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Abstract

In many applications, replacing a complex
word form by its stem can reduce sparsity, re-
vealing connections in the data that would not
otherwise be apparent. In this paper, we focus
on prefix verbs: verbs formed by adding a pre-
fix to an existing verb stem. A prefix verb is
considered compositional if it can be decom-
posed into a semantically equivalent expres-
sion involving its stem. We develop a clas-
sifier to predict compositionality via a range
of lexical and distributional features, includ-
ing novel features derived from web-scale N-
gram data. Results on a new annotated cor-
pus show that prefix verb compositionality can
be predicted with high accuracy. Our system
also performs well when trained and tested on
conventional morphological segmentations of
prefix verbs.

1 Introduction

Many verbs are formed by adding prefixes to exist-
ing verbs. For example,remarry is composed of a
prefix, re-, and a stem,marry. We present an ap-
proach to predicting the compositionality of prefix
verbs. The verbremarry is compositional; it means
to marry again. On the other hand,retire is gener-
ally non-compositional; it rarely meansto tire again.
There is a continuum of compositionality in prefix
verbs, as in other complex word forms and multi-
word expressions (Bannard et al., 2003; Creutz and
Lagus, 2005; Fazly et al., 2009; Xu et al., 2009).

We adopt a definition of compositionality specifi-
cally designed to support downstream applications
that might benefit from knowledge of verb stems.

For example, suppose our corpus contains the fol-
lowing sentence: “Pope Clement VII denied Henry
VIII permission to marry again before a decision
was given in Rome.” A user might submit the ques-
tion, “Which pope refused Henry VIII permission to
remarry?” If we can determine that the meaning of
remarrycould also be provided via the stemmarry,
we could addmarry to our search terms. This is
known asmorphological query expansion(Bilotti et
al., 2004). Here, such an expansion leads to a better
match between question and answer.

Previous work has shown that “full morpholog-
ical analysis provides at most very modest bene-
fits for retrieval” (Manning et al., 2008). Stem-
ming, lemmatization, and compound-splitting often
increase recall at the expense of precision, but the
results depend on the morphological complexity of
the text’s language (Hollink et al., 2004).

The lack of success in applying morphological
analysis in IR is unsurprising given that most pre-
vious systems are not designed with applications
in mind. For example, the objective of the influ-
ential Linguistica program is “to produce an out-
put that matches as closely as possible the analy-
sis that would be given by a human morphologist”
(Goldsmith, 2001). Unsupervised systems achieve
this aim by exploiting learning biases such as min-
imum description length for lexicons (Goldsmith,
2001; Creutz and Lagus, 2007) and high entropy
across morpheme boundaries (Keshava and Pitler,
2006). Supervised approaches learn directly from
words annotated by morphologists (Van den Bosch
and Daelemans, 1999; Toutanova and Cherry, 2009),
often usingCELEX, a lexical database that includes
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morphological information (Baayen et al., 1996).
The conventional approach in morphology is to

segment words into separate morphemes even when
the words are not entirely compositional combina-
tions of their parts (Creutz and Lagus, 2005). For
example, whileco- is considered a separate mor-
pheme in the verbcooperate, the meaning ofcoop-
erate is not simplyto operate jointly. These forms
are sometimes viewed asperturbationsof compo-
sition (de Marken, 1996). In practice, a user may
query, “Which nations do not cooperate with the In-
ternational Criminal Court?” An expansion of the
query to includeoperatemay have undesirable con-
sequences.

Rather than relying on conventional standards, we
present an algorithm whose objective is to find only
those prefix verbs that exhibit semantic composi-
tionality; i.e., prefix verbs that are fully meaning-
preserving, sums-of-their-parts. We produce a new
corpus, annotated according to this definition. We
use these annotated examples to learn a discrimina-
tive model of semantic compositionality.

Our classifier relies on a variety of features that
exploit the distributional patterns of verbs and stems.
We build on previous work that applies semantics
to morphology (Yarowsky and Wicentowski, 2000;
Schone and Jurafsky, 2001; Baroni et al., 2002), and
also on work that exploits web-scale data for seman-
tic analysis (Turney, 2001; Nakov, 2007; Kummer-
feld and Curran, 2008). For example, we measure
how often a prefix verb appears with a hyphen be-
tween the prefix and stem. We also look at the dis-
tribution of the stem as a separate word: we calculate
the probability of the prefix verb and the separated
stem’s co-occurrence in a segment of discourse; we
also calculate the distributional similarity between
the verb and the separated stem. High scores for
these measures indicate compositionality. We ex-
tract counts from a web-scale N-gram corpus, allow-
ing us to efficiently leverage huge volumes of unla-
beled text.

