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Abstract

In order to obtain a fine-grained evaluation of
parser accuracy over naturally occurring text,
we study 100 examples each of ten reason-
ably frequent linguistic phenomena, randomly
selected from a parsed version of the En-
glish Wikipedia. We construct a correspond-
ing set of gold-standard target dependencies
for these 1000 sentences, operationalize map-
pings to these targets from seven state-of-the-
art parsers, and evaluate the parsers against
this data to measure their level of success in
identifying these dependencies.

1 Introduction

The terms “deep” and “shallow” are frequently used
to characterize or contrast different approaches to
parsing. Inevitably, such informal notions lack a
clear definition, and there is little evidence of com-
munity consensus on the relevant dimension(s) of
depth, let alone agreement on applicable metrics. At
its core, the implied dichotomy of approaches al-
ludes to differences in the interpretation of the pars-
ing task. Its abstract goal, on the one hand, could
be pre-processing of the linguistic signal, to enable
subsequent stages of analysis. On the other hand, it
could be making explicit the (complete) contribution
that the grammatical form of the linguistic signal
makes to interpretation, working out who did what
to whom. Stereotypically, one expects correspond-
ing differences in the choice of interface representa-
tions, ranging from various levels of syntactic anal-
ysis to logical-form representations of semantics.

In this paper, we seek to probe aspects of variation
in automated linguistic analysis. We make the as-
sumption that an integral part of many (albeit not all)

applications of parsing technology is the recovery of
structural relations, i.e. dependencies at the level of
interpretation. We suggest a selection of ten linguis-
tic phenomena that we believe (a) occur with reason-
ably high frequency in running text and (b) have the
potential to shed some light on the depths of linguis-
tic analysis. We quantify the frequency of these con-
structions in the English Wikipedia, then annotate
100 example sentences for each phenomenon with
gold-standard dependencies reflecting core proper-
ties of the phenomena of interest. This gold standard
is then used to estimate the recall of these dependen-
cies by seven commonly used parsers, providing the
basis for a qualitative discussion of the state of the
art in parsing for English.

In this work, we answer the call by Rimell et
al. (2009) for “construction-focused parser evalua-
tion”, extending and complementing their work in
several respects: (i) we investigate both local and
non-local dependencies which prove to be challeng-
ing for many existing state-of-the-art parsers; (ii) we
investigate a wider range of linguistic phenomena,
each accompanied with an in-depth discussion of
relevant properties; and (iii) we draw our data from
the 50-million sentence English Wikipedia, which
is more varied and a thousand times larger than the
venerable WSJ corpus, to explore a more level and
ambitious playing field for parser comparison.

2 Background

All parsing systems embody knowledge about possi-
ble and probable pairings of strings and correspond-
ing linguistic structure. Such linguistic and proba-
bilistic knowledge can be hand-coded (e.g., as gram-
mar rules) or automatically acquired from labeled or
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unlabeled training data. A related dimension of vari-
ation is the type of representations manipulated by
the parser. We briefly review some representative
examples along these dimensions, as these help to
position the parsers we subsequently evaluate.1

2.1 Approaches to parsing
Source of linguistic knowledge At one end of this
dimension, we find systems whose linguistic knowl-
edge is encoded in hand-crafted rules and lexical en-
tries; for English, the ParGram XLE system (Rie-
zler et al., 2002) and DELPH-IN English Resource
Grammar (ERG; Flickinger (2000))—each reflect-
ing decades of continuous development—achieve
broad coverage of open-domain running text, for ex-
ample. At the other end of this dimension, we find
fully unsupervised approaches (Clark, 2001; Klein
and Manning, 2004), where the primary source of
linguistic knowledge is co-occurrence patterns of
words in unannotated text. As Haghighi and Klein
(2006) show, augmenting this knowledge with hand-
crafted prototype “seeds” can bring strong improve-
ments. Somewhere between these poles, a broad
class of parsers take some or all of their linguistic
knowledge from annotated treebanks, e.g. the Penn
Treebank (PTB), which encodes “surface grammati-
cal analysis” (Marcus et al., 1993). Such approaches
include those that directly (and exclusively) use the
information in the treebank (e.g. Charniak (1997),
Collins (1999), Petrov et al. (2006), inter alios) as
well as those that complement treebank structures
with some amount of hand-coded linguistic knowl-
edge (e.g. O’Donovan et al. (2004), Miyao et al.
(2004), Hockenmaier and Steedman (2007), inter
alios). Another hybrid in terms of its acquisition of
linguistic knowledge is the RASP system of Briscoe
et al. (2006), combining a hand-coded grammar over
PoS tag sequences with a probabilistic tagger and
statistical syntactic disambiguation.

