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Abstract

Word sense disambiguation is typically
phrased as the task of labeling a word in
context with the best-fitting sense from a
sense inventory such as WordNet. While
questions have often been raised over the
choice of sense inventory, computational
linguists have readily accepted the best-
fitting sense methodology despite the fact
that the case for discrete sense bound-
aries is widely disputed by lexical seman-
tics researchers. This paper studies graded
word sense assignment, based on a recent
dataset of graded word sense annotation.

1 Introduction

The task of automatically characterizing word
meaning in text is typically modeled as word sense
disambiguation (WSD): given a list of senses for
target lemma w, the task is to pick the best-fitting
sense for a given occurrence of w. The list of
senses is usually taken from an online dictionary
or thesaurus. However, clear cut sense boundaries
are sometimes hard to define, and the meaning of
words depends strongly on the context in which
they are used (Cruse, 2000; Hanks, 2000). Some
researchers in lexical semantics have suggested
that word meanings lie on a continuum between
i) clear cut cases of ambiguity and ii) vagueness
where clear cut boundaries do not hold (Tuggy,
1993). Certainly, it seems that a more complex
representation of word sense is needed with a
softer, graded representation of meaning rather
than a fixed listing of senses (Cruse, 2000).

A recent annotation study ((Erk et al., 2009),
hereafter GWS) marked a target word in context
with graded ratings (on a scale of 1-5) on senses
from WordNet (Fellbaum, 1998). Table 1 shows
an example of a sentence with the target word
in bold, and with the annotator judgments given

to each sense. The study found that annotators
made ample use of the intermediate ratings on the
scale, and often gave high ratings to more than one
WordNet sense for the same occurrence. It was
found that the annotator ratings could not easily
be transformed to categorial judgments by making
more coarse-grained senses. If human word sense
judgments are best viewed as graded, it makes
sense to explore models of word sense that can
predict graded sense assignments.

In this paper we look at the issue of graded ap-
plicability of word sense from the point of view
of automatic graded word sense assignment, us-
ing the GWS graded word sense dataset. We make
three primary contributions. Firstly, we propose
evaluation metrics that can be used on graded
word sense judgments. Some of these metrics, like
Spearman’s ρ, have been used previously (Mc-
Carthy et al., 2003; Mitchell and Lapata, 2008),
but we also introduce new metrics based on the
traditional precision and recall. Secondly, we in-
vestigate how two classes of models perform on
the task of graded word sense assignment: on
the one hand classical WSD models, on the other
hand prototype-based vector space models that
can be viewed as simple one-class classifiers. We
study supervised models, training on traditional
WSD data and evaluating against a graded scale.
Thirdly, the evaluation metrics we use also pro-
vides a novel analysis of annotator performance
on the GWS dataset.

2 Related Work

WSD has to date been a task where word senses are
viewed as having clear cut boundaries. However,
there are indications that word meanings do not
behave in this way (Kilgarriff, 2006). Researchers
in the field of WSD have acknowledged these prob-
lems but have used existing lexical resources in
the hope that useful applications can be built with
them. However, there is no consensus on which
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Senses
Sentence 1 2 3 4 5 6 7 Annotator
This can be justified thermodynamically in this case, and
this will be done in a separate paper which is being
prepared.

2 3 3 5 5 2 3 Ann. 1
1 3 1 3 5 1 1 Ann. 2
1 5 2 1 5 1 1 Ann. 3

1.3 3.7 2 3 5 1.3 1.7 Avg

Table 1: A sample annotation in the GWS experiment. The senses are: 1 material from cellulose 2 report
3 publication 4 medium for writing 5 scientific 6 publishing firm 7 physical object

inventory is suitable for which application, other
than cross-lingual applications where the inven-
tory can be determined from parallel data (Carpuat
and Wu, 2007; Chan et al., 2007). For monolin-
gual applications however it is less clear whether
current state-of-the-art WSD systems for tagging
text with dictionary senses are able to have an im-
pact on applications.