Our system achieves 93.6% accuracy on held-out
data, well above several baselines and comparison
systems. We also train and test our system on con-
ventional morphological segmentations. Our clas-
sifier remains reliable in this setting, making half
as many errors as the state-of-the-art unsupervised
Morfessor system (Creutz and Lagus, 2007).

2 Problem Definition and Setting

A prefix verb is a derived word with a bound mor-
pheme as prefix. While derivation can change both
the meaning and part-of-speech of a word (as op-
posed to inflection, which does not change “referen-
tial or cognitive meaning” (Katamba, 1993)), here
the derived form remains a verb.

We define prefix-verb compositionality as a se-
mantic equivalence between a verb and a paraphrase
involving the verb’s stem. The stem must be used as
a verb in the paraphrase. Words can be introduced,
if needed, to account for the meaning contributed by
the prefix, e.g.,outbuild⇒build more/better/faster
than. A bidirectional entailment between the prefix
verb and the paraphrase is required.

Words can have different meanings in different
contexts. For example, a nation might “resort to
force,” (non-compositional) while a computer pro-
gram can “resorta linked list” (compositional). We
therefore define prefix-verb compositionality as a
context-specific property of verb tokens rather than
a global property of verb types. However, it is worth
noting that we ultimately found the compositionality
of types to be very consistent across contexts (Sec-
tion 5.1.2), and we were unable to leverage contex-
tual information to improve classification accuracy;
our final system is essentially type-based. Other re-
cent morphological analyzers have also been type-
based (Keshava and Pitler, 2006; Poon et al., 2009).

Our system takes as input a verb token in unin-
flected form along with its sentence as context. The
verb must be divisible into an initial string and a fol-
lowing remainder such that the initial string is on
our list of prefixes and the remainder is on our list of
stems. Hyphenation is allowed, e.g., bothre-enter
andreenterare acceptable inputs. The system deter-
mines whether the prefix/stem combination is com-
positional in the current context. For example, the
verbunionizein, “The workers must unionize,” can
be divided into a prefixun- and a stemionize. The
system should determine that hereunionizeis not a
compositional combination of these parts.

The algorithm requires a list of prefixes and stems
in a given language. For our experiments, we use
both dictionary and corpus-based methods to con-
struct these lists (Section 4).
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3 Supervised Compositionality Detection

We use a variety of lexical and statistical informa-
tion when deciding whether a prefix verb is compo-
sitional. We adopt a discriminative approach. We
assume some labeled examples are available to train
a classifier. Relevant information is encoded in a
feature vector, and a learning algorithm determines
a set of weights for the features using the training
data. As compositionality is a binary decision, we
can adopt any standard package for binary classifi-
cation. In our experiments we use support vector
machines.

Our features include both local information that
depends only on the verb string (sometimes referred
to as lexical features) and also global information
that depends on the verb and the stem’s distribution
in text. Our approach can therefore be regarded as a
simple form of semi-supervised learning; we lever-
age both a small number of labeled examples and a
large volume of unlabeled text.

If a frequency or similarity is undefined in our cor-
pus, we indicate this with a separate feature; weights
on these features act as a kind of smoothing.

3.1 Features based on Web-Scale N-gram Data

We use web-scale N-gram data to extract distribu-
tional features. The most widely-used N-gram cor-
pus is the Google 5-gram Corpus (Brants and Franz,
2006). We useGoogle V2: a new N-gram corpus
(also with N-grams of length one-to-five) created
from the same one-trillion-word snapshot of the web
as the Google 5-gram Corpus, but with enhanced fil-
tering and processing of the source text (Lin et al.,
2010). For Google V2, the source text was also part-
of-speech tagged, and the resulting part-of-speech
tag distribution is included for each N-gram. There
are 4.1 billion N-grams in the corpus.

The part-of-speech tag distributions are particu-
larly useful, as they allow us to collect verb-specific
counts. For example, while a string likereuseoc-
curs 1.1 million times in the web corpus, it is only
tagged as a verb 270 thousand times. Conflating the
noun/verb senses can lead to misleading scores for
certain features. E.g., the hyphenation frequency
of re-usewould appear relatively low, even though
reuseis semantically compositional.

