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Abstract

Unknown words are a hindrance to the perfor-
mance of hand-crafted computational gram-
mars of natural language. However, words
with incomplete and incorrect lexical entries
pose an even bigger problem because they can
be the cause of a parsing failure despite being
listed in the lexicon of the grammar. Such lex-
ical entries are hard to detect and even harder
to correct.

We employ an error miner to pinpoint words
with problematic lexical entries. An auto-
mated lexical acquisition technique is then
used to learn new entries for those words
which allows the grammar to parse previously
uncovered sentences successfully.

We test our method on a large-scale grammar
of Dutch and a set of sentences for which this
grammar fails to produce a parse. The appli-
cation of the method enables the grammar to
cover 83.76% of those sentences with an ac-
curacy of 86.15%.

1 Introduction

In this paper, we present an automated two-phase
method for treating incomplete or incorrect lexical
entries in the lexicons of large-scale computational
grammars. The performance of our approach is
tested in a case study with the wide-coverage Alpino
grammar (van Noord, 2006) of Dutch. When ap-
plied to real test sentences previously not covered
by Alpino, the method causes a parsing coverage of
83.76% and the accuracy of the delivered analyses
is 86.15%.

The main advantage of our approach is the suc-
cessful combination of efficient error mining and

lexical acquisition techniques. In the first phase, er-
ror mining pinpoints words which are listed in the
lexicon of a given grammar but which nevertheless
often lead to a parsing failure. This indicates that the
current lexical entry for such a word is either wrong
or incomplete and that one or more correct entries
for this word are missing from the lexicon. Our idea
is to treat the word as if it was unknown and, in the
second phase, to employ lexical acquisition (LA) to
learn the missing correct entries.

In the case study presented here, we employ the
iterative error miner of de Kok et al. (2009). Since
it has to be run on a large parsed corpus, we have
parsed the Flemish Mediargus corpus (∼1.5 billion
words) with Alpino. The reason for this choice is
the relatively large lexical difference between stan-
dard Dutch and Flemish. This increases the chance
to encounter words which are used in Flemish in a
way not handled by Alpino yet.

For example, the word afwater (to drain) is listed
as a first person singular present verb in the Alpino
lexicon. However, the error miner identifies this
word as the reason for the parsing failure of 9 sen-
tences. A manual examination reveals that the word
is used as a neuter noun in these cases– het afwater
(the drainage). Since there is no noun entry in the
lexicon, Alpino was not able to produce full-span
analyses.

After the error miner identifies afwater as a prob-
lematic word, we employ our machine learning
based LA method presented in Cholakov and van
Noord (2010) to learn new entries for this word.
This method has already been successfully applied
to the task of learning lexical entries for unknown
words and, as the error miner, it can be used ‘out of
the box’. LA correctly predicts a neuter noun en-
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try for afwater and the addition of this entry to the
lexicon enables Alpino to cover the 9 problematic
sentences from the Mediargus corpus.

It should be noted that since our approach cannot
differentiate between incomplete and incorrect en-
tries, no entry in the lexicon is modified. We simply
add the lexical entries which, according to the LA
method, are most suitable for a given problematic
word and assume that, if these entries are correct,
the grammar should be able to cover previously un-
parsable sentences in which the word occurs.

The remainder of the paper is organised as fol-
lows. Section 2 describes the error miner. Section
3 presents the Alpino grammar and parser and the
LA technique we employ. Section 4 describes an
experiment where error mining is performed on the
Mediargus corpus and then, LA is applied to learn
new lexical entries for problematic words. Section
5 discusses the effect which the addition of the new
entries to the lexicon has on the parsing coverage
and accuracy. Section 6 provides a comparison be-
tween our approach and previous work similar in na-
ture. This section also discusses the application of
our method to other systems and languages as well
as some ideas for future research.