One way of addressing the problem of low inter-
annotator agreement and system performance is to
create an inventory that is coarse-grained enough
for humans and computers to do the job reli-
ably (Ide and Wilks, 2006; Hovy et al., 2006;
Palmer et al., 2007). Such coarse-grained invento-
ries can be produced manually from scratch (Hovy
et al., 2006) or by automatically relating (Mc-
Carthy, 2006) or clustering (Navigli, 2006; Nav-
igli et al., 2007) existing word senses. While the
reduction in polysemy makes the task easier, we
do not know which are the right distinctions to re-
tain. In fact, fine-grained distinctions may be more
useful than coarse-grained ones for some applica-
tions (Stokoe, 2005). Furthermore, Hanks (2000)
goes further and argues that while the ability to
distinguish coarse-grained senses is indeed desir-
able, subtler and more complex representations of
word meaning are necessary for text understand-
ing.

In this paper, instead of focusing on issues of
granularity we try to predict graded judgments of
word sense applicability, using a recent dataset
with graded annotation (Erk et al., 2009). Our
hope is that models which can mimic graded hu-
man judgments on the same task should better re-
flect the underlying phenomena of word mean-
ing compared to a system that focuses on mak-
ing clear cut distinctions. Also, we hope that such
models might prove more useful in applications.
There is one existing study of graded sense as-
signment (Ramakrishnan et al., 2004). It tries to
estimate a probability distribution over senses by
converting all of WordNet into a huge Bayesian
Network, and reports improvements in a Question

Answering task. However, it does not test its pre-
diction against human annotator data.

We concentrate on supervised models in this
paper since they generally perform better than
their unsupervised or knowledge-based counter-
parts (Navigli, 2009). We compare them against
a baseline model which simply uses the train-
ing data to obtain a probability distribution over
senses regardless of context, since marginal distri-
butions are highly skewed making a prior distribu-
tion very informative (Chan and Ng, 2005; Lapata
and Brew, 2004).

Along with standard WSD models, we evalu-
ate vector space models that use the training data
to locate a word sense in semantic space. Word
sense and vector space models have been related in
two ways. On the one hand, vector space models
have been used for inducing word senses (Schütze,
1998; Pantel and Lin, 2002). The different mean-
ings of a word are obtained by clustering vectors.
The clusters must then be mapped to an inven-
tory if a standard WSD dataset is used for eval-
uation. In contrast, we use sense tagged train-
ing data with the aim of building models of given
word senses, rather than clustering occurrences
into word senses. The second way in which word
sense and vector space models have been related is
to assign disambiguated feature vectors to Word-
Net concepts (Pantel, 2005; Patwardhan and Ped-
ersen, 2006). However those works do not use
sense-tagged data and are not aimed at WSD, rather
the applications are to insert new concepts into an
ontology and to measure the relatedness of con-
cepts.

We are not concerned in this paper with argu-
ing for or against any particular sense inventory.
WordNet has been criticized for being overly fine-
grained (Navigli et al., 2007; Ide and Wilks, 2006),
we are using it here because it is the sense inven-
tory used by Erk et al. (2009). That annotation
study used it because it is sufficiently fine-grained
to allow for the examination of subtle distinctions
between usages and because it is publicly available
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lemma # # training
(PoS) senses SemCor SE-3
add (v) 6 171 238
argument (n) 7 14 195
ask (v) 7 386 236
different (a) 5 106 73
important (a) 5 125 11
interest (n) 7 111 160
paper (n) 7 46 207
win (v) 4 88 53
total training sentences 1047 1173

Table 2: Lemmas used in this study

with various sense-tagged datasets (e.g. (Miller et
al., 1993; Mihalcea et al., 2004)) for comparison.

3 Data

In this paper, we use a subset of the GWS

dataset (Erk et al., 2009) where three annotators
supplied ordinal judgments of the applicability of
WordNet (v3.0) senses on a 5 point scale: 1 –
completely different, 2 – mostly different, 3 – sim-
ilar, 4 – very similar and 5 – identical. Table 1
shows a sample annotation. The sentences that
we use from the GWS dataset were originally ex-
tracted from the English SENSEVAL-3 lexical sam-
ple task (Mihalcea et al., 2004) (hereafter SE-3)
and SemCor (Miller et al., 1993). 1 For 8 lem-
mas, 25 sentences were randomly sampled from
SemCor and 25 randomly sampled from SE-3, giv-
ing a total of 50 sentences per lemma. The lem-
mas, their PoS and number of senses from Word-
Net are shown in table 2.