Lin et al. (2010) also provide a high-coverage,

10-million-phrase set of clusters extracted from the
N-grams; we use these for our similarity features
(Section 3.1.3). There are 1000 clusters in total.
The data does not provide the context vectors for
each phrase; rather, each phrase is listed with its 20
most similar clusters, measured by cosine similar-
ity with the cluster centroid. We use these centroid
similarities as values in a 1000-dimensional cluster-
membership feature space. To calculate the similar-
ity between two verbs, we calculate the cosine simi-
larity between their cluster-membership vectors.

The feature classes in the following four subsec-
tions each make use of web-scale N-gram data.

3.1.1 HYPH features

Hyphenated verbs are usually compositional (e.g.,
re-elect). Of course, a particular instance of a com-
positional verb may or may not occur in hyphenated
form. However, across a large corpus, compositional
prefix verbs tend to occur in a hyphenated form more
often than do non-compositional prefix verbs. We
therefore provide real-valued features for how often
the verb was hyphenated and unhyphenated on the
web. For example, we collect counts for the fre-
quencies ofre-elect(33K) andreelect(9K) in our
web corpus, and we convert the frequencies to log-
counts. We also give real-valued features for the hy-
phenated/unhyphenated log-counts using only those
occurrences of the verb that weretaggedas a verb,
exploiting the tag distributions in our web corpus as
described above.

Nakov and Hearst (2005) previously used hy-
phenation counts as an indication of a syntactic re-
lationship between nouns. In contrast, we leverage
hyphenation counts as an indication of a semantic
property of verbs.

3.1.2 COOC features

COOC features, and also theSIM (Section 3.1.3)
andYAH (Section 3.2.2) features, concern the asso-
ciation in text between the prefix verb and its stem,
where the stem occurs as a separate word. We call
this the separated stem.

If a prefix verb is compositional, it is more likely
to occur near its separated stem in text. We often
seeagreeanddisagree, readandreread, etc. occur-
ring in the same segment of discourse. We create
features for the association of the prefix verb and its
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separated stem in a discourse. We include the log-
count of how often the verb and stem occur in the
same N-gram (of length 2-to-5) in our N-gram cor-
pus. Note that the 2-to-4-gram counts are not strictly
a subset of the 5-gram counts, since fewer 5-grams
pass the data’s minimum frequency threshold.

We also include a real-valued pointwise mutual
information (PMI) feature for the verb and separated
stem’s co-occurrence in an N-gram. For the PMI, we
regard occurrence in an N-gram as an event, and cal-
culate the probability that a verb and separated stem
jointly occur in an N-gram, divided by the probabil-
ity of their occurring in an N-gram independently.

3.1.3 SIM features

If a prefix verb is compositional, it should oc-
cur in similar contexts to its stem. The idea that
a stem and stem+affix should be semantically sim-
ilar has been exploited previously for morphological
analysis (Schone and Jurafsky, 2000). We include
a real-valued feature for the distributional similar-
ity of the verb and stem using Lin’s thesaurus (Lin,
1998). The coverage of this measure was low: it
was non-zero for only 93 of the 1000 prefix verbs in
our training set. We therefore also include distribu-
tional similarity calculated using the web-scale 10-
million-phrase clustering as described above. Us-
ing this data, similarity is defined for 615 of the
1000 training verbs. We also explored a variety of
WordNet-based similarity measures, but these ulti-
mately did not prove helpful on development data.

3.1.4 FRQ features

We include real-valued features for the raw fre-
quencies of the verb and the stem on the web. If
these frequencies are widely different, it may in-
dicate a non-compositional usage. Yarowsky and
Wicentowski (2000) use similar statistics to iden-
tify words related by inflection, but they gather their
counts from a much smaller corpus. In addition,
higher-frequency prefix verbs may bea priori more
likely to be non-compositional. A certain frequency
is required for an irregular usage to become famil-
iar to language speakers. The potential correlation
between frequency and non-compositionality could
thus also be exploited by the classifier via theFRQ

features.

3.2 Other Features

3.2.1 LEX features

We provide lexical features for various aspects
of a prefix verb. Binary features indicate the oc-
currence of particular verbs, prefixes, and stems,
and whether the prefix verb is hyphenated. While
hyphenated prefix verbs are usually compositional,
even non-compositional prefix verbs may be hy-
phenated if the prefix and stem terminate and be-
gin with a vowel, respectively. For example, non-
compositional uses ofco-operateare often hyphen-
ated, whereas the compositionalremarry is rarely
hyphenated. We therefore have indicator features
for the conjunction of the prefix and the first letter
of the stem (e.g.,co-o), and also for the prefix con-
joined with a flag indicating whether the stem begins
with a vowel (e.g.,co+vowel).