2 Error Mining

The error miner of de Kok et al. (2009) combines the
strengths of the error mining methods of van Noord
(2004) and Sagot and de la Clergerie (2006). The
idea behind these methods is that grammar errors
lead to the parsing failure of some grammatical sen-
tences. By running the grammar over a large corpus,
the corpus can be split into two subsets– the set of
sentences which received a full-span parse and the
set of sentences failed to parse. Words or n-grams
which occur in the latter set have a suspicion of be-
ing the cause of parsing failures.

van Noord (2004) defines the suspicion of a word
sequence as:

(1) S(wi...wj) = C(wi...wj |error)
C(wi...wj)

where C(wi...wj) is the number of sentences
which the sequence wi...wj occurs in and
C(wi...wj |error) is the number of occurrences of
the sequence in unparsable sentences.

While this method performs well in identifying
words and n-grams that are unambiguously suspi-
cious, it also assigns incorrectly a high suspicion
to forms which happen to occur often in unparsable
sentences by ‘bad luck’. The iterative error mining
algorithm of Sagot and de la Clergerie (2006) tackles
this problem by taking the following into account:

• If a form occurs within parsable sentences, it
becomes less likely for it to be the cause of a
parsing failure.

• The suspicion of a form depends on the suspi-
cions of the other forms in the unparsable sen-
tences it occurs in.

• A form observed in a shorter sentence is ini-
tially more suspicious than a form observed in
a longer one.

However, because of data sparseness problems, this
method is only able to handle unigrams and bigrams.
Another potential problem is the absence of criteria
to determine when to use unigrams and when bi-
grams to represent forms within a given sentence.
Consider the trigram w1, w2, w3 where w2 is the
cause of a parsing failure. In this case, the whole
trigram as well as the bigrams w1, w2 and w2, w3

will become suspicious which would prevent the un-
igram w2 from ‘manifesting’ itself.

To avoid this problem, de Kok et al. (2009) uses
a preprocessor to the iterative miner of Sagot and
de la Clergerie (2006) which iterates through a sen-
tence of unigrams and expands unigrams to longer
n-grams when there is evidence that this is useful. A
unigram w1 is expanded to a bigram w1, w2 if this
bigram is more suspicious than both of its unigrams.
The general algorithm is that the expansion to an n-
gram i...j is allowed when the following two condi-
tions are fulfilled:

(2) S(i...j) > S(i...j − 1) · expFactor
S(i...j) > S(i + 1...j) · expFactor

Within the preprocessor, suspicion is defined as
shown in (1) and the expFactor is a parameter spe-
cially designed to deal with data sparseness.

As the error mining technique of de Kok et al.
(2009) successfully overcomes the problems which
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the other error mining methods we discussed en-
counter, we have chosen to employ this technique
in our experiment.

3 Automated Lexical Acquisition

3.1 The Alpino Grammar and Parser

Since we employ Alpino for the purposes of our case
study, it is convenient to explain the LA method we
have chosen to use in the context of this system.

The Alpino wide-coverage parser is based on a
large stochastic attribute value grammar. The gram-
mar takes a ‘constructional’ approach, with rich
lexical representations stored in the lexicon and a
large number of detailed, construction specific rules
(about 800).

Currently, the lexicon contains over 100K lexical
entries and a list of about 200K named entities. Each
word is assigned one or more lexical types. For
example, the verb amuseert (to amuse) is assigned
two lexical types– verb(hebben,sg3,intransitive) and
verb(hebben,sg3,transitive)– because it can be used
either transitively or intransitively. The other type
features indicate that it is a present third person sin-
gular verb and it forms perfect tense with the auxil-
iary verb hebben.

3.2 Learning Algorithm

The goal of the LA method we describe Cholakov
and van Noord (2010) is to assign correct lexical
type(s) to a given unknown word.

It takes into account only open-class lexical types:
nouns, adjectives and verbs. The types considered in
the learning process are called universal types1.

For a given word, a maximum entropy (ME)
based classifier takes various morphological and
syntactic features as input and outputs a ranked list
of lexical types. The probability of a lexical type t,
given an unknown word and its context c is:

(3) p(t|c) =
exp(

∑
i
Θifi(t,c))∑

t′∈T
exp(

∑
i
Θifi(t′,c))

where fi(t, c) may encode arbitrary characteristics
of the context and < Θ1, Θ2, ... > is a weighting
parameter which maximises the entropy and can be

1The adjectives can be used as adverbs in Dutch and thus,
the latter are not considered to be an open class.