The annotation study found that annotators
made ample use of the intermediate levels of ap-
plicability (2-4), and they often gave positive rat-
ings (3-5) to more than one sense for a single oc-
currence. The example in Table 1 is one such
case. An analysis of the annotator ratings found
that they could not easily be explained in catego-
rial terms by making more coarse-grained senses
because senses that were not positively correlated
often had high ratings for the same instance.

The GWS dataset contains a sequence of judg-
ments for each occurrence of a target word in a
sentence context: one judgment for each Word-
Net sense of the target word. To obtain a sin-
gle judgment for each sense in each sentence we
use the average judgment from the three annota-
tors. As models typically assign values between

1The GWS data also contains data from the English Lex-
ical Substitution Task (McCarthy and Navigli, 2007) but we
do not use that portion of the data for these experiments.

0 and 1, we normalize the annotator judgments
from the GWS dataset to fall into the same range by
using normalized judgment = (judgment −
1.0)/4.0. This maps an original judgment of 5 to
a normalized judgment of 1.0, it maps an original
1 to 0.0, and intermediate judgments are mapped
accordingly.

As the GWS dataset is too small to accommodate
both training and testing of a supervised model, we
use all the data from GWS for testing our models,
and train our models on traditional word sense an-
notation data. We use as training data all sentences
from SemCor and the training portion of SE-3 that
are not included in GWS. The quantity of training
data available is shown in the last two columns of
table 2.

4 Evaluating Graded Word Sense
Assignment

This section discusses measures for evaluating
system performance for the case where gold judg-
ments are graded rather than categorial.

Correlation. The standard method for compar-
ing a list of graded gold judgments to a list of
graded predicted judgments is by testing for corre-
lation. In our case, as we cannot assume a normal
distribution of the judgments, a non-parametric
test such as Spearman’s ρ will be appropriate.
Spearman’s ρ uses the formula of Pearson’s coef-
ficient, defined as

ρ(X,Y ) =
cov(X,Y )
σXσY

Pearson’s coefficient computes the correlation of
two random variables X and Y as their covari-
ance divided by the product of their standard devi-
ations. In the computation of Spearman’s ρ, values
are transformed to rankings before the formula is
applied. 2 As Spearman’s ρ compares the rank-
ings of two sets of judgments, it abstracts from the
absolute values of the judgments. It is useful to
have a measure that abstracts from absolute values
of judgments and magnitude of difference because
the GWS dataset contains annotator judgments on
a fixed scale, and it is quite possible that human
judges will differ in how they use such a scale.

Each judgment in the gold-standard can be
represented as a 4-tuple 〈lemma, sense no, sen-
tence no, gold judgment〉. For example, 〈add.v,

2Mitchell and Lapata (2008) note that Spearman’s ρ tends
to yield smaller coefficients than its parametric counterparts
such as Pearson’s coefficient.
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1, 1, 0.8〉 is the first sentence for target add.v, first
WordNet sense, with a (normalized) judgment of
0.8. Likewise, each prediction by the model can
be represented as a 4-tuple 〈lemma, sense no, sen-
tence no, predicted judgment〉. We writeG for the
set of gold tuples, A for the set of assigned tuples,
L for the set of lemmas, S` for the set of sense
numbers that exist for lemma `, and T for the set
of sentence numbers (there are 50 sentences for
each lemma). We writeG|lemma=` for the gold set
restricted to those tuples with lemma `, and anal-
ogously for other set restrictions and for A. There
are several possibilities for measuring correlation:

by lemma: for each lemma ` ∈ L, compute cor-
relation between G|lemma=` and A|lemma=`

by lemma+sense: for each lemma ` and each
sense number i ∈ S`, compute cor-
relation between G|lemma=`,senseno=i and
A|lemma=`,senseno=i

by lemma+sentence: for each lemma ` and sen-
tence number t ∈ T , compute cor-
relation between G|lemma=`,sentence=t and
A|lemma=`,sentence=t

Comparison by lemma tests for the consis-
tent use of judgments for the same target lemma.
A comparison by lemma+sense ranks all occur-
rences of the same target lemma by how strongly
they evoke a given word sense. A comparison
by lemma+sentence ranks different senses by how
strongly they apply to a given target lemma oc-
currence. In reporting correlation by lemma (by
lemma+sense, by lemma+sentence), we average
over all lemmas (lemma+sense, lemma+sentence
combinations), and we report the percentage of
lemmas (combinations) for which the correlation
was significant. We report averaged correlation by
lemma rather than one overall correlation over all
judgments in order not to give more weight to lem-
mas with more senses.