Design of representations Approaches to parsing
also differ fundamentally in the style of represen-
tation assigned to strings. These vary both in their

1Additional sources of variation among extant parsing tech-
nologies include (a) the behavior with respect to ungrammatical
inputs and (b) the relationship between probabilistic and sym-
bolic knowledge in the parser, where parsers with a hand-coded
grammar at their core typically also incorporate an automati-
cally trained probabilistic disambiguation component.

formal nature and the “granularity” of linguistic in-
formation (i.e. the number of distinctions assumed),
encompassing variants of constituent structure, syn-
tactic dependencies, or logical-form representations
of semantics. Parser interface representations range
between the relatively simple (e.g. phrase structure
trees with a limited vocabulary of node labels as in
the PTB, or syntactic dependency structures with a
limited vocabulary of relation labels as in Johansson
and Nugues (2007)) and the relatively complex, as
for example elaborate syntactico-semantic analyses
produced by the ParGram or DELPH-IN grammars.

There tends to be a correlation between the
methodology used in the acquisition of linguistic
knowledge and the complexity of representations: in
the creation of a mostly hand-crafted treebank like
the PTB, representations have to be simple enough
for human annotators to reliably manipulate. Deriv-
ing more complex representations typically presup-
poses further computational support, often involv-
ing some hand-crafted linguistic knowledge—which
can take the form of mappings from PTB-like repre-
sentations to “richer” grammatical frameworks (as
in the line of work by O’Donovan et al. (2004), and
others; see above), or can be rules for creating the
parse structures in the first place (i.e. a computa-
tional grammar), as for example in the treebanks of
van der Beek et al. (2002) or Oepen et al. (2004).2

In principle, one might expect that richer repre-
sentations allow parsers to capture complex syntac-
tic or semantic dependencies more explicitly. At the
same time, such “deeper” relations may still be re-
coverable (to some degree) from comparatively sim-
ple parser outputs, as demonstrated for unbounded
dependency extraction from strictly local syntactic
dependency trees by Nivre et al. (2010).

2.2 An armada of parsers

Stanford Parser (Klein and Manning, 2003) is a
probabilistic parser which can produce both phrase
structure trees and grammatical relations (syntactic
dependencies). The parsing model we evaluate is the

2A noteworthy exception to this correlation is the annotated
corpus of Zettlemoyer and Collins (2005), which pairs sur-
face strings from the realm of natural language database inter-
faces directly with semantic representations in lambda calculus.
These were hand-written on the basis of database query state-
ments distributed with the original datasets.

398



English factored model which combines the prefer-
ences of unlexicalized PCFG phrase structures and
of lexical dependencies, trained on sections 02–21
of the WSJ portion of the PTB. We chose Stanford
Parser from among the state-of-the-art PTB-derived
parsers for its support for grammatical relations as
an alternate interface representation.

Charniak&Johnson Reranking Parser (Char-
niak and Johnson, 2005) is a two-stage PCFG parser
with a lexicalized generative model for the first-
stage, and a discriminative MaxEnt reranker for the
second-stage. The models we evaluate are also
trained on sections 02–21 of the WSJ. Top-50 read-
ings were used for the reranking stage. The output
constituent trees were then converted into Stanford
Dependencies. According to Cer et al. (2010), this
combination gives the best parsing accuracy in terms
of Stanford dependencies on the PTB.

Enju (Miyao et al., 2004) is a probabilistic HPSG
parser, combining a hand-crafted core grammar with
automatically acquired lexical types from the PTB.3

The model we evaluate is trained on the same ma-
terial from the WSJ sections of the PTB, but the
treebank is first semi-automatically converted into
HPSG derivations, and the annotation is enriched
with typed feature structures for each constituent.
In addition to HPSG derivation trees, Enju also pro-
duces predicate argument structures.

C&C (Clark and Curran, 2007) is a statistical
CCG parser. Abstractly similar to the approach of
Enju, the grammar and lexicon are automatically
induced from CCGBank (Hockenmaier and Steed-
man, 2007), a largely automatic projection of (the
WSJ portion of) PTB trees into the CCG framework.
In addition to CCG derivations, the C&C parser can
directly output a variant of grammatical relations.