3.2.2 YAH features

While the COOC features capture many cases
where the verb and separated stem occur in close
proximity (especially, but not limited to, conjunc-
tions), there are many other cases where a longer
distance might separate a compositional verb and
its separated stem. For example, consider the sen-
tence, “Brush the varnish on, but do not overbrush.”
Here, the verb and separated stem do not co-occur
within a 5-gram window, and their co-occurrence
will therefore not be recorded in our N-gram cor-
pus. As an approximation for co-occurrence counts
within a longer segment of discourse, we count the
number ofpageson the web where the verb and sep-
arated stem co-occur. We use hit-counts returned
by the Yahoo search engine API.1 Similar to our
COOC features, we include a real-valued feature for
the pointwise mutual information of the prefix verb
and separated stem’s co-occurrence on a web page,
i.e., we use Turney’s PMI-IR (Turney, 2001).

Baroni et al. (2002) use similar statistics to help
discover morphologically-related words. In contrast
to our features, however, their counts are derived
from source text that is several orders of magnitude
smaller in size.

1http://developer.yahoo.com/search/boss/
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3.2.3 DIC features

One potentially useful resource, when available,
is a dictionary of the conventional morphological
segmentations of words in the language. Although
these segmentations have been created for a differ-
ent objective than that of our annotations, we hy-
pothesize that knowledge of morphology can help
inform our system’s predictions. For each prefix
verb, we include features for whether or not the pre-
fix and stem are conventionally segmented into sep-
arate morphemes, according to a morphological dic-
tionary. Similar to the count-based features, we in-
clude aDIC-undefined feature for the verbs that are
not in the dictionary; any precompiled dictionary
will have imperfect coverage of actual test examples.

Interestingly,DIC features are found to be among
our least useful features in the final evaluation.

4 Experiments

4.1 Resources

We useCELEX (Baayen et al., 1996) as our dictio-
nary for theDIC features. We also useCELEX to help
extract our lists of prefixes and stems. We take ev-
ery prefix that is marked inCELEX as forming a new
verb by attaching to an existing verb. For stems, we
use every verb that occurs inCELEX, but we also
extend this list by automatically collecting a large
number of words that were automatically tagged as
verbs in the NYT section of Gigaword (Graff, 2003).
To be included in the extra-verb list, a verb must oc-
cur more than ten times and be tagged as a verb more
than 70% of the time by a part-of-speech tagger. We
thereby obtain 43 prefixes and 6613 stems.2 We
aimed for an automatic, high-precision list for our
initial experiments. This procedure is also amenable
to human intervention; one could alternatively cast a
wider net for possible stems and then manually filter
false positives.

4.2 Annotated Data

We carried out a medium-scale annotation to provide
training and evaluation data for our experiments.3

2The 43 prefixes are: a- ab- ac- ad- as- be- circum- co- col-
com- con- cor- counter- cross- de- dis- e- em- en- ex- fore- im-
in- inter- ir- mis- out- over- per- photo- post- pre- pro- psycho-
re- sub- super- sur- tele- trans- un- under- with-

3Our annotated data is publicly available at:
http://www.cs.ualberta.ca/∼ab31/verbcomp/

The data for our annotations also comes from the
NYT section of Gigaword. We first build a list of
possible prefix verbs. We include any verb that a) is
composed of a valid prefix and stem; and b) occurs
at least twice in the corpus.4 If the verb occurs less
than 50 times in the corpus, we also require that it
was tagged as a verb in at least 70% of cases. This
results in 2077 possible prefix verbs for annotation.

For each verb type in our list of possible prefix
verbs, we randomly select for annotation sentences
from Gigaword containing the verb. We take at most
three sentences for each verb type so that a few very
common types (such asbecome, understand, andim-
prove) do not comprise the majority of annotated ex-
amples. The resulting set of sentences includes a
small number of sentences with incorrectly-tagged
non-verbs; these are simply marked as non-verbs
by our annotators and excluded from our final data
sets. A graphical program was created for the an-
notation; the program automatically links to the on-
line Merriam-Webster dictionary entries for the pre-
fix verb and separated stem. When in doubt about
a verb’s meaning, our annotators adhere to the dic-
tionary definitions. A single annotator labeled 1718
examples, indicating for each sentence whether the
prefix verb was compositional. A second annota-
tor then labeled a random subset of 150 of these ex-
amples, and agreement was calculated. The annota-
tors agreed on 137 of the 150 examples. TheKappa
statistic (Jurafsky and Martin, 2000, page 315), with
P(E) computed from the confusion matrices, is 0.82,
above the 0.80 level considered to indicate good re-
liability.