Features
i) a, af, afw, afwa
ii) r, er, ter, ater
iii) particle yes #in this case af
iv) hyphen no
v) noun〈het,sg〉, verb〈sg1〉
vi) noun(het,count,sg), noun(de,count,pl)
vii) noun(het), noun(count), noun(sg), noun(de)
noun(pl)

Table 1: Features for afwater

evaluated by maximising the pseudo-likelihood on a
training corpus (Malouf, 2002).

Table 1 shows the features for afwater, the word
we discussed in Section 1. Row (i) contains 4 sepa-
rate features derived from the prefix of the word and
4 other suffix features are given in row (ii). The two
features in rows (iii) and (iv) indicate whether the
word starts with a particle and if it contains a hy-
phen, respectively.

Further, the method we describe in Cholakov
and van Noord (2009) is applied to generate the
paradigm(s) of each word in question. This method
uses a finite state morphology to generate possible
paradigm(s) for a given word. The morphology does
not have access to any additional linguistic infor-
mation and thus, it generates all possible paradigms
allowed by the word orthography. Then, the num-
ber of search hits Yahoo returns for each form in
a given paradigm is combined with some simple
heuristics to determine the correct paradigm(s). The
web search heuristics are also able to determine the
correct definite article (de or het) for words with
noun paradigms.

One verb and one noun paradigm are generated
for afwater. In these paradigms, afwater is listed as
a first person singular present verb form and a sin-
gular het noun form, respectively. This information
is explicitly used as features in the classifier which
is shown in row (v) of Table 1.

Next, syntactic features for afwater are obtained
by extracting a number of sentences which it oc-
curs in from large corpora or Internet. These sen-
tences are parsed with a different ‘mode’ of Alpino
where this word is assigned all universal types, i.e. it
is treated as being maximally ambiguous. For each
sentence only the parse which is considered to be the
best by the Alpino statistical disambiguation model
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is preserved. Then, the lexical type that has been
assigned to afwater in this parse is stored. During
parsing, Alpino’s POS tagger (Prins and van Noord,
2001) keeps filtering implausible type combinations.
For example, if a determiner occurs before the un-
known word, all verb types are typically not taken
into consideration. This heavily reduces the compu-
tational overload and makes parsing with universal
types computationally feasible.

When all sentences have been parsed, a list can
be drawn up with the types that have been used and
their frequency:

(4) noun(het,count,sg) 54
noun(de,count,pl) 7
tmp noun(het,count,sg) 4
adjective(no e(adv)) 4
proper name(sg,’ORG’) 1

The lexical types assigned to afwater in at least 80%
of the parses are used as features in the classifier.
These are the two features in row (vi) of Table 1.
Further, as illustrated in row (vii), each attribute of
the considered types is also taken as a separate fea-
ture.

After the classifier predicts lexical types for each
word, these predictions are subject to two additional
steps of processing. In the first one, the generated
word paradigms are explicitly used as a filtering
mechanism. When a word is assigned a verb or an
adjective type by the classifier but there is no verb or
adjective paradigm generated for it, all verb or ad-
jective predictions for this word are discarded.

The output of this ‘filtering’ is further processed
in the second step which deals with the correct
prediction of subcategorization frames for verbs.
Following the observations made in Korhonen et
al. (2000), Lapata (1999) and Messiant (2008),
Cholakov and van Noord (2010) employ a maximum
likelihood estimate (MLE) from observed relative
frequencies with an empirical threshold to filter out
low probability frames.

Since some frames could be very infrequent and
the MLE method may not capture them, the gener-
ated word paradigms are used to increase the num-
ber of contexts observed for a given verb. Addi-
tional sentences are extracted for each form in the
paradigm of a given word predicted to be a verb.

These sentences are again parsed with the universal
types. Then we look up the assigned universal verb
types, calculate the MLE for each subcategorization
frame and filter out frames with MLE below some
empirical threshold.