RASP (Briscoe et al., 2006) is an unlexicalized
robust parsing system, with a hand-crafted “tag se-
quence” grammar at its core. The parser thus anal-
yses a lattice of PoS tags, building a parse forest
from which the most probable syntactic trees and
sets of corresponding grammatical relations can be
extracted. Unlike other parsers in our mix, RASP
did not build on PTB data in either its PoS tagging

3This hand-crafted grammar is distinct from the ERG, de-
spite sharing the general framework of HPSG. The ERG is not
included in our evaluation, since it was used in the extraction of
the original examples and thus cannot be fairly evaluated.

or syntactic disambiguation components.
MSTParser (McDonald et al., 2005) is a data-

driven dependency parser. The parser uses an edge-
factored model and searches for a maximal span-
ning tree that connects all the words in a sentence
into a dependency tree. The model we evaluate
is the second-order projective model trained on the
same WSJ corpus, where the original PTB phrase
structure annotations were first converted into de-
pendencies, as established in the CoNLL shared task
2009 (Johansson and Nugues, 2007).

XLE/ParGram (Riezler et al., 2002, see also
Cahill et al., 2008) applies a hand-built Lexical
Functional Grammar for English and a stochastic
parse selection model. For our evaluation, we used
the Nov 4, 2010 release of XLE and the Nov 25,
2009 release of the ParGram English grammar, with
c-structure pruning turned off and resource limita-
tions set to the maximum possible to allow for ex-
haustive search. In particular, we are evaluating the
f-structures output by the system.

Each parser, of course, has its own requirements
regarding preprocessing of text, especially tokeniza-
tion. We customized the tokenization to each parser,
by using the parser’s own internal tokenization or
pre-tokenizing to match the parser’s desired input.
The evaluation script is robust to variations in tok-
enization across parsers.

3 Phenomena

In this section we summarize the ten phenomena we
explore and our motivations for choosing them. Our
goal was to find phenomena where the relevant de-
pendencies are relatively subtle, such that more lin-
guistic knowledge is beneficial in order to retrieve
them. Though this set is of course only a sampling,
these phenomena illustrate the richness of structure,
both local and non-local, involved in the mapping
from English strings to their meanings. We discuss
the phenomena in four sets and then briefly review
their representation in the Penn Treebank.

3.1 Long distance dependencies

Three of our phenomena can be classified as involv-
ing long-distance dependencies: finite that-less rel-
atives clauses (‘barerel’), tough adjectives (‘tough’)
and right node raising (‘rnr’). These are illustrated
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in the following examples:4

(1) barerel: This is the second time in a row Aus-
tralia has lost their home tri-nations’ series.

(2) tough: Original copies are very hard to find.

(3) rnr: Ilúvatar, as his names imply, exists before
and independently of all else.

While the majority of our phenomena involve lo-
cal dependencies, we include these long-distance
dependency types because they are challenging for
parsers and enable more direct comparison with the
work of Rimell et al. (2009), who also address right
node raising and bare relatives. Our barerel category
corresponds to their “object reduced relative” cate-
gory with the difference that we also include adverb
relatives, where the head noun functions as a modi-
fier within the relative clause, as does time in (1). In
contrast, our rnr category is somewhat narrower than
Rimell et al. (2009)’s “right node raising” category:
where they include raised modifiers, we restrict our
category to raised complements.

Part of the difficulty in retrieving long-distance
dependencies is that the so-called extraction site is
not overtly marked in the string. In addition to this
baseline level of complication, these three construc-
tion types present further difficulties: Bare relatives,
unlike other relative clauses, do not carry any lexi-
cal cues to their presence (i.e., no relative pronouns).
Tough adjective constructions require the presence
of specific lexical items which form a subset of a
larger open class. They are rendered more difficult
by two sources of ambiguity: alternative subcatego-
rization frames for the adjectives and the purposive
adjunct analysis (akin to in order to) for the infiniti-
val VP. Finally, right node raising often involves co-
ordination where one of the conjuncts is in fact not
a well-formed phrase (e.g., independently of in (3)),
making it potentially difficult to construct the correct
coordination structure, let alone associate the raised
element with the correct position in each conjunct.

3.2 Non-dependencies
Two of our phenomena crucially look for the lack of
dependencies. These are it expletives (‘itexpl’) and
verb-particle constructions (‘vpart’):

4All examples are from our data. Words involved in the rel-
evant dependencies are highlighted in italics (dependents) and
boldface (heads).

(4) itexpl: Crew negligence is blamed, and it is sug-
gested that the flight crew were drunk.

(5) vpart: He once threw out two baserunners at
home in the same inning.

The English pronoun it can be used as an ordi-
nary personal pronoun or as an expletive: a place-
holder for when the language demands a subject (or
occasionally object) NP but there is no semantic role
for that NP. The expletive it only appears when it
is licensed by a specific construction (such as ex-
traposition, (4)) or selecting head. If the goal of
parsing is to recover from the surface string the de-
pendencies capturing who did what to whom, exple-
tive it should not feature in any of those dependen-
cies. Likewise, instances of expletive it should be
detected and discarded in reference resolution. We
hypothesize that detecting expletive it requires en-
coding linguistic knowledge about its licensers.