For our experiments, the 1718 annotated exam-
ples are randomly divided into 1000 training, 359
development, and 359 held-out test examples.

4.3 Classifier Settings

We train a linear support vector machine classifier
using the efficientLIBLINEAR package (Fan et al.,
2008). We use L2-loss and L2-regularization. We

4We found that the majority of single-occurrence verbs in
the Gigaword data were typos. We would expect true hapax
legomena to be largely compositional, and we could potentially
derive better statistics if we include them (Baayen and Sproat,
1996). One possible option, employed in previous work, is to
ensure words of interest are “manually corrected for typing er-
rors before further analysis” (Baayen and Renouf, 1996).
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optimize the choice of features and regularization
hyperparameter on development data, attaining a
maximum whenC = 0.1.

4.4 Evaluation

We compare the following systems:

1. Base1: always choose compositional (the ma-
jority class).

2. Base2: for each prefix, choose the majority
class over the verbs having that prefix in train-
ing data.

3. Morf : the unsupervised Morfessor sys-
tem (Creutz and Lagus, 2007) (Categories-
ML, from 110K-word corpus). If Morfessor
splits the prefix and stem into separate mor-
phemes, we take the prediction as composi-
tional. If it does anything else, we take it as
non-compositional.

4. SCD: SupervisedCompositionalityDetection:
the system proposed in this paper.

We evaluate usingaccuracy: the percentage of ex-
amples classified correctly in held-out test data.

5 Results

We first analyze our annotations, gaining insight into
the relation between our definition and conventional
segmentations. We also note the consistency of our
annotations across contexts. We then provide the
main results of our system. Finally, we provide the
results of our system when trained and tested on con-
ventional morphological segmentations.

5.1 Analysis of Annotations

5.1.1 Annotation consistency with dictionaries

The majority of our examples are not present in
a morphological dictionary, even in one as compre-
hensive asCELEX. The prefix verbs are inCELEX

for only 670 of the 1718 total annotated instances.
For those that are inCELEX, Table 1 provides

the confusion matrix that relates theCELEX seg-
mentations to our annotations. The table shows
that the major difference between our annotations
andCELEX is that our definition of compositionality
is more strict than conventional morphological seg-
mentations. WhenCELEX does not segment the pre-
fix from the stem (case 0), our annotations agree in

CELEX segmentation
1 0

Compositionality 1 227 10
annotation 0 250 183

Table 1: Confusion matrix on the subset of prefix verb
annotations that are also inCELEX. 1 indicates that the
prefix and stem are segmented into separate morphemes,
0 indicates otherwise.

183 of 193 cases. WhenCELEX does split the prefix
from the stem (case 1), the meaning is semantically
compositional in less than half the cases. This is
a key difference between conventional morphology
and our semantic definition.

It is also instructive to analyze the 10 cases that
are semantically compositional but whichCELEX

did not segment. Most of these are verbs that are
conventionally viewed as single morphemes because
they entered English as complete words. For exam-
ple,await comes from the Old North Frenchawait-
ier, itself from waitier. In practice, it is useful to
know thatawait is compositional, i.e. that it can be
rephrased aswait for. Downstream applications can
exploit the compositionality ofawait, but miss the
opportunity if using the conventional lack of seg-
mentation.

5.1.2 Annotation consistency across contexts

We next analyze our annotated data to determine
the consistency of compositionality across different
occurrences of the same prefix-verb type. There are
1248 unique prefix verbs in our 1718 labeled exam-
ples: 45 verbs occur three times, 380 occur twice
and 823 occur only once. Of the 425 verbs that oc-
cur multiple times, only 6 had different annotations
in different examples (i.e., six verbs occur in both
compositional and non-compositional usages in our
dataset). These six instances are subtle, debatable,
and largely uninteresting, depending on distinctions
like whether theproclaim sense ofblazoncan sub-
stitute for thecelebratesense ofemblazon, etc.