4 Learning New Lexical Entries

Before we start with the description of the exper-
iment, it is important to note that Alpino is very
robust– essentially, it always produces a parse. If
there is no analysis spanning the whole sentence,
the parser finds all parses for each substring and re-
turns what it considers to be the best sequence of
non-overlapping parses. However, in the context of
this experiment, a sentence will be considered suc-
cessfully parsed only if it receives a full-span anal-
ysis. For the sake of clarity, from now on we shall
use the terms coverage and cover only with regard
to such sentences. The term parsing failure shall re-
fer to a sentence for which Alpino fails to produce a
full-span analysis.

4.1 Error Mining on Mediargus

The first step in our experiment is to perform er-
ror mining on the Mediargus corpus. The corpus
consists of texts from Flemish newspapers from the
period between 1998 and 2007. It contains about
1.5 billion words (∼78M sentences). The corpus
has been parsed with Alpino and the parsing results
are fed into the error miner of de Kok et al. (2009).
The parser has not produced a full-span analysis for
7.28% of the sentences (∼5.7M sentences).

When finished, the error miner stores the results
in a data base containing potentially problematic n-
grams. Each n-gram is linked to its suspicion score
and the sentences which it occurs in and which were
not covered by Alpino.

Before proceeding with LA, however, we should
identify the n-grams which are indicative for a prob-
lem in the lexicon. The first step in this direction
is to extract all unigrams from the data base which
have a suspicion equal to or greater than 0.7 together
with the uncovered sentences they occur in. This
resulted in a list containing 4179 unique unigrams.
Further, we select from this list only those unigrams
which have lexical entries in the Alpino lexicon and
occur in more than 5 sentences with no full-span
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parse. Sometimes, the error miner might be wrong
about the exact word which causes the parsing fail-
ure for a given sentence. The 5 sentences empiri-
cal threshold is meant to guarantee that the selected
words are systematically causing problems for the
parser.

The result of this selection is 36 unigrams (words)
which occur in a total of 388 uncovered sentences–
an average of 10.78 sentences per word. The small
number of selected words is due to the fact that
most of the problematic 4179 unigrams represent to-
kenization errors (two or more words written as one)
and spelling mistakes which, naturally, are not listed
in the Alpino lexicon. Very few of the 4179 uni-
grams are actual unknown words. Table 2 shows
some of the problematic unigrams and their suspi-
cions.

opVorig 0.898989
GentHoewel 0.89759
Nieuwpoortl 0.897414
SportTijdens 0.897016
DirvenDe 0.896428
mistrap 0.896038
Dwoeurp 0.896013
passerde 0.89568
doorHugo 0.893901
goedkmaken 0.892407
ManneN 0.891539
toegnag 0.891523

Table 2: Problematic unigrams and their suspicions

It can be seen immediately that most of the uni-
grams presented in the table are tokenization errors.
There are also some typos. The unigram passerde
should be written as passeerde, the past singular
verb form of the verb ‘to pass’ and toegnag is the
misspelled noun toegang (access). The only prob-
lematic unigram with a lexical entry in the Alpino
lexicon is mistrap (misstep, to misstep).

Although the experiment setup yields a small test
set, we employ it because the words in this set repre-
sent ‘clear-cut’ cases. This allows us to demonstrate
better the effect of our technique.

4.2 Applying Lexical Acquisition
Our assumption is that incomplete or incorrect lex-
ical entries prevented the production of full-span
parses for the 388 sentences in which the 36 prob-
lematic words pinpointed by the error miner oc-

cur. That is why, in the second step of the exper-
iment, these words are temporarily removed from
the Alpino lexicon, i.e. they are treated as unknown
words, and we employ the LA method presented in
the previous section to learn offline new lexical en-
tries for them.

The setup for the learning process is exactly the
same as in Cholakov and van Noord (2010). The set
of universal types consists of 611 types and the ME-
based classifier has been trained on the same set of
2000 words as in Cholakov and van Noord (2010).
Those types predicted by the classifier which ac-
count together for less than 5% of probability mass
are discarded.