The other non-dependency we explore is between
the particle in verb-particle constructions and the
direct object. Since English particles are almost
always homophonous with prepositions, when the
object of the verb-particle pair follows the par-
ticle, there will always be a competing analysis
which analyses the sequence as V+PP rather than
V+particle+NP. Furthermore, since verb-particle
pairs often have non-compositional semantics (Sag
et al., 2002), misanalyzing these constructions could
be costly to downstream components.

3.3 Phrasal modifiers
Our next category concerns modifier phrases:

(6) ned: Light colored glazes also have softening
effects when painted over dark or bright images.

(7) absol: The format consisted of 12 games, each
team facing the other teams twice.

The first, (‘ned’), is a pattern which to our knowl-
edge has not been named in the literature, where a
noun takes the typically verbal -ed ending, is modi-
fied by another noun or adjective, and functions as a
modifier or a predicate. We believe this phenomenon
to be interesting because its unusual morphology is
likely to lead PoS-taggers astray, and because the
often-hyphenated Adj+N-ed constituent has produc-
tive internal structure constraining its interpretation.

The second phrasal modifier we investigate is the
absolutive construction. An absolutive consists of an
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NP followed by a non-finite predicate (such as could
appear after the copula be). The whole phrase mod-
ifies a verbal projection that it attaches to. Absolu-
tives may be marked with with or unmarked. Here,
we focus on the unmarked type as this lack of lexical
cue can make the construction harder to detect.

3.4 Subtle arguments
Our final three phenomena involve ways in which
verbal arguments can be more difficult to identify
than in ordinary finite clauses. These include de-
tecting the arguments of verbal gerunds (‘vger’), the
interleaving of arguments and adjuncts (‘argadj’) and
raising/control (‘control’) constructions.

(8) vger: Accessing the website without the “www”
subdomain returned a copy of the main site for
“EP.net”.

(9) argadj: The story shows, through flashbacks, the
different histories of the characters.

(10) control: Alfred “retired” in 1957 at age 60 but
continued to paint full time.

In a verbal gerund, the -ing form a verb retains
verbal properties (e.g., being able to take NP com-
plements, rather than only PP complements) but
heads a phrase that fills an NP position in the syn-
tax (Malouf, 2000). Since gerunds have the same
morphology as present participle VPs, their role in
the larger clause is susceptible to misanalysis.

The argadj examples are of interest because En-
glish typically prefers to have direct objects directly
adjacent to the selecting verb. Nonetheless, phe-
nomena such as parentheticals and heavy-NP shift
(Arnold et al., 2000), in which “heavy” constituents
appear further to the right in the string, allow for
adjunct-argument order in a minority of cases. We
hypothesize that the relative infrequency of this con-
struction will lead parsers to prefer incorrect analy-
ses (wherein the adjunct is picked up as a comple-
ment, the complement as an adjunct or the structure
differs entirely) unless they have access to linguis-
tic knowledge providing constraints on possible and
probable complementation patterns for the head.

Finally, we turn to raising and control verbs (‘con-
trol’) (e.g., Huddleston and Pullum (2002, ch. 14)).
These verbs select for an infinitival VP complement
and stipulate that another of their arguments (sub-
ject or direct object in the examples we explore) is

identified with the unrealized subject position of the
infinitival VP. Here it is the dependency between
the infinitval VP and the NP argument of the “up-
stairs” verb which we expect to be particularly sub-
tle. Getting this right requires specific lexical knowl-
edge about which verbs take these complementation
patterns. This lexical knowledge needs to be repre-
sented in such a way that it can be used robustly even
in the case of passives, relative clauses, etc.5

3.5 Penn Treebank representations

We investigated the representation of these 10 phe-
nomena in the PTB (Marcus et al., 1993) in two
steps: First we explored the PTB’s annotation guide-
lines (Bies et al., 1995) to determine how the rele-
vant dependencies were intended to be represented.
We then used Ghodke and Bird’s (2010) Treebank
Search to find examples of the intended annotations
as well as potential examples of the phenomena an-
notated differently, to get a sense of the consistency
of the annotation from both precision and recall per-
spectives. In this study, we take the phrase structure
trees of the PTB to represent dependencies based on
reasonable identification of heads.

