extraction systems (Cu-
lotta and Sorensen, 2004; Mintz et al., 2009). Sec-
ondly, relation extraction has been a common task
for pioneering efforts in processing data mined from
the internet, and otherwise noisy or out-of-domain
data. In particular, large noisily-annotated data sets
have been generated by leveraging freely available
knowledge bases such as Freebase (Bollacker et al.,
2008; Mintz et al., 2009). Such data sets have been
utilized successfully for relation extraction from the
web (Bunescu and Mooney, 2007).

3.1 Model

We present a simple model for representing rela-
tional structure, with the only variables present be-
ing a set of boolean-valued variables representing an
undirected dependency between two entities, and an
additional set of boolean label variables representing
the type label of the relation.

• Let {Rel(i, j : 0 ≤ i < j ≤ n} be O(n2)
boolean variables such that Rel(i, j) = true iff
there is a relation spanning i to j.

• Let {Rel-Label(i, j, λ) : λ ∈ L, and 0 ≤ i <
j ≤ n} be O(|L|n2) boolean variables such
that Rel-Label(i, j, λ) = true iff there is a re-
lation spanning i to j with relation type λ.

• Let {ATMOST1(i, j) : 0 ≤ i < j ≤ n} be
O(n2) factors, each coordinating the set L of
possible nonterminal variables to the Rel vari-
able at each i, j tuple, allowing a Rel-Label
variable to be true iff all other label variables
are false and Rel(i, j) = true.

Here the Rel(i, j) and Rel-Label(i, j) variables
simply express the representation of the problem,
while the ATMOST1 factors are logical constraints
ensuring that only one label will apply to a particu-
lar relation.

3.2 Coordination Factors
An important contribution of this work is the intro-
duction of a flexible, general framework for connect-
ing the latent and observable partitions of the model.
We accomplish this through the use of two addi-
tional factors, each expressing the same basic logic,
which learn when to coordinate and when to ignore
correlations between the latent syntax and the end
task. While here we specify binary and ternary ver-
sions of these factors, they also generalize to higher
dimensions.

• Let {D-CONNECT(i, j, k) : 0 ≤ i < j ≤
n; 0 ≤ k ≤ n} be O(n3) factors coordinating
any number of dependency syntax Link(i, j)
variables with representational variables on the
end task, multiplying in 1 to the model score
unless all variables are on, in which case it mul-
tiplies a connective potential φ derived from
its features. Thus it functions logically as a
soft NAND factor. In this ternary formulation k
represents a hidden dependency head or pivot
which is shared between two syntactic depen-
dencies anchored at the indices of the entities
in the relation (as illustrated in Fig. 1).

• Let {C-CONNECT(i, j) : 0 ≤ i < j ≤
n} be O(n2) factors coordinating syntactic
Span(i, j) and relation arc Rel(i, j), identi-
cally to D-CONNECT but with a 1-to-1 map-
ping. Intuitively the joint model might learn
φ > 1, i.e., constituency spans and task predic-
tion relations are more likely to be coterminous.

The difficulty in working with latent dependency
syntax is that we posit that the RE variables do not
share a 1-to-1 mapping with variables in the hid-
den representation. We expect instead, according
to linguistic intuition, that a relation between enti-
ties at position i and j in the sentence should have
corresponding syntactic dependencies but that they
are likely to realize this by sharing the same head
word (as depicted in Fig.1), a word whose identity
should help label the relation. Therefore we intro-
duce a special coordination factor, D-CONNECT as
a ternary factor to capture the relationship between
pairs of latent syntactic variables and a single rela-
tion variable, pivoting on the same unknown head
word.
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Figure 1: Latent Dependency coupling for the RE task.
The D-CONNECT factor expresses ternary connection re-
lations because the shared head word of the proposed re-
lation is unknown. As is convention, variables are repre-
sented by circles, factors by rectangles.

We introduce six model scenarios.

• Baseline, simply the arc-factored model con-
sisting only of Rel and corresponding Label
variables for each entity. Features on the re-
lation factors, which are common to all model
configurations, are combinations of lexical in-
formation (i.e., the words that form the entity,
the pos-tags of the entities, etc.) as well as the
distance between the relation. This is a light-
weight model and generally does not attempt
to exhaustively leverage all possible proven
sources of useful features (Zhou et al., 2005)
towards a higher absolute score, but rather to
serve as a point of comparison to the models
which rely on syntactic information.