It is easy to find clearer ambiguities online,
such as compositional examples of typically non-
compositional verbs (how torecovera couch, when
to redressa wound, etc.). However, in our data verbs
like recoverandredressalways occur in their more
dominant non-compositional sense. People may
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Set # Base1 Base2 Morf SCD

Test 359 65.7 87.2 73.8 93.6
∈ CELEX 128 30.5 73.4 50.8 89.8
/∈ CELEX 231 85.3 94.8 86.6 95.7
∈ train 107 69.2 93.5 74.8 97.2
/∈ train 252 64.3 84.5 73.4 92.1

Table 2: Number of examples (#) and accuracy (%) on
test data, and on in-CELEX vs. not-in-CELEX, and in-
training-data vs. not-in-training splits.

consciously or unconsciously recognize the possi-
bility for confusion and systematically hyphenate
prefixes from the stem if a less-common composi-
tional usage is employed. For example, our data has
“ repressyour feelings” for the non-compositional
case but the hyphenated “re-pressthe center” for the
compositional usage.5

Due to the consistency of compositionality across
contexts, context-basedfeaturesmay simply not be
very useful for classification. All the features we de-
scribe in Section 3 depend only on the prefix verb
itself and not the verb context. Various context-
dependent features did not improve accuracy on our
development data and were thus excluded from the
final system.

5.2 Main Results

The first row of Table 2 gives the results of all
systems on test data. SCD achieves 93.6% ac-
curacy, making one fifth as many errors as the
majority-class baseline (Base1) and half as many er-
rors as the more competitive prefix-based predictor
(Base2). The substantial difference between SCD
and Base2 shows that SCD is exploiting much infor-
mation beyond the trivial memorization of a deci-
sion for each prefix. Morfessor performs better than
Base1 but significantly worse than Base2. This indi-
cates that state-of-the-artunsupervisedmorpholog-
ical segmentation is not yet practical for semantic
preprocessing. Of course, Morfessor was also de-
signed with a different objective; in Section 5.3 we
compare Morfessor and SCD on conventional mor-

5Note that many examples likerecover, repressandredress
are only ambiguous in text, not in speech. Pronunciation re-
duces ambiguity in the same way that hyphens do in text. Con-
versely, observe that knowledge of compositionality could po-
tentially help speech synthesis.

Prefix # Tot # Comp SCD
re- 166 147 95.8

over- 26 25 96.2
out- 23 18 91.3
de- 21 0 100.0

pre- 19 16 94.7
un- 17 1 94.1
dis- 10 0 90.0

under- 9 7 77.8
co- 7 6 100.0
en- 5 2 60.0

Table 3: Total number of examples (# Tot), number of
examples that are compositional (# Comp), and accuracy
(%) of SCD on test data, by prefix.

phological segmentations.
We further analyzed the systems by splitting the

test data two ways.
First, we separate verbs that occur in our mor-

phological dictionary (∈ CELEX) from those that
do not (/∈ CELEX). Despite using the dictionary
segmentation itself as a feature, the performance
of SCD is worse on the∈ CELEX verbs (89.8%).
The comparison systems drop even more dramati-
cally on this subset. The∈ CELEX verbs comprise
the more frequent, irregular verbs in English. Non-
compositionality is the majority class on the exam-
ples that are in the dictionary.

On the other hand, one would expect verbs that
arenot in a comprehensive dictionary to be largely
compositional, and indeed most of the/∈ CELEX

verbs are compositional. However, there is still
much to be gained from applying SCD, which makes
a third as many errors as the system which always
assigns compositional (95.7% for SCD vs. 85.3%
for Base1).

Our second way of splitting the data is to divide
our test set into prefix verbs that also occurred in
training sentences (∈ train) and those that did not (/∈
train). Over 70% did not occur in training. SCD
scores 97.2% accuracy on those that did. The clas-
sifier is thus able to exploit the consistency of anno-
tations across different contexts (Section 5.1.2). The
92.1% accuracy on the/∈-train portion also shows
the features allow the system to generalize well to
new, previously-unseen verbs.