The barerel, vpart, and absol phenomena are com-
pletely unproblematic, with their relevant dependen-
cies explicitly and reliably represented. In addition,
the tough construction is reliably annotated, though
one of the dependencies we take to be central is not
directly represented: The missing argument is linked
to a null wh head at the left edge of the comple-
ment of the tough predicate, rather than to its sub-
ject. Two further phenomena (rnr and vger) are es-
sentially correctly represented: the representations
of the dependencies are explicit and mostly but not
entirely consistently applied. Two out of a sample of
20 examples annotated as containing rnr did not, and
two out of a sample of 35 non-rnr-annotated coordi-
nations actually contained rnr. For vger the primary
problem is with the PoS tagging, where the gerund
is sometimes given a nominal tag, contrary to PTB
guidelines, though the structure above it conforms.

The remaining four constructions are more prob-
lematic. In the case of object control, while the guide-

5Distinguishing between raising and control requires fur-
ther lexical knowledge and is another example of a “non-
dependency” (in the raising examples). We do not draw that
distinction in our annotations.
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lines specify an analysis in which the shared NP is
attached as the object of the higher verb, the PTB
includes not only structures conforming to that anal-
ysis but also “small clause” structures, with the latter
obscuring the relationship of the shared argument to
the higher verb. In the case of itexpl, the adjoined
(S(-NONE- *EXP*)) indicating an expletive use of
it is applied consistently for extraposition (as pre-
scribed in the guidelines). However, the set of lex-
ical licensers of the expletive is incomplete. For ar-
gadj we run into the problem that the PTB does not
explicitly distinguish between post-verbal modifiers
and verbal complements in the way that they are at-
tached. The guidelines suggest that the function tags
(e.g., PP-LOC, etc.) should allow one to distinguish
these, but examination of the PTB itself suggests
that they are not consistently applied. Finally, the
ned construction is not mentioned in the PTB guide-
lines nor is its internal structure represented in the
treebank. Rather, strings like gritty-eyed are left un-
segmented and tagged as JJ.

We note that the PTB representations of many of
these phenomena (barerel, tough, rnr, argadj, control,
itexpl) involve empty elements and/or function tags.
Systems that strip these out before training, as is
common practice, will not benefit from the informa-
tion that is in the PTB.

Our purpose here is not to criticize the PTB,
which has been a tremendously important resource
to the field. Rather, we have two aims: The first is
to provide context for the evaluation of PTB-derived
parsers on these phenomena. The second is to high-
light the difficulty of producing consistent annota-
tions of any complexity as well as the hurdles faced
by a hand-annotation approach when attempting to
scale a resource to more complex representations
and/or additional phenomena (though cf. Vadas and
Curran (2008) on improving PTB representations).

4 Methodology

4.1 Data extraction

We processed 900 million tokens of Wikipedia text
using the October 2010 release of the ERG, follow-
ing the work of the WikiWoods project (Flickinger
et al., 2010). Using the top-ranked ERG deriva-
tion trees as annotations over this corpus and sim-
ple patterns using names of ERG-specific construc-

Phenomenon Frequency Candidates
barerel 2.12% 546
tough 0.07% 175
rnr 0.69% 1263
itexpl 0.13% 402
vpart 4.07% 765
ned 1.18% 349
absol 0.51% 963
vger 5.16% 679
argadj 3.60% 1346
control 3.78% 124

Table 1: Relative frequencies of phenomena matches in
Wikipedia, and number of candidate strings vetted.

tions or lexical types, we randomly selected a set
of candidate sentences for each of our ten phenom-
ena. These candidates were then hand-vetted in se-
quence by two annotators to identify, for each phe-
nomenon, 100 examples that do in fact involve the
phenomenon in question and which are both gram-
matical and free of typos. Examples that were ei-
ther deemed overly basic (e.g. plain V+V coordi-
nation, which the ERG treats as rnr) or inappropri-
ately complex (e.g. non-constituent coordination ob-
scuring the interleaving of arguments and adjuncts)
were also discarded at this step. Table 1 summarizes
relative frequencies of each phenomenon in about
47 million parsed Wikipedia sentences, as well as
the total size of the candidate sets inspected. For
the control and tough phenomena hardly any filtering
for complexity was applied, hence these can serve
as indicators of the rate of genuine false positives.
For phenomena that partially overlap with those of
Rimell et al. (2009), it appears our frequency es-
timates are comparable to what they report for the
Brown Corpus (but not the WSJ portion of the PTB).