In order to increase the number of observed con-
texts for a given word when parsing with the univer-
sal types, up to 100 additional sentences in which the
word occurs are extracted from Internet. However,
when predicting new lexical entries for this word,
we want to take into account only sentences where
it causes a parsing failure. It is in such sentences
where a new lexical entry can be learnt through LA.
For example, the LA method would be able to pre-
dict a noun entry for afwater if it focuses only on
contexts where it has a noun reading, i.e. on sen-
tences not covered by Alpino.

That is why, the sentences we extracted from In-
ternet are first parsed with the standard Alpino con-
figuration. When averaging over the 36 sentence
sets, it turns out that Alpino has been able to cover
10.05% of the sentences. Although we cannot be
sure that the 36 words are the cause of a parsing
failure in each of the uncovered sentences, this low
coverage indicates once more that Alpino has sys-
tematic problems with sentences containing these
words.

Then, the uncovered sentences from Internet to-
gether with the 388 problematic sentences from the
Mediargus corpus are parsed with Alpino and the
universal types. For example, the list of univer-
sal types assigned to afwater in (4) contains mostly
noun types, i.e. the kind of types which are currently
not in the lexicon for this word and which we want
to learn.

The result of the LA process is the prediction of
a total of 102 lexical types, or 2.83 types per word.
This high number is due to the fact that 25 words
receive verb predictions. Since a verb can have vari-
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ous subcategorization frames, there is one type as-
signed for each frame. For example, inscheppen
(to spoon in(to)) receives 3 types which differ only
in the subcategorization frame– verb(hebben,inf,tr.),
verb(hebben,inf,intr.) and verb(hebben,inf,np np).
However, the infinitive in Dutch is also the
form for plural present and inscheppen correctly
receives 3 more predictions– verb(hebben,pl,tr.),
verb(hebben,pl,intr.) and verb(hebben,pl,np np).

Let us examine the most frequent types of lexicon
errors for the 36 problematic words by looking at
the current Alpino lexical entries for some of these
words and the predictions they receive from the LA
method. The original Alpino entries for 19 of the
25 words predicted to be verbs are a product of a
specific lexical rule in the grammar. Consider the
following sentences:

(5) a. Ik
I

schep
spoon

de
the

soep
soup

in
in

de
the

kom.
bowl

‘I spoon the soup into the bowl.’
b. dat

that
ik
I

de
the

soep
soup

de
the

kom
bowl

in
in

schep
spoon

‘that I spoon the soup into the bowl’
c. dat

that
ik
I

de
the

soep
soup

de
the

kom
bowl

inschep
in spoon

‘that I spoon the soup into the bowl’

We see in (5-b) that the preposition in is used as a
postposition in the relative clause. However, in such
cases, there is linguistic evidence that in behaves as
a separate verb particle. That is why, as shown in
(5-c), people sometimes write in and the verb to-
gether when they occur next to each other in the sen-
tence. To account for this, Alpino employs a special
lexical rule. This rule assigns a certain type of sub-
categorization frame to verbs like inscheppen where
a postposition can be interpreted as a separable par-
ticle. That subcategorization frame requires a noun
phrase (‘the soup’ in (5-c)) and a locative NP (‘the
bowl’ in (5-c)).

However, in some cases, the entries generated by
this lexical rule cannot account for other possible us-
ages of the verbs in question. For example,

(6) U
you

moet
must

deze
this

zelf
yourself

inscheppen.
spoon in.INF

‘You have to spoon this in yourself.’

Alpino fails to parse this sentence because inschep-
pen is used without a locative NP. Now, when the

LA method has predicted a transitive verb type for
inscheppen, the parser should be able to cover the
sentence. Other such examples from our data in-
clude wegwist (to erase.3PER.SG), onderligt (to lie
under.3PER.SG), etc.

Further, there are 10 words, including afwater,
which represent cases of nominalisation currently
not accounted for in the Alpino lexicon. The
LA process correctly predicts noun types for these
words. This should enable the parser to cover sen-
tences like:

(7) Die
this

moet
must

een
a

deel
part

van
from

het
the

afwater
drainage

vervoeren.
transport/move

‘This has to move a part of the drainage.’

where afwater is used as a noun.
There are also 3 words which correctly receive

adjective predictions. Currently, their lexical en-
tries are incomplete because they are assigned only
past participle types in the lexicon. However, past
participles in Dutch can also act as adjectives. For
historical reasons, this systematic ambiguity is not
treated as such in Alpino. Each participle should
also have a separate adjective lexical entry but, as
we see, this is not always the case.