Table 3 gives the results of our system on sets of
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-LEX -HYPH -COOC -SIM -YAH -FRQ -DIC

85.0 92.8 92.5 93.6 93.6 93.6 93.6
85.5 93.6 92.8 93.0 93.3 93.9
86.9 90.5 93.3 93.6 93.6
84.1 90.3 93.3 93.6
87.5 90.5 93.0
85.5 89.4

Table 4: Accuracy (%) of SCD as different feature classes
are removed. Performance with all features is 93.6%.

verbs divided according to their prefix. The table in-
cludes those prefixes that occurred at least 5 times
in the test set. Note that the prefixes have a long
tail: these ten prefixes cover only 303 of the 359
test examples. Accuracy is fairly high across all the
different prefixes. Note also that the three prefixes
de-, un-, anddis- almost always correspond to non-
compositional verbs. Each of these prefixes corre-
sponds to a subtle form of negation, and it is usually
difficult to paraphrase the negation using the stem.
For example,to demilitarizedoes not meanto not
militarize (or any other simple re-phrasing using the
stem as a verb), and so our annotation marks it as
non-compositional. Whether such a strict strategy is
ultimately best may depend on the target application.

Feature Analysis

We perform experiments to evaluate which features
are most useful for this task. Table 4 gives the ac-
curacy of our system as different feature classes are
removed. A similar table was previously used for
feature analysis in Dauḿe III and Marcu (2005).
Each row corresponds to performance with a group
of features; each entry is performance with a par-
ticular feature class individually removed the group.
We remove the least helpful feature class from each
group in succession moving group-to-group down
the rows.

We first remove theDIC features. These do not
impact performance on test data. The last row gives
the performance with onlyHYPH features (85.5, re-
moving LEX), and onlyLEX features (89.4, remov-
ing HYPH). These are found to be the two most ef-
fective features for this task, followed by theCOOC

statistics. The other features, while marginally help-
ful on development data, are relatively ineffective on
the test set. In all cases, removingLEX features hurts

Base1 Base2 Morf SCD
76.0 79.6 72.4 86.4

Table 5: Accuracy (%) onCELEX.

the most. RemovingLEX not only removes useful
stem, prefix, and hyphen information, but it also im-
pairs the ability of the classifier to use the other fea-
tures to separate the examples.

5.3 CELEX Experiments and Results

Finally, we train and test our system on prefix verbs
where the segmentation decisions are provided by
a morphological dictionary. We are interested in
whether the strong results of our system could trans-
fer to conventional morphological segmentations.
We extract all verbs in CELEX that are valid verbs
for our system (divisible into a prefix and verb stem),
and take the CELEX segmentation as the label; i.e.,
whether the prefix and stem are separated into dis-
tinct morphemes. We extract 1006 total verbs.

We take 506 verbs for training, 250 verbs as a
development set (to tune our classifier’s regulariza-
tion parameter) and 250 verbs as a final held-out test
set. We use the same features and classifier as in
our main results, except we remove theDIC features
which are now the instance labels.

Table 5 shows the performance of our two base-
line systems along with Morfessor and SCD. While
the majority-class baseline is much higher, the
prefix-based baseline is 7%lower, indicating that
knowledge of prefixes, and lexical features in gen-
eral, are less helpful for conventional segmentations.
In fact, performance only drops 2% when we re-
move theLEX features, showing that web-scale in-
formation alone can enable solid performance on
this task. Surprisingly, Morfessor performs worse
here, below both baselines and substantially below
the supervised system. We confirmed our Morfessor
program was generating the same segmentations as
the online demo. We also experimented with Lin-
guistica (Goldsmith, 2001), training on a large cor-
pus, but results were worse than with Morfessor.

Accurate segmentation of prefix verbs is clearly
part of the mandate of these systems; prefix verb
segmentation is simply a very challenging task. Un-
like other, less-ambiguous tasks in morphology, a
prefix/stem segmentation is plausible for all of our
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input verbs, since the putative morphemes are by
definition valid morphemes in the language.

Overall, the results confirm and extend previous
studies that show semantic information is helpful in
morphology (Schone and Jurafsky, 2000; Yarowsky
and Wicentowski, 2000). However, we reiterate that
optimizing systems according to conventional mor-
phology may not be optimal for downstream ap-
plications. Furthermore, accuracy is substantially
lower in this setting than in our main results. Target-
ing conventional segmentations may be both more
challenging and less useful than focusing on seman-
tic compositionality.

6 Related Work

There is a large body of work on morphological
analysis of English, but most of this work does not
handle prefixes. Porter’s stemmer is a well-known
suffix-stripping algorithm (Porter, 1980), while
publicly-available lemmatizers likemorpha (Min-
nen et al., 2001) and PC-KIMMO (Karp et al., 1992)
only process inflectional morphology. FreeLing (At-
serias et al., 2006) comes with a few simple rules
for deterministically stripping prefixes in some lan-
guages, but not English (e.g., onlysemi-andre- can
be stripped when analyzing OOV Spanish verbs).