Divergence. Another possibility for measuring
the performance of a graded sense assignment
model is to use Jensen/Shannon divergence (J/S),
which is a symmetric version of Kullback/Leibler
divergence. Given two probability distributions
p, q, the Kullback/Leibler divergence of q from p
is

D(p||q) =
∑

x

p(x) log
p(x)
q(x)

and their J/S is

JS(p, q) =
1
2
(
D(p||p+ q

2
) +D(q||p+ q

2
)

We will use J/S for an evaluation by
lemma+sentence: for each lemma ` ∈ L
and sentence number t ∈ T , we normalize
G|lemma=`,sentence=t, the set of judgments for
senses of ` in t, by the sum of sense judgments for
` and t. We do the same for A|lemma=`,sentence=t.
Then we compute J/S. In doing so, we are not
trying to interpret G|lemma=`,sentence=t as some
kind of probability distribution over senses, rather
we use J/S as a measure that abstracts from
absolute judgments but not from the magnitude of
differences between judgments.

Precision and Recall. We have discussed a
measure that abstracts from both absolute judg-
ments and magnitude of differences (Spearman’s
ρ), and a measure that abstracts from absolute
judgments but not the magnitude of differences
(J/S). What is still missing is a measure that tests
to what degree a model conforms to the absolute
judgments given by the human annotators.

To obtain a measure for performance in predict-
ing absolute gold judgments, we generalize preci-
sion and recall. In the categorial case, precision is
defined as P = true positives

true positives+false positives , true pos-
itives divided by system-assigned positives, and
recall is R = true positives

true positives+false negatives , true posi-
tives divided by gold positives. Writing gold`,i,t

for the judgment j associated with lemma ` and
sense number i for sentence t in the gold data (i.e.,
〈`, i, t, j〉 ∈ G), and analogously assigned`,i,t, we
extend precision and recall to the graded case as
follows:

P` =

∑
i∈S`,t∈T min(gold`,i,t, assigned`,i,t)∑

i∈S`,t∈T assigned`,i,t

and

R` =

∑
i∈S`,t∈T min(gold`,i,t, assigned`,i,t)∑

i∈S`,t∈T gold`,i,t

where ` is a lemma. We compute precision and re-
call by lemma, then macro-average them in order
not to give more weight to lemmas that have more
senses. The formula for F-score as the harmonic
mean of precision and recall remains unchanged:
F = 2 P R/(P +R).

If the data is categorial, the graded precision and
recall measures coincide with “classical” precision
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Cx/2 until, IN, soft, JJ, remaining, VBG, ingredient,
NNS

Cx/50 for, IN, sweet-sour, NN, sauce, NN, . . . , to, TO,
a, DT, boil, NN

Ch OA, OA/ingredient/NNS

Table 3: Sample features for add in BNC occur-
rence For sweet-sour sauce, cook onion in oil un-
til soft. Add remaining ingredients and bring to
a boil. Cx/2 (Cx/50): context of size 2 (size 50)
either side of the target. Ch: children of target.

and recall, which can be seen as follows. Graded
sense assignment is represented by assigning each
sense a score between 0.0 and 1.0. The categorial
case can be represented in the same way, the dif-
ference being that one single sense will receive a
score of 1.0 while all other senses get a score of
0.0. With this representation for categorial sense
assignment, consider a fixed token t of lemma `.∑

i∈S`
min(assigned`,i,t, gold`,i,t) will be 1 if the

assigned sense is the gold sense, and 0 otherwise.

5 Models for Graded Word Sense
Assignment

In this section we discuss the computational mod-
els for graded word sense that are tested in this
paper.

Single-best-sense WSD. The first model that we
test is a standard WSD model that assigns, to each
test occurrence of a target word, a single best-
fitting word sense. The system thus attributes a
confidence score of 1 to the assigned sense and a
confidence score of 0 for all other senses for that
sentence. We refer to it as WSD/single. The model
uses standard features: lemma and part of speech
in a narrow context window (2 words either side)
and a wide context window (50 words either side),
as well as dependency labels leading to parent,
children, and siblings of the target word, and lem-
mas and part of speech of parent, child, and sibling
nodes. Table 3 shows sample model features for an
occurrence of add in the British National Corpus
(BNC) (Leech, 1992). The model uses a maxi-
mum entropy learner3, training one binary classi-
fier per sense. (With n-ary classifiers, the model’s
performance is slightly worse.) The model is thus
not highly optimized, but fairly standard.