4.2 Annotation format
We annotated up to two dependency triples per phe-
nomenon instance, identifying the heads and depen-
dents by the surface form of the head words in the
sentence suffixed with a number indicating word po-
sition (see Table 2).6 Some strings contain more
than one instance of the phenomenon they illustrate;
in these cases, multiple sets of dependencies are

6As the parsers differ in tokenization strategies, our evalua-
tion script treats these position IDs as approximate indicators.
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Item ID Phenomenon Polarity Dependency
1011079100200 absol 1 having-2|been-3|passed-4 ARG act-1
1011079100200 absol 1 withdrew-9 MOD having-2|been-3|passed-4
1011079100200 absol 1 carried+on-12 MOD having-2|been-3|passed-4

Table 2: Sample annotations for sentence # 1011079100200: The-0 act-1 having-2 been-3 passed-4 in-5 that-6 year-7
Jessop-8 withdrew-9 and-10 Whitworth-11 carried-12 on-13 with-14 the-15 assistance-16 of-17 his-18 son-19.

Phenomenon Head Type Dependent Distance
Bare relatives gapped predicate in relative ARG2/MOD modified noun 3.0 (8)
(barerel) modified noun MOD top predicate of relative 3.3 (8)
Tough adjectives tough adjective ARG2 to-VP complement 1.7 (5)
(tough) gapped predicate in to-VP ARG2 subject/modifiee of adjective 6.4 (21)
Right Node Raising verb/prep2 ARG2 shared noun 2.8 (9)
(rnr) verb/prep1 ARG2 shared noun 6.1 (12)
Expletive It it-subject taking verb !ARG1 it 1.2 (3)
(itexpl) raising-to-object verb !ARG2 it –
Verb+particle constructions particle !ARG2 complement 2.7 (9)
(vpart) verb+particle ARG2 complement 3.7 (10)
Adj/Noun2 + Noun1-ed head noun MOD Noun1-ed 2.4 (17)
(ned) Noun1-ed ARG1/MOD Adj/Noun2 1.0 (1.5)
Absolutives absolutive predicate ARG1 subject of absolutive 1.7 (12)
(absol) main clause predicate MOD absolutive predicate 9.8 (26)
Verbal gerunds selecting head ARG[1,2] gerund 1.9 (13)
(vger) gerund ARG2/MOD first complement/modifier of gerund 2.3 (8)
Interleaved arg/adj selecting verb MOD interleaved adjunct 1.2 (7)
(argadj) selecting verb ARG[2,3] displaced complement 5.9 (26)
Control “upstairs” verb ARG[2,3] “downstairs” verb 2.4 (23)
(control) “downstairs” verb ARG1 shared argument 4.8 (17)

Table 3: Dependencies labeled for each phenomenon type, including average and maximum surface distances.

recorded. In addition, some strings evince more than
one of the phenomena we are studying. However,
we only annotate the dependencies associated with
the phenomenon the string was selected to repre-
sent. Finally, in examples with coordinated heads or
dependents, we recorded separate dependencies for
each conjunct. In total, we annotated 2127 depen-
dency triples for the 1000 sentences, including 253
negative dependencies (see below). Table 3 outlines
the dependencies annotated for each phenomenon.

To allow for multiple plausible attachment sites,
we give disjunctive values for heads or dependents
in several cases: (i) with auxiliaries, (ii) with com-
plementizers (that or to, as in Table 2), (iii) in cases
of measure or classifier nouns or partitives, (iv) with
multi-word proper names and (v) where there is
genuine attachment ambiguity for modifiers. As
these sets of targets are disjunctive, these conven-
tions should have the effect of increasing measured
parser performance. 580 (27%) of the annotated de-
pendencies had at least one disjunction.

4.3 Annotation and reconciliation process

The entire data set was annotated independently by
two annotators. Both annotators were familiar with
the ERG, used to identify these sentences in the
WikiWoods corpus, but the annotation was done
without reference to the ERG parses. Before begin-
ning annotation on each phenomenon, we agreed on
which dependencies to annotate. We also communi-
cated with each other about annotation conventions
as the need for each convention became clear. The
annotation conventions address how to handle co-
ordination, semantically empty auxiliaries, passives
and similar orthogonal phenomena.

Once the entire data set was dual-annotated, we
compared annotations, identifying the following
sources of mismatch: typographical errors, incom-
pletely specified annotation conventions, inconsis-
tent application of conventions (101 items, dropping
in frequency as the annotation proceeded), and gen-
uine disagreement about what to annotate, either dif-
ferent numbers of dependencies of interest identified
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in an item (59 items) or conflicting elements in a de-
pendency (54 items).7 Overall, our initial annotation
pass led to agreement on 79% of the items, and a
higher per-dependency level of agreement. Agree-
ment could be expected to approach 90% with more
experience in applying annotation conventions.

We then reconciled the annotations, using the
comparison to address all sources of difference. In
most cases, we readily agreed which annotation was
correct and which was in error. In a few cases, we
decided that both annotations were plausible alter-
natives (e.g., in terms of alternative attachment sites
for modifiers) and so created a single merged anno-
tation expressing the disjunction of both (cf. § 4.2).