• Baseline-Ent, a variant of Baseline with addi-
tional features which include combinations of
mention type, entity type, and entity sub-type.

• Oracle D-Parse, in which we also instantiate a
full set of latent dependency syntax variables,
and connect them to the baseline model us-
ing D-CONNECT factors. Syntax variables are
clamped to their true values.

• Oracle C-Parse, the constituency syntax ana-
logue of Oracle D-Parse.

• Hidden D-Parse, which is an extension of Or-
acle D-Parse in which we connect all syntax
variables to a DEP-TREE factor, syntax vari-
ables are unobserved, and are learned jointly
with the end task. The features for latent syntax
are a subset of those used in dependency pars-
ing (McDonald et al., 2005).

• Hidden C-Parse, the constituency syntax ana-
logue of Hidden D-Parse. The feature set is
similar but bigrams are taken over the words
defining the constituent span, rather than the
words defining the head/modifier relation.

Coordination factor features for the syntactically-
informed models are particularly important. This
became evident in initial experiments where the
baseline was often able to outperform the hidden
syntactic model. However, inclusion of entity and
mention label features into the connection factors
provides the model with greater reasoning over
when to coordinate or ignore the relation predictions
with the underlying syntax. These are a proper sub-
set of the Baseline-Ent features.

3.3 Data

We evaluate these models using the 2005 Auto-
matic Content Extraction (ACE) data set (Walker,
2006), using the English (dual-annotated) and Chi-
nese (solely annotator #1 data set) sections. Each
corpus is annotated with entity mentions—tagged as
PER, ORG, LOC, or MISC—and, where applica-
ble, what type of relation exists between them (e.g.,
coarse: PHYS; fine: Located). But like most cor-
pora available for the task, the burden of acquiring
corresponding syntactic annotation is left to the re-
searcher. In this situation it is common to turn to
existing pre-trained parsing models.

We generate our data by first splitting the raw
text paragraphs into sentences. Chinese sentences
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ACE Results
English Chinese

Unlabeled Labeled Unlabeled Labeled
Model P R F1 P R F1 P R F1 P R F1
Baseline 85.4 57.0 68.4 83.0 55.3 66.4 42.9 26.8 33.0 42.6 21.3 28.4
Baseline-Ent 87.2 65.4 74.8 85.8 64.4 73.6 55.2 31.1 39.8 51.2 29.4 37.4
Oracle D-Parse 89.3 67.4 76.8 89.3 66.2 75.4 60.0 32.6 42.2 58.1 31.3 40.7
Hidden D-Parse 87.8 69.8 77.7 85.3 67.8 75.6 48.0 32.0 38.4 47.2 30.0 36.7
Oracle C-Parse 89.1 68.7 77.6 87.5 67.5 76.2 66.8 37.8 48.3 63.8 37.0 46.8
Hidden C-Parse 90.5 69.9 78.9 88.8 68.6 77.4 56.3 32.3 41.0 53.4 31.6 39.7

Table 1: Relation Extraction Results. Models using hidden constituency syntax provide significant gains over the
syntactically-uniformed baseline model in both languages, but the advantages of the latent syntax were mitigated on
the smaller Chinese data set.

are also tokenized according to Penn Chinese Tree-
bank standards (Xue et al., 2005). The sentences are
then tagged and parsed using the Stanford CoreNLP
tools, using the standard pre-trained models for tag-
ging (Toutanvoa and Manning, 2000), and the fac-
tored parsing model of Klein and Manning (2002).
The distributed grammar is trained on a variety of
sources, including the standard Wallstreet Journal
corpus, but also biomedical, translation, and ques-
tions. We then apply entity and relation annota-
tions noisily to the data, collapsing multi-word en-
tities into one term. We filter out sentences with
fewer than two entities (and are thus incapable of
containing relations) and sentences with more than
40 words (to keep the parses more reliable). This
yields 6966 sentences for English data, but unfortu-
nately only 747 sentences for the Chinese. Nine of
every ten sentences comprise the training set, with
every tenth sentence reserved for test.