WSD confidence level as judgment. Our second
model is the same WSD system as above, but we

3http://maxent.sourceforge.net/

use it to predict a judgment for each sense of a
target occurrence, taking the confidence level re-
turned by each sense-specific binary classifier as
the predicted judgment. We refer to this model as
WSD/conf .

Word senses as points in semantic space. The
results of the GWS annotation study raise the ques-
tion of how word senses are best conceptualized,
given that annotators assigned graded judgments
of applicability of word senses, and given that they
often combined high judgments for multiple word
senses. One way of modeling these findings is
to view word senses as prototypes, where some
uses of a word will be typical examples of a given
sense, for some uses the sense will clearly not ap-
ply, and to some uses the sense will be borderline
applicable.

We use a very simple model of word senses as
prototypes, representing them as points in a se-
mantic space. Graded sense applicability judg-
ments can then be modeled using vector similarity.
The dimensions of the vector space are the features
of the WSD system above (including dimensions
like Cx2/until, Cx2/IN, Ch/OA/ingredient/NNS for
the example in Table 3), and the coordinates are
raw feature counts. We compute a single vector
for each sense s, the centroid of all training oc-
currences that have been labeled with s. The pre-
dicted judgment for a test sentence and sense s
is then the similarity of the sentence’s vector to
the centroid vector for s, computed using cosine.
We call this model Prototype. Like instance-based
learners (Daelemans and den Bosch, 2005), the
Prototype model measures the distance between
feature vectors in space. Unlike instance-based
learners, it only uses data from a single category
for training.

As it is to be expected that the vectors in this
space will be very sparse, we also test a variant
of the Prototype model with Schütze-style second-
order vectors (Schütze, 1998), called Prototype/2.
Given a (first-order) feature vector, we compute
a second-order vector as the centroid of vectors
for all lemma features (omitting stopwords) in the
first-order vector. For the feature vector in Table 3,
this is the centroid of vectors ~sweet-sour, ~sauce,
. . . , ~boil. We compute the vectors ~sweet-sour etc.
as dependency vectors (Padó and Lapata, 2007) 4

over a Minipar parse (Lin, 1993) of the BNC.
4We use the DV package, http://www.nlpado.de/

˜sebastian/dv.html, to compute the vector space.
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We transform raw co-occurrence counts in the
BNC-based vectors using pointwise mutual in-
formation (PMI), a common transformation func-
tion (Mitchell and Lapata, 2008). 5

Another way of motivating the use of vector
space models of word sense is by noting that we
are trying to predict graded sense assignment by
training on traditional word sense annotated data,
where each target word occurrence is typically
marked with a single word sense. Traditional word
sense annotation, when used to predict GWS judg-
ments, will contain spurious negative data: sup-
pose a human annotator is annotating an occur-
rence of target word t and views senses s1, s2 and
s3 as somewhat applicable, with sense s1 applying
most clearly. Then if the annotation guidelines ask
for the best-fitting sense, the annotator should only
assign s1. The occurrence is recorded as having
sense s1, but not senses s2 and s3. This, then, con-
stitutes spurious negative data for senses s2 and s3.
The simple vector space model of word sense that
we use implements a radical solution to this prob-
lem of spurious negative data: it only uses positive
data for a single sense, thus forgoing competition
between categories. It is to be expected that not
using competition between categories will hurt the
vector space model’s performance, but this design
gives us the chance to compare two model classes
that use opposing strategies with respect to spuri-
ous negative data: the WSD models fully trust the
negative data, while the vector space models ig-
nore it.

6 Experiments

This section reports on experiments for the task
of graded word sense assignment. As data, we
use the GWS dataset described in Sec. 3. We test
the models discussed in Sec. 5, evaluating with the
methods described in Sec. 4.