5 Evaluation

With the test data consisting of 100 items for each of
our ten selected phenomena, we ran all seven pars-
ing systems and recorded their dependency-style
outputs for each sentence. While these outputs
are not directly comparable with each other, we
were able to associate our manually-annotated tar-
get dependencies with parser-specific dependencies,
by defining sets of phenomenon-specific regular ex-
pressions for each parser. In principle, we allow this
mapping to be somewhat complex (and forgiving to
non-contentful variation), though we require that it
work deterministically and not involve specific lexi-
cal information. An example set is given in Fig. 2.

"absol" =>
{’ARG1’ => [
’\(ncsubj \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+) _\)’,
’\(ncmod _ \W*{W2}\W*_(\d+) \W*{W1}\W*_(\d+)\)’],
’ARG’ => [
’\(ncsubj \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+) _\)’,
’\(ncmod _ \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+)\)’],
’MOD’ => [
’\(xmod _ \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+)\)’,
’\(ncmod _ \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+)\)’,
’\(cmod _ \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+)\)’]}

Figure 2: Regexp set to evaluate C&C for absol.

These expressions fit the output that we got from the
C&C parser, illustrated in Fig. 3 with a relevant por-
tion of the dependencies produced for the example
in Table 2. Here the C&C dependency (ncsubj

passed 4 Act 1 ) matches the first target in the

7We do not count typographical errors or incompletely spec-
ified conventions as failures of inter-annotator agreement.

gold-standard (Table 2), but no matching C&C de-
pendency is found for the other two targets.

(xmod _ Act_1 passed_4)
(ncsubj passed_4 Act_1 _)
(ncmod _ withdrew,_9 Jessop_8)
(dobj year,_7 withdrew,_9)

Figure 3: Excerpts of C&C output for item in Table 2.

The regular expressions operate solely on the de-
pendency labels and are not lexically-specific. They
are specific to each phenomenon, as we did not at-
tempt to write a general dependency converter, but
rather to discover what patterns of dependency rela-
tions describe the phenomenon when it is correctly
identified by each parser. Thus, though we did not
hold out a test set, we believe that they would gener-
alize to additional gold standard material annotated
in the same way for the same phenomena.8

In total, we wrote 364 regular expressions to han-
dle the output of the seven parsers, allowing some
leeway in the role labels used by a parser for any
given target dependency. The supplementary mate-
rials for this paper include the test data, parser out-
puts, target annotations, and evaluation script.

Fig. 1 provides a visualization of the results of our
evaluation. Each column of points represents one
dependency type. Dependency types for the same
phenomenon are represented by adjacent columns.
The order of the columns within a phenomenon fol-
lows the order of the dependency descriptions in
Table 3: For each pair, the dependency type with
the higher score for the majority of the parsers is
shown first (to the left). The phenomena them-
selves are also arranged according to increasing (av-
erage) difficulty. itexpl only has one column, as we
annotated just one dependency per instance here.
(The two descriptions in Table 3 reflect different,
mutually-incompatible instance types.) Since ex-
pletive it should not be the semantic dependent of
any head, the targets are generalized for this phe-
nomenon and the evaluation script counts as incor-

8In the case of the XLE, our simplistic regular-expression
approach to the interpretation of parser outputs calls for much
more complex patterns than for the other parsers. This is owed
to the rich internal structure of LFG f-structures and higher
granularity of linguistic analysis, where feature annotations on
nodes as well as reentrancies need to be taken into account.
Therefore, our current results for the XLE admit small amounts
of both over- and under-counting.
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Figure 1: Individual dependency recall for seven parsers over ten phenomena.

rect any dependency involving referential it.
We observe fairly high recall of the dependencies

for vpart and vger (with the exception of RASP), and
high recall for both dependencies representing con-
trol for five systems. While Enju, Stanford, MST,
and RASP all found between 70 and 85% of the de-
pendency between the adjective and its complement
in the tough construction, only Enju and XLE rep-
resented the dependency between the subject of the
adjective and the gap inside the adjective’s comple-
ment. For the remaining phenomena, each parser
performed markedly worse on one dependency type,
compared to the other. The only exceptions here
are XLE and C&C’s (and to a lesser extent, C&J’s)
scores for barerel. No system scored higher than
33% on the harder of the two dependencies in rnror
absol, and Stanford, MST, and RASP all scored be-
low 25% on the harder dependency in barerel. Only
XLE scored higher than 10% on the second depen-
dency for ned and higher than 50% for itexpl.