5 Results

After LA is finished, we restore the original lexical
entries for the 36 words but, additionally, each word
is also assigned the types which have been predicted
for it by the LA method. The 388 problematic sen-
tences from the Mediargus corpus are then re-parsed
with Alpino. We are interested in observing:

1. how many sentences receive a full-span analy-
sis

2. how the parsing accuracy of Alpino changes

Table 3 shows that when the Alpino lexicon is ex-
tended with the lexical entries we learnt through LA,
the parser is able to cover nearly 84% of the sen-
tences, including the ones given in (6) and (7). Since
there is no suitable baseline which this result can
be compared to, we developed an additional model
which indicates what is likely to be the maximum
coverage that Alpino can achieve for those sentences
by adding new lexical entries only.
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In this second model, for each of the 36 words, we
add to the lexicon all types which were successfully
used for the respective word during the parsing with
universal types. In this way, Alpino is free to choose
from all types it has considered suitable for a given
word, i.e. the parser is not limited by the outcome
of the LA process but rather by the overall quality of
the grammar.

The ‘universal types’ model performs better than
ours– it achieves 87.9% coverage. Still, the perfor-
mance of our model is close to this result, i.e. close
to what we consider to be the maximal possible cov-
erage of Alpino for these 388 sentences when only
LA is used.

Model Coverage (%)
Our model (Alpino + LA) 83.76
Universal types 87.89

Table 3: Coverage results for the re-parsed 388 problem-
atic sentences

Some of the sentences which cannot be covered
by both models are actually not proper sentences
but fragments which were wrongly identified as sen-
tences during tokenization. Many other cases in-
clude sentences like:

(8) Een
a

gele
yellow

frommel
crease

papier,
paper

Arabische
Arabic

lettertekens.
characters

‘A yellow paper crease, Arabic characters.’

which is probably the caption of a photo or an illus-
tration. However, because of the absence of a verb,
Alpino splits the analysis into two parts– the part be-
fore the comma and the part after the comma.

Here is a more interesting case:

(9) Als
when

we
we

ons
us

naar
to

de
the

buffettafel
buffet

begeven,
proceed

mistrap
misstep

ik
I

me.
myself
‘When we proceed to the buffet I misstep.’

The LA method does not predict a reflexive verb
type for mistrap which prevents the production of
a full-span analysis because Alpino cannot connect
the reflexive pronoun me to mistrap. In this case,
however, the universal type model outperforms ours.
A reflexive verb type is among the universal types
and thus, Alpino is able to use that type to deliver a
full-span parse. We should note though, that LA cor-

rectly predicts a noun type for mistrap which enables
Alpino to parse successfully the other 14 sentences
which this word occurs in.

Let us now look at the correctness of the deliv-
ered parses. To estimate the accuracy of the parser,
we have randomly selected 100 sentences out of the
388 sentences in the test set and we have manually
annotated them in order to create a gold standard for
evaluation.

Accuracy in Alpino is measured in terms of de-
pendency relations. The accuracy for sentences
which are not assigned a full-span analysis but a se-
quence of non-overlapping parses can still be larger
than zero because, within these parses, some cor-
rect dependency relations could have been produced.
That is why, though the coverage of Alpino for the
selected 100 sentences is zero, we can still obtain
a number for accuracy and use it as a baseline for
comparison. Clearly, this baseline is expected to per-
form worse than both our model and the universal
types one since those are able to cover most of the
sentences and thus, they are likely to produce more
correct dependency relations. However, it gives us
an idea how much extra quality is gained when cov-
erage improves.

The accuracy results for the 100 annotated sen-
tences are given in Table 4. The average sentence
length is 18.9 tokens.

Model Accuracy (%) msec/sentence
Alpino 63.35 803
Our model 86.15 718
Universal types 85.12 721

Table 4: Accuracy results for the 100 annotated sentences

Our model achieves the highest accuracy without
increasing the parse times. Further, the baseline has
a much lower result which shows that coverage is
not gained on the expense of accuracy.