A number of modern morphological analyzers use
supervised machine learning. These systems could
all potentially benefit from the novel distributional
features used in our model. Van den Bosch and
Daelemans (1999) use memory-based learning to
analyze Dutch. Wicentowski (2004)’s supervised
WordFrame model includes a prefixation compo-
nent. Results are presented on over 30 languages.
Erjavec and D̆zeroski (2004) present a supervised
lemmatizer for Slovene. Dreyer et al. (2008) per-
form supervised lemmatization on Basque, English,
Irish and Tagalog; like us they include results when
the set of lemmas is given. Toutanova and Cherry
(2009) present a discriminative lemmatizer for En-
glish, Bulgarian, Czech and Slovene, but only han-
dle suffix morphology. Poon et al. (2009) present an
unsupervised segmenter, but one that is based on a
log-linear model that can include arbitrary and in-
terdependent features of the type proposed in our
work. We see potential in combining the best el-
ements of both approaches to obtain a system that

does not need annotated training data, but can make
use of powerful web-scale features.

Our approach follows previous systems for mor-
phological analysis that leverage semantic as well
as orthographic information (Yarowsky and Wicen-
towski, 2000; Schone and Jurafsky, 2001; Baroni et
al., 2002). Similar problems also arise in core se-
mantics, such as how to detect the compositionality
of multi-word expressions (Lin, 1999; Baldwin et
al., 2003; Fazly et al., 2009). Our problem is sim-
ilar to the analysis of verb-particle constructions or
VPCs (e.g.,round up, sell off, etc.) (Bannard et al.,
2003). Web-scale data can be used for a variety of
problems in semantics (Lin et al., 2010), including
classifying VPCs (Kummerfeld and Curran, 2008).

We motivated our work by describing applications
in information retrieval, and here Google is clearly
the elephant in the room. It is widely reported that
Google has been using stemming since 2003; for ex-
ample, a search today forPorter stemmingreturns
pages describing thePorter stemmer, and the re-
turned snippets have words likestemming, stem-
mer, andstem in bold text. Google can of course
develop high-quality lists of morphological variants
by paying attention to how users reformulate their
queries. User query sessions have previously been
used to expand queries using similar terms, such as
substitutingfeline for cat (Jones et al., 2006). We
show that high-quality, IR-friendly stemming is pos-
sible even without query data. Furthermore, query
data could be combined with our other features for
highly discriminative word stemming in context.

Beyond information retrieval, suffix-based stem-
ming and lemmatization have been used in a range
of NLP applications, including text categorization,
textual entailment, and statistical machine transla-
tion. We believe accurate prefix-stripping can also
have an impact in these areas.

7 Conclusions and Future Work

We presented a system for predicting the semantic
compositionality of prefix verbs. We proposed a
new, well-defined and practical definition of compo-
sitionality, and we annotated a corpus of sentences
according to this definition. We trained a discrimina-
tive model to predict compositionality using a range
of lexical and web-scale statistical features. Novel
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features include measures of the frequency of prefix-
stem hyphenation, and statistics for the likelihood of
the verb and stem co-occurring as separate words in
an N-gram. The classifier is highly accurate across a
range of prefixes, correctly predicting composition-
ality for 93.6% of examples.

Our preliminary results provide strong motiva-
tion for investigating and applying new distribu-
tional features in the prediction of both conventional
morphology and in task-directed semantic composi-
tionality. Our techniques could be used on a variety
of other complex word forms. In particular, many
of our features extend naturally to identifying stem-
stem compounds (likepanfryor healthcare). Also, it
would be possible for our system to handle inflected
forms by first converting them to their lemmas us-
ing a morphological analyzer. We could also jointly
learn the compositionality of words across their in-
flections, along the lines of Yarowsky and Wicen-
towski (2000).

There are also other N-gram-derived features that
warrant further investigation. One source of in-
formation that has not previously been exploited is
the “lexical fixedness” (Fazly et al., 2009) of non-
compositional prefix verbs. If prefix verbs are rarely
rephrased in another form, they are likely to be non-
compositional. For example, in our N-gram data,
the count ofquest againis relatively low compared
to the count ofrequest, indicating requestis non-
compositional. On the other hand,marry again is
relatively frequent, indicating thatremarry is com-
positional. Incorporation of these and other N-gram
counts could further improve classification accuracy.
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