To put the models’ performance into perspec-
tive, we first consider the human performance on
the task, shown in Table 4. The first three lines
of the table show the performance of each annota-
tor evaluated against the average of the other two.
The fourth line averages over the previous three
lines to provide an average human ceiling for the
task. In the correlation of rankings by lemma, cor-
relation is statistically significant for all lemmas at

5We also tested PMI transformation for the first-order vec-
tors, but will not report the results here as they were worse
across the board than without PMI.

p ≤ 0.01. For correlation by lemma+sense and by
lemma+sentence, the percentage of pairs with sig-
nificant correlation is lower: 73.6 of lemma/sense
pairs and 29.0 of lemma/sentence pairs reach sig-
nificance at p ≤ 0.05. For p ≤ 0.01, the per-
centage is 58.3 and 12.2, respectively. The higher
ρ but lower proportion of significant values for
lemma+sentence pairs compared to lemma+sense
is due to the fact that there are far fewer dat-
apoints (sample size) for each calculation of ρ
(#senses for lemma+sentence vs 50 sentences for
lemma+sense).

At 0.131, J/S for Annotator 1 is considerably
lower than for Annotators 2 and 3. 6 In terms
of precision and recall, Annotator 1 again differs
from the other two. At 87.5, her recall is higher
than her precision (50.6), while the other annota-
tors have considerably higher precision (75.5 and
82.4) than recall (62.4 and 52.3). This indicates
that Annotator 1 tended to assign higher ratings
throughout, an impression that is confirmed by Ta-
ble 6. The left two columns show average rat-
ings for each annotator over all senses of all to-
kens (normalized to values between 0.0 and 1.0 as
described in Sec. 3). The three annotators differ
widely in their average ratings, which range from
0.285 for Ann.3 to 0.540 for Ann.1.

Standard WSD. We tested the performance of
the WSD/single model on a standard WSD task,
using the same training and testing data as in
our subsequent experiments, as described in sec-
tion 3. 7 The model’s accuracy when trained and
tested on SemCor was A=77.0%, with a most fre-
quent sense baseline of 63.5%. When trained
and tested on SE-3, the model achieved A=53.0%
against a baseline of 44.0%. When trained and
tested on SemCor plus SE-3, the model reached an
accuracy 58.2%, with a baseline of 56.0%. So on
the combined dataset, the baseline is the average
of the baselines on the individual datasets, while
the model’s performance falls below the average
performance on the individual datasets.

WSD models for graded sense assignment.
Table 5 shows the performance of different mod-
els in the task of graded word sense assignment.
The first line in Table 5 lists results for the maxi-
mum entropy model when used to assign a single
best sense. The second line lists the results for

6Low J/S implies a closer agreement between two sets of
judgments.

7Note that this constitutes less training data than in the
SE-3 task.
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by lemma by lemma+sense by lemma+sentence
Ann ρ * ** ρ * ** ρ * ** J/S P R F
Ann.1 0.517 100.0 100.0 0.407 75.0 58.3 0.482 27.3 11.5 0.131 50.6 87.5 64.1
Ann.2 0.587 100.0 100.0 0.403 68.8 58.3 0.612 38.1 17.2 0.153 75.5 62.4 68.3
Ann.3 0.528 100.0 100.0 0.41 77.1 58.3 0.51 21.8 7.8 0.165 82.4 52.3 64.0
Avg 0.544 100.0 100.0 0.407 73.6 58.3 0.535 29.0 12.2 0.149 69.5 67.4 65.5

Table 4: Human ceiling: one annotator vs. average of the other two annotators. ∗, ∗∗: percentage
significant at p ≤ 0.05, p ≤ 0.01. Avg: average annotator performance

by lemma by lemma+sense by lemma+sentence
Model ρ * ** ρ * ** ρ * ** J/S P R F
WSD/single 0.267 87.5 75.0 0.053 6.3 4.2 0.28 2.8 1.8 0.39 58.7 25.5 35.5
WSD/conf 0.396 87.5 87.5 0.177 33.3 18.8 0.401 10.8 3.0 0.164 81.8 37.1 51.0
Prototype 0.245 62.5 62.5 0.053 20.8 8.3 0.396 15.3 2.5 0.173 58.4 78.3 66.9
Prototype/2 0.292 87.5 87.5 0.086 14.6 4.2 0.478 22.8 7.5 0.164 68.2 63.3 65.7
Prototype/N 0.396 100.0 100.0 0.137 22.9 14.6 0.396 15.3 2.5 0.173 82.2 29.9 43.9
Prototype/2N 0.465 100.0 100.0 0.168 29.8 23.4 0.478 22.8 7.5 0.164 82.6 30.9 45.0
baseline 0.338 87.5 87.5 0.0 0.0 0.0 0.355 10.3 3.0 0.167 79.9 34.5 48.2