6 Discussion

From the results in Fig. 1, it is clear that even the best
of these parsers fail to correctly identify a large num-
ber of relevant dependencies associated with linguis-
tic phenomena that occur with reasonable frequency

in the Wikipedia. Each of the parsers attempts
with some success to analyze each of these phe-
nomena, reinforcing the claim of relevance, but they
vary widely across phenomena. For the two long-
distance phenomena that overlap with those studied
in Rimell et al. (2009), our results are comparable.9

Our evaluation over Wikipedia examples thus shows
the same relative lack of success in recovering long-
distance dependencies that they found for WSJ sen-
tences. The systems did better on relatively well-
studied phenomena including control, vger, and vpart,
but had less success with the rest, even though all but
two of those remaining phenomena involve syntac-
tically local dependencies (as indicated in Table 3).

Successful identification of the dependencies in
these phenomena would, we hypothesize, benefit
from richer (or deeper) linguistic information when
parsing, whether it is lexical (tough, control, itexpl,
and vpart), or structural (rnr, absol, vger, argadj, and
barerel), or somewhere in between, as with ned. In
the case of treebank-trained parsers, for the informa-
tion to be available, it must be consistently encoded
in the treebank and attended to during training. As

9Other than Enju, which scores 16 points higher in the eval-
uation of Rimell et al., our average scores for each parser across
the dependencies for these phenomena are within 12 points of
those reported by Rimell et al. (2009) and Nivre et al. (2010).
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noted in Sections 2.1 and 3.5, there is tension be-
tween developing sufficiently complex representa-
tions to capture linguistic phenomena and keeping
an annotation scheme simple enough that it can be
reliably produced by humans, in the case of hand-
annotation.

7 Related Work

This paper builds on a growing body of work which
goes beyond (un)labeled bracketing in parser evalua-
tion, including Lin (1995), Carroll et al. (1998), Ka-
plan et al. (2004), Rimell et al. (2009), and Nivre et
al. (2010). Most closely related are the latter two of
the above, as we adopt their “construction-focused
parser evaluation methodology”.

There are several methodological differences be-
tween our work and that of Rimell et al. First, we
draw our evaluation data from a much larger and
more varied corpus. Second, we automate the com-
parison of parser output to the gold standard, and we
distribute the evaluation scripts along with the anno-
tated corpus, enhancing replicability. Third, where
Rimell et al. extract evaluation targets on the basis
of PTB annotations, we make use of a linguistically
precise broad-coverage grammar to identify candi-
date examples. This allows us to include both local
and non-local dependencies not represented or not
reliably encoded in the PTB, enabling us to evalu-
ate parser performance with more precision over a
wider range of linguistic phenomena.

These methodological innovations bring two em-
pirical results. The first is qualitative: Where previ-
ous work showed that overall Parseval numbers hide
difficulties with long-distance dependencies, our re-
sults show that there are multiple kinds of reason-
ably frequent local dependencies which are also dif-
ficult for the current standard approaches to pars-
ing. The second is quantitative: Where Rimell et
al. found two phenomena which were virtually un-
analyzed (recall below 10%) for one or two parsers
each, we found eight phenomena which were vir-
tually unanalyzed by at least one system, includ-
ing two unanalyzed by five and one by six. Every
system had at least one virtually unanalyzed phe-
nomenon. Thus we have shown that the dependen-
cies being missed by typical modern approaches to
parsing are more varied and more numerous than

previously thought.

8 Conclusion

We have presented a detailed construction-focused
evaluation of seven parsers over 10 phenomena,
with 1000 examples drawn from English Wikipedia.
Gauging recall of such “deep” dependencies, in our
view, can serve as a proxy for downstream pro-
cessing involving semantic interpretation of parser
outputs. Our annotations and automated evaluation
script are provided in the supplementary materials,
for full replicability. Our results demonstrate that
significant opportunities remain for parser improve-
ment, and highlight specific challenges that remain
invisible in aggregate parser evaluation (e.g. Parse-
val or overall dependency accuracy). These results
suggest that further progress will depend on train-
ing data that is both more extensive and more richly
annotated than what is typically used today (seeing,
for example, that a large part of more detailed PTB
annotation remains ignored in much parsing work).

There are obvious reasons calling for diversity in
approaches to parsing and for different trade-offs
in, for example, the granularity of linguistic analy-
sis, average accuracy, cost of computation, or ease
of adaptation. Our proposal is not to substitute
construction-focused evaluation on Wikipedia data
for widely used aggregate metrics and reference cor-
pora, but rather to augment such best practices in
the spirit of Rimell et al. (2009) and expand the
range of phenomena considered in such evaluations.
Across frameworks and traditions (and in principle
languages), it is of vital importance to be able to
evaluate the quality of parsing (and grammar induc-
tion) algorithms in a maximally informative manner.
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