Our model and the universal types one achieve the
same accuracy for most of the sentences. However,
the universal types model has an important disad-
vantage which, in some cases, leads to the produc-
tion of wrong dependency relations. The model pre-
dicts a large number of lexical types which, in turn,
leads to large lexical ambiguity. This lexical am-
biguity increases the number of possible analyses
Alpino chooses from, thus making it harder for the
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parser to produce the correct analysis. Let us con-
sider the following example where a sentence is cov-
ered by both models but the universal types model
has lower accuracy:

(10) Dat
that

wij
we

het
it

rechttrokken,
straighten.PAST.PL.

pleit
plead

voor
for

onze
our

huidige
current

conditie.
condition

‘It pleads for our condition that we straightened it.’

Here, het is the object of the verb rechttrokken.
However, although there are transitive verb types
among the universal types assigned to rechttrokken,
Alpino chooses to use a verb type which subcate-
gorizes for a measure NP. This causes for het to be
analysed not as an object but as a measure comple-
ment, i.e. the produced dependency relation is incor-
rect.

The LA method, on the other hand, is much more
restrictive but its predictions are also much more ac-
curate. Since it considers sentences containing other
forms of the paradigm of rechttrokken when predict-
ing subcategorization frames, the LA method cor-
rectly assigns only one transitive and one intransitive
verb type to this word. This allows Alpino to recog-
nize het as the object of the verb and to produce the
correct dependency relation.

The few cases where the universal types model
outperforms ours include sentences like the one
given in (9) where the application of our model
could not enable Alpino to assign a full-span analy-
sis. Sometimes, the LA method is too restrictive and
does not output some of the correct types. These
types, on the other hand, could be provided by the
universal types model and could enable Alpino to
cover a given sentence and thus, to produce more
correct dependency relations. Allowing for the LA
method to predict more types, however, has proven
to be a bad solution because, due to the increased
lexical ambiguity, this leads to lower parsing accu-
racy.

6 Discussion

6.1 Comparison to Previous Work

The performance of the technique we presented in
this paper can be compared to the performance of a
number of other approaches applied to similar tasks.

Zhang et al. (2006) and Villavicencio et al. (2007)
use error mining to semi-automatically detect En-
glish multiword expressions (MWEs). Then, they
employ LA to learn proper lexical entries for these
MWEs and add them to the lexicon of a large-scale
HPSG grammar of English (ERG; (Copestake and
Flickinger, 2000)). This increases parsing coverage
by 15% to 22.7% for a test set of 674 sentences
containing MWEs and parsed with the PET parser
(Callmeier, 2000). In both studies, however, the
combination of error mining and LA is applied to
a very specific task whereas our method is a general
one.

Nicolas et al. (2008) employ a semi-automatic
method to improve a large-scale morphosyntactic
lexicon of French (Lefff ; (Sagot et al., 2006)).
The lexicon is used in two grammars– the FRMG
(Thomasset and de la Clergerie, 2005), a hybrid Tree
Adjoining/Tree Insertion Grammar, and the SxLFG-
FR LFG grammar (Boullier and Sagot, 2006). The
first step in this approach is also the application of an
error miner (Sagot and de la Clergerie, 2006) which
uses a parsed newspaper corpus (about 4.3M words)
to pinpoint problematic unigrams.

The crucial difference with our method is in the
second step. Nicolas et al. (2008) assign underspec-
ified lexical entries to a given problematic unigram
to allow the grammar to parse the uncovered sen-
tences associated with this unigram. Then, these en-
tries are ranked based on the number of successful
parses they have been used in.