Table 5: Evaluation: computational models, and baseline. ∗, ∗∗: percentage significant at p ≤ 0.05,
p ≤ 0.01

the same maximum entropy model when classifier
confidence is used as predicted judgment. The last
line shows the baseline, an adaptation of the most
frequent sense baseline to the graded case. For
this baseline, we computed the relative frequency
of each sense in the training corpus and used this
relative frequency as the prediction for each test
sentence and sense combination. The WSD/single
model remains below the baseline in all evalua-
tions except correlation by lemma+sense, where
no rank-based correlation could be computed for
the baseline because it always assigns the same
judgment for a given sense. WSD/conf shows a
performance slightly above the baseline in all eval-
uation measures. Table 6 lists average ratings, av-
eraged over all lemmas, senses, and occurrences,
for each model in the two right-hand columns.

Prototype models. Lines 3-6 in Tables 5 and
6 show results for Prototype variants. While each
Prototype and Prototype/2 model only sees pos-
itive data annotated for a single sense, the vari-
ants with /N (lines 5 and 6) make very limited use
of information coming from all senses of a given
lemma. They normalize judgments for each sen-
tence, with

assignednorm
`,i,t =

assigned`,i,t∑
j∈S`

assigned`,j,t

Line 3 evaluates the Prototype model with first-
order vectors. Its correlation with the gold data is
somewhat lower than that of WSD/conf in almost
all cases. 8 The Prototype model deviates strongly

8The reason why the average ρ for correlation by

from both WSD/conf and baseline in having a very
good recall, at 78.3, with lower precision at 58.4,
for an overall F-score that is 16 points higher than
that of WSD/conf . Both Prototype and Prototype/2
have average ratings (Table 6) far above those
of the WSD models and of the /N variants. The
second-order vector model Prototype/2 has rela-
tively low correlation by lemma+sense, while cor-
relation by lemma+sentence shows the best per-
formance of all models (along with Prototype/2N).
Its correlation by lemma+sentence is similar to the
lowest correlation by lemma+sentence achieved
by a human annotator. In terms of J/S, this
model also shows the best performance along with
WSD/conf and Prototype/2N. Both /N variants
achieve very high correlation by lemma. Corre-
lation by lemma+sense for the /N models is be-
tween those of Prototype and WSD/conf . The cor-
relation by lemma+sentence is the same with or
without normalization, as normalization does not
change the ranking of senses of an individual sen-
tence. While Prototype has higher recall than pre-
cision, normalization turns it into a model with
even higher precision than WSD/conf but even
lower recall.

Discussion

Human performance. The evaluation of human
annotators in Table 4 provides a novel analysis of
the GWS dataset over and above that by Erk et al.

lemma+sense is the same for Prototype and WSD/single
while the significance percentage differs greatly is that the
Prototype shows negative correlation for some of the senses.
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Ann. avg Model avg
Ann.1 0.540 WSD/single 0.163
Ann.2 0.345 WSD/conf 0.173
Ann.3 0.285 Prototype 0.558

Prototype/N 0.143
Prototype/2 0.375

Prototype/2N 0.143
baseline 0.167

Table 6: Average judgment for individual annota-
tors (transformed) and average rating for models

(2009). Human annotators show very strong cor-
relation of their rankings by lemma. They also had
strong agreement on rankings by lemma+sense,
which ranks occurrences of a lemma by how
strongly they evoke a given sense. The relatively
low precision and recall in Table 4 confirm that
different annotators use the 5-point scale in differ-
ent ways. A comparison of precision and recall
between the annotators reflects the fact that An-
notator 1 tended to give considerably higher rat-
ings than the other two, which is also apparent
in the average ratings in Table 6. Given the rela-
tively low F-score achieved by human annotators,
judgments by additional annotators could make
the GWS dataset more useful, in that the average
judgments would not be influenced so strongly by
idiosyncrasies in the use of the 5-point scale. (Psy-
cholinguistic experiments using fixed scales typi-
cally elicit judgments from 10 or more participants
per item.)