3.4 Results

We train all models using 20 iterations of stochastic
gradient descent, each with a maximum of 10 BP it-
erations (though in practice we find convergence to
often occur much earlier). The results are presented
in Table 1, showing precision, recall, and F-measure
for both labeled and unlabeled prediction. For En-
glish, not only is the hidden marginalization method
a suitable replacement for the syntactic trees pro-
vided by pre-trained, state-of-the-art models, but in
both configurations we find that inducing an optimal
hidden structure is preferable to the parser-produced
annotations. On Chinese, where the data set is atyp-
ically small, we still observe improved performance

over the baseline in the constituency-based model
though it is not able to match the observed syntax
model.

Despite the intuition that both entities occupy
roles as modifiers of the same verb, we find that
the Hidden D-Parse model often fails to recover the
correct latent structure, and that even when success-
ful dependency parses are observed, the head word
is often not uniquely indicative of the relation type
(as known is not strongly correlated with the relation
type EMPLOYS in the phrase: Shigeru Miyamoto,
best known for his work at the video game company
Nintendo). Hence when it comes to relation extrac-
tion, at least on our relatively small data sets, we find
the simplest approach to latent syntactic structure is
the best.

We now turn to the task of semantic role label-
ing to evaluate this method on a more established
hand-annotated data set, and a more varied set of
languages.

4 Semantic Role Labeling

The task of semantic role labeling (SRL) aims to
detect and label the semantic relationships between
particular words, most commonly verbs (referred to
in the domain as predicates), and their arguments
(Meza-Ruiz and Riedel, 2009).

In a manner similar to RE, there is a strong corre-
lation between the presence of an SRL relation and
there existing an underlying syntactic dependency,
though this is not always expressed as directly as a
1-to-1 correspondence. This has historically moti-
vated a reliance on syntactic annotation, and some
of the most successful methods have simply applied
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Figure 2: A tiered graphic representing the three different SRL model configurations. The baseline system is described
in the bottom (c & d), the separate panels highlighting the independent predictions of this model: sense labels are
assigned in an entirely separate process from argument prediction. Pruning in the model takes place primarily in
this tier, since we observe true predicates we only instantiate over these indices. The middle tier (b.) illustrates the
syntactic representation layer, and the connective factors between syntax and SRL. In the observed syntax model
the Link variables are clamped to their correct values, with no need for a factor to coordinate them to form a valid
tree. Finally, the hidden model comprises all layers, including a combinatorial syntactic constraint (a.) over syntactic
variables. In this scenario all labels in (b.) are hidden at both training and test time.

feature-rich classifiers to the parsed trees. Related
work has recognized the large annotation burden the
task demands, but aimed to keep the syntactic anno-
tations and induce semantic roles (Lang and Lapata,
2010). In this section we will take the opposite ap-
proach, disregarding the syntactic annotations which
we argue are more costly to acquire, as they require
more formal linguistic training to produce.

4.1 Model
We present a simple, flexible model for SRL in
which sense predictions are made independently of
the rest of the model, and argument predictions are
made independently of each other. The model struc-
ture is composed as depicted in Fig. 2.

• Let {Arg(i, j) : 0 ≤ i < j ≤ n} be O(n2)
boolean variables such that Arg(i, j) = true

iff predicate i takes token j as an argument.

• Let {Role(i, j, λ) : λ ∈ L, and 0 ≤ i <
j ≤ n} be O(|L|n2) boolean variables such
that Role(i, j, λ) = true iff Arg(i, j) is true
and takes the role label λ.

• Let {Sense(i, σ) : σ ∈ S, and 0 ≤ i ≤
n} be O(|S|n) boolean variables such that
Sense(i, σ) = true iff predicate i has sense
σ.

4.1.1 Features
At the coarsest level both the SRL and RE models

are specifying binary predictions between a pair of
indices in the sentence, and a set of labels for each
dependency that happens to be true. Similarly we
use almost identical features in SRL as we did in
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Figure 3: Examining the learned hidden representation for SRL. In this example the syntactic dependency arcs derived
from gold standard syntactic annotations (left) are entirely disjoint from the correct predicate/arguments pairs (shown
in the heatmaps by the squares outlined in black), and the observed syntax model fails to recover any of the correct
predictions. In contrast, the hidden model structure (right) learns a representation that closely parallels the desired end
task predictions, helping it recover three of the four correct SRL predictions (shaded arcs: red corresponds to a correct
prediction, with true labels GA, KARA, etc.), and providing some evidence towards the fourth. The dependency tree
corresponding to the hidden structure is derived by edge-factored decoding: dependency variables whose beliefs> 0.5
are classified as true (though some arcs not relevant to the SRL predictions are omitted for clarity).