The use of underspecification, however, causes
large ambiguity and severe parse overgeneration
(observed also in Fouvry (2003)). As a consequence
of that, the ranked list of lexical entries for each un-
igram is manually validated to filter out the wrong
entries. The employment of LA in our approach, on
the other hand, makes it fully automatic. The rank-
ing of the predictions is done by the classifier and
the predicted entries are good enough to improve the
parsing coverage and accuracy without any manual
work involved. Generally, recent studies (Baldwin,
2005; Zhang and Kordoni, 2006; Cholakov et al.,
2008; Cholakov and van Noord, 2010) have clearly
shown that when it comes to learning new lexical
entries, elaborate LA techniques perform better and
are more suitable for large-scale grammars than un-
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derspecification2.
Further, the naive ranking system used in Nicolas

et al. (2008) puts a correctly generated entry for an
infrequent usage of a given word (e.g., a verb with
a rare subcat frame) in the bottom of the ranked list
because of the low number of sentences in which
this entry is used. The LA method we employ is
more sensitive to rare usages of words because it
considers occurrences of the word in question out-
side the parsed corpus (very important if the corpus
is domain-specific) and it also takes into account all
forms in the paradigm(s) of the word. This increases
the chances of a rare usage of this word to ‘manifest’
itself.

Nicolas et al. (2008) uses the lexical entries which
remain after the manual validation to re-parse the
newspaper corpus. 254 words (mostly verbs) are
corrected and the parse coverage increases by 3.4%
and 1.7% for the FRMG and the SxLFG, respec-
tively. However, the authors do not mention how
many of the original uncovered sentences they are
able to cover and therefore, we cannot compare our
coverage result. Nothing is said about the parsing
accuracy. Even with manually validated lexical en-
tries, it is still possible for the grammar to produce
full-span but wrong analyses.

6.2 Application to Other Systems and
Languages

It is important to note that this paper should be
viewed as a case study where we illustrate the re-
sults of the application of what we believe to be a
good algorithm for dealing with incomplete or in-
correct lexical entries– namely, the combination of
error mining and LA. However, our method is gen-
eral enough to be applied to other large-scale gram-
mars and languages.

The error mining is directly usable as soon as
there is a large parsed corpus available. The LA
technique we employed is also quite general pro-
vided that certain requirements are fulfilled. First,
words have to be mapped onto some finite set of la-
bels of which a subset of open-class (universal) la-
bels has to be selected. This subset represents the
labels which can be predicted for unknown words.

2In Nicolas et al. (2008) the authors also admit that an elab-
orate LA technique will produce better results.

Second, we need a parser to analyse sentences
in which a given unknown word occurs. Finally,
the ME-based classifier allows for arbitrary com-
binations of features and therefore, any (language-
specific) features considered useful can be included.
As for the paradigm generation method, the idea of
combining a finite state morphology and web heuris-
tics is general enough to be implemented for differ-
ent languages.

We have already started investigating the applica-
bility of our method to the FRMG and a large-scale
grammar of German and the initial experiment and
results we have obtained are promising.

6.3 Future Research
Currently, our algorithm handles only unigrams
(words). However, it would be useful to extend it,
so it can work with longer n-grams. For example,
a given word could have some reading which is not
yet handled in the lexicon only within a particular
bi- or trigram.

Consider the bigram ‘schampte af ’ which has
been identified as problematic by the error miner.
It represents the particle verb ‘afschampte’ (to
glance.PAST.SG). Although the lexicon contains a
verb entry for ‘schampte’, there is no entry handling
the case when this verb combines with the particle
‘af ’. Another example is the bigram ‘de slachtoffer’
(the victim). In standard Dutch, the noun ‘slachtof-
fer’ goes with the ‘het’ definite article which is
marked in its lexical entry. However, in Flemish it is
used with the ‘de’ article.

Our method is currently not able to capture these
two cases since they can be identified as problem-
atic on bigram level and not when only unigrams are
considered.

Further, the definition of what the error miner
considers to be a successful parse is a rather crude
one. As we saw, even if the grammar is able to pro-
duce a full-span analysis for a given sentence, this
analysis could still not be the correct one. There-
fore, it is possible that a word could have a prob-
lematic lexical entry even if it only occurs in sen-
tences which are assigned a full-span parse. Cur-
rently, such a word will not be identified as prob-
lematic by the error miner. That is why, some (sta-
tistical) model which is capable of judging the plau-
sibility of a parse should be developed and incorpo-
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rated in the calculation of the suspicions during error
mining.
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