Evaluation measures. Given the degree of dif-
ferences in the absolute values of the human an-
notator judgments (Table 4), a rank-based evalu-
ation of graded sense assignment models, com-
plemented by J/S to evaluate the magnitude of
differences between ratings, seems most appro-
priate to the data. Rankings by lemma+sense
and by lemma+sentence are especially interest-
ing for their potential use in systems that might
use graded sense assignment as part of a larger
pipeline. Still, the new graded precision and re-
call measures allow for a more fine-grained anal-
ysis of the performance of models, showing fun-
damental differences in the behavior of WSD/conf
and the Prototype model. Graded precision and
recall could become even more informative mea-
sures with a gold set containing judgments of more
annotators, since then the absolute gold judgments
would be more reliable.

Standard WSD models and vector space mod-
els. The results in Table 5 reflect the compromise

between the advantage of having competition be-
tween categories and the disadvantage of spurious
negative data: WSD/conf , Prototype/N and Proto-
type/2N achieve the highest correlation by lemma,
and high precision, while Prototype has much bet-
ter recall for an overall higher F-score. However,
as Table 6 shows, Prototype tends to assign high
ratings across the board, leading to high recall.
The much lower average ratings of the /N mod-
els explain their higher precision and lower recall:
they overshoot less and undershoot more. The im-
provement in correlation for the /N models also
indicates that Prototype assigns some sentences
high ratings for all senses, impacting rankings by
lemma and by lemma+sense.

The comparison of Prototype and Prototype/2
gives us a chance to study effects of feature sparse-
ness. Prototype/2, using second-order vectors that
should be much less sparse, yields better rankings
than Prototype. The average ratings of model Pro-
totype/2 (Table 6) are lower than those of Pro-
totype (and closer to human average ratings), re-
sulting in higher precision and lower recall. One
possible reason for the high average ratings of
Prototype is that in sparser (and shorter) vectors,
matches in dimensions for high-frequency, rela-
tively uninformative context items have greater
impact.

It is interesting to see that WSD/conf performs
slightly above the sense frequency baseline in all
evaluations, since this is a very familiar picture
from standard WSD.

Prototype/2N shows the overall most favorable
performance in terms of correlation as it i) pays
minimal attention to the negative data ii) uses nor-
malization to avoid overshooting and iii) compen-
sates for sparse data by using second order vectors.
For J/S, WSD/conf , Prototype/2, Prototype/2N
and the sense frequency baseline just outperform
the score of the lowest-scoring of the three anno-
tators. In terms of F-score, Prototype shows re-
sults very close to human performance. Interest-
ingly, the Prototype model resembles Annotator 1
in its precision and recall, while WSD/conf more
resembles Annotators 2 and 3. None of the mod-
els come close to human performance in ranking
by lemma+sense, which requires an identification
of the “typical” occurrence of a given sense. The
low ratings in correlation by lemma+sense indi-
cate that the models might be limited by the lack
of training data for many of the rarer senses. In fu-
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ture work, we will test how the frequency of senses
in the training data affects the different models.

7 Conclusion

In this paper we have done a first study on mod-
eling graded annotator judgments on sense appli-
cability. We have discussed evaluation measures
for models of graded sense assignment, includ-
ing new extensions of precision and recall to the
graded case. A combination of rank-based correla-
tion at the level of lemmas, senses, and sentences,
Jensen/Shannon divergence, and precision and re-
call provided a nuanced picture of the strengths
and weaknesses of different models. We have
tested two types of models: on the one hand a
standard binary WSD model using classifier con-
fidence as predicted judgments, and on the other
hand several vector space models which compute a
prototype vector for each sense in semantic space.
These two types of model differ strongly in their
behavior. The WSD model shows a similar behav-
ior as the baseline, with high precision but low re-
call, while the unnormalized version of the vector
space model has higher recall at lower precision.
The results show both the benefits of having com-
petition between categories, for improved rank-
based correlation and precision, and the problem
of spurious negative data in the training set arising
from the best-sense methodology.

The last two correlation measures, by
lemma+sense and by lemma+sentence, yield
maybe the most insight into the question of the
usability of a computational model for graded
word sense assignment: a graded word sense
assignment model that is a component of a larger
system could provide useful sense information
either by ranking occurrences by how strongly
they evoke a sense, or by ranking senses by how
strongly they apply to a given occurrence. There
is room for improvement however as system
performance is well below that of humans. In
the future we plan to investigate features that are
more informative for making graded judgments.
Second, the vector space model we used was
very simple; it might be worthwhile to test more
sophisticated one-class classifiers (Marsland,
2003; Schölkopf et al., 2000).
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