RE, with the sole exception that we incorporate the
observable lemma and morphological features into
bigrams on predicate/argument pairs. For sense pre-
diction we rely only on unigram features taken in a
close (w = 2) window of the target predicate.

For the coordinating factors we use subsets of
combinations of word, part-of-speech, and capital-
ization features taken between head and argument,
and concatenate these with the distance and direc-
tion between the predicate and argument. We do not
find the performance of the system to be as sensi-
tive to which features are present in the coordinating
factors as we did in the RE task.

4.2 Data

We evaluate our SRL model using the data set devel-
oped for the CoNLL 2009 shared task competition

(Hajič et al., 2009), which features seven languages
and provides an ideal opportunity to measure the
ability of the hidden structure to generalize across
languages of disparate origin and varied character-
istics. It also provides the opportunity to observe
a variety of different annotation styles and biases,
some of which our model was able to uncover as ill-
suited to common models for the task. The data it-
self provides word, lemma, part-of-speech, and mor-
phological feature information, along with gold de-
pendency parses. Words which denote predicates are
identified, and their (train time) arguments are pro-
vided. They are also annotated with a sense label
for each predicate, which is scored as an additional
SRL dependency. Thus the task involves predicting
for each predicate a set of argument dependencies
and the sense label associated with that predicate.
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Unlabeled Labeled CoNLL 2009 F1
Data Model P R F1 P R F1 MAX. MEAN MED.

Catalan
Baseline 92.20 62.43 74.48 73.80 58.76 65.43

Oracle Syn. 98.48 96.17 97.31 70.42 68.78 69.59 80.3 71.0 74.1
Hidden Syn. 95.21 92.84 94.01 68.86 67.15 67.99

Chinese
Baseline 72.48 64.82 68.44 65.97 59.00 62.29

Oracle Syn. 98.57 78.98 87.69 87.64 70.22 77.97 78.6 72.2 70.4
Hidden Syn. 90.79 79.09 84.53 81.97 71.40 76.32

Czech
Baseline 97.73 56.50 71.61 84.80 48.80 61.84

Oracle Syn. 98.62 81.25 89.09 92.94 68.25 74.84 85.4 72.4 71.7
Hidden Syn. 92.39 89.35 90.85 74.41 71.96 73.16

English
Baseline 92.46 71.56 80.68 84.56 65.45 73.78

Oracle Syn. 96.75 82.25 88.91 85.48 72.67 78.55 85.6 75.6 72.1
Hidden Syn. 95.06 79.06 86.32 83.82 69.72 76.12

German
Baseline 93.49 44.24 60.06 75.00 35.49 48.18

Oracle Syn. 95.18 79.11 86.41 73.24 60.87 66.49 79.7 68.1 67.8
Hidden Syn. 91.92 86.26 89.00 69.47 65.19 67.26

Japanese
Baseline 91.64 43.36 58.87 80.41 38.05 51.66

Oracle Syn. 93.84 48.15 63.64 90.06 46.21 61.08 78.2 62.7 72.0
Hidden Syn. 90.88 73.47 81.25 73.42 59.36 65.65

Spanish
Baseline 82.90 39.47 53.48 67.64 32.21 43.64

Oracle Syn. 98.96 94.19 96.52 70.68 67.27 68.93 80.5 70.4 73.4
Hidden Syn. 96.15 90.53 93.25 68.81 64.79 66.74

Table 2: SRL Results. The hidden model excels on the unlabeled prediction results, often besting the scores obtained
using the parses distributed with the CoNLL data sets. These gains did not always translate to the labeled task where
poor sense prediction hindered absolute performance.

4.3 Results

We evaluate across a set of model configurations
analogous to before. All experiments used 30 itera-
tions of SGD with a Gaussian prior, and a max 10 it-
erations of BP to compute the marginals for each ex-
ample. In comparison to the CoNLL competition en-
tries (Table 2, rightmost columns) our syntactically-
informed models generally fall in the middle of the
rankings. This is not surprising given the indepen-
dent predictions of the model and the very general,
language universal assumptions we have made in the
model structure and feature sets. However, in terms
of gauging the usefulness of the hidden syntactic
marginalization method the results are extremely
compelling, with only marginal differences between
the performance of the observed-syntax model, es-
pecially relative to the baseline.

And despite the simplicity of the model, we still
manage to perform at state-of-the-art levels in a
few instances, sometimes outperforming most of the
competition entries without observing any syntax.
The performance on Chinese is an example of this,

with our system outperforming all but the best sys-
tem, and the hidden syntactic model only slightly
behind.

Abstracting away from the performance compar-
isons against other systems, the unlabeled results are
the more revealing evidence for the use of hidden
syntactic structure. Here the average hidden model
score (88.89) almost outperforms the observed syn-
tax model (90.22, and vs. 66.80 baseline), mostly
due to the large margins on the unlabeled Japanese
scores. The strong independence between sense
prediction and argument prediction hinders perfor-
mance on the labeled task, but on all languages we
find an extremely significant improvement exploit-
ing hidden syntactic structure in comparison to the
baseline system—the hidden model recovers more
than 92% of the gap between the baseline and the
observed syntax model. It is also interesting to note
that in the shared task competition the two languages
which systems lost the most performance between
their parsing F1 and their SRL F1 were Japanese
and German. As illustrated in Fig. 3, the corre-
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spondence between syntax and SRL are extremely,
and systematically, poor. In this example our hid-
den structure model was able to assign strong beliefs
to the latent syntactic variables which correspond to
the correct predicate/argument pairs, allowing it to
correctly identify three of the four SRL arguments
when the joint model failed to recover one.

5 Related Work

This work is perhaps mostly closely related to
the Learning over Constrained Latent Representa-
tions (LCLR) framework of Chang et al. (2010).
Their abstract problem formulation is identical: both
paradigms seek to couple the end task to an interme-
diate representation which is not accessible to the
learning algorithm. However much of the intent,
scale, and methodology is different. LCLR aims
to provide a flexible latent structure for increasing
the representational power of the model in a use-
ful way, and is demonstrated on tasks and domains
where data availability is not a key concern. In con-
trast, while our hidden structure models may outper-
form their observed syntax counterparts, our focus
is as much on alleviating the burden of procuring
large amounts of syntactic annotation as it is about
increasing the expressiveness of the model. To that
end we constrain a more sophisticated latent repre-
sentation and couple it to highly structured output
predictions, opposed to binary classification prob-
lems. In methodology, we perform the more com-
putationally intensive marginalization operation in-
stead of maximizing.

Marginalization of hidden structure is also funda-
mental to other work, and featured most prominently
in generative Bayesian latent variable models (Teh
et al., 2006). Our approach is trained discrimina-
tively, affording the use of very rich feature sets and
the prediction of partial structures without needing
to specify a full derivation. Similar approaches have
been used in more linear latent variable CRF-based
models (McCallum et al., 2005), but these must only
marginalize only over hidden states of a much more
compact representation. Naively extending this to
tree-based constraints would often be computation-
ally inefficient, and we avoid intractability through
the encapsulation of much of the dynamic program-
ming machinery into specialized factors. Moreover,

using loopy belief propagation means that the in-
ference method is not closely coupled to the task
structure, and need not change when applying this
method to other types of graphs.

6 Conclusion

We have presented a novel method of coupling
syntactically-oriented NLP tasks to combinatorially-
constrained hidden syntactic representations, and
have shown that marginalizing over this latent rep-
resentation not only provides significant improve-
ments over syntactically-uninformed baselines, but
occasionally improves performance when compared
to systems which observe syntax. On the task of
relation extraction we find that a constituency rep-
resentation provides the most improvement over the
baseline, while in the SRL domain our model is ex-
tremely competitive with the best reported results on
Chinese, and outperforms the model using the pro-
vided parses on German and Japanese.

We believe this method delivers very promising
results in our presented tasks, opening the door to
new lines of research examining what types of con-
straints and what configurations of hidden struc-
ture are most beneficial for particular tasks and lan-
guages. Moreover, we present one type of coordinat-
ing factor, as both D-CONNECT and C-CONNECT

logically express a soft NAND function, but more
sophisticated coupling schemes are another natural
direction to pursue. Finally, we use sum-product
variant of belief propagation inference, but more
specialized inference schemes may show additional
benefits.
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