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Abstract

We propose a sequence-alignment based
method for detecting and disambiguating co-
ordinate conjunctions. In this method, av-
eraged perceptron learning is used to adapt
the substitution matrix to the training data
drawn from the target language and domain.
To reduce the cost of training data con-
struction, our method accepts training exam-
ples in which complete word-by-word align-
ment labels are missing, but instead only
the boundaries of coordinated conjuncts are
marked. We report promising empirical re-
sults in detecting and disambiguating coor-
dinated noun phrases in the GENIA corpus,
despite a relatively small number of train-
ing examples and minimal features are em-
ployed.

1 Introduction

Coordination, along with prepositional phrase at-
tachment, is a major source of syntactic ambiguity
in natural language. Although only a small number
of previous studies in natural language processing
have dealt with coordinations, this does not mean
disambiguating coordinations is easy and negligible;
it still remains one of the difficulties for state-of-the-
art parsers. in Charniak and Johnson’s recent work
(Charniak and Johnson, 2005), for instance, two of
the features incorporated in their parse reranker are
aimed specifically at resolving coordination ambi-
guities.

Previous work on coordinations includes (Agar-
wal and Boggess, 1992; Chantree et al., 2005; Kuro-

∗Equal contribution.

hashi and Nagao, 1994; Nakov and Hearst, 2005;
Okumura and Muraki, 1994; Resnik, 1999). Ear-
lier studies (Agarwal and Boggess, 1992; Okumura
and Muraki, 1994) attempted to find heuristic rules
to disambiguate coordinations. More recent re-
search are concerned with capturing structural sim-
ilarity between conjuncts using thesauri and cor-
pora (Chantree et al., 2005), or web-based statistics
(Nakov and Hearst, 2005).

We identify three problems associated with the
previous work.

1. Most of these studies evaluate the proposed
heuristics against restricted forms of conjunc-
tions. In some cases, they only deal with co-
ordinations with exactly two conjuncts, leaving
the generality of these heuristics unclear.

2. Most of these studies assume that the bound-
aries of coordinations are known in advance,
which, in our opinion, is impractical.

3. The proposed heuristics and statistics capture
many different aspects of coordination. How-
ever, it is not clear how they interact and how
they can be combined.

To address these problems, we propose a new
framework for detecting and disambiguating coor-
dinate conjunctions. Being a discriminative learning
model, it can incorporate a large number of overlap-
ping features encoding various heuristics for coordi-
nation disambiguation. It thus provides a test bed for
examining combined use of the proposed heuristics
as well as new ones. As the weight on each feature
is automatically tuned on the training data, assessing
these weights allows us to evaluate the relative merit
of individual features.
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Figure 1: An alignment between ’writer’ and ’vint-
ner,’ represented as a path in an edit graph

Our learning model is also designed to admit ex-
amples in which only the boundaries of coordinated
conjuncts are marked, to reduce the cost of training
data annotation.

The state space of our model resembles that of
Kurohashi and Nagao’s Japanese coordination de-
tection method (Kurohashi and Nagao, 1994). How-
ever, they considered only the decoding of coordi-
nated phrases and did not address automatic param-
eter tuning.

2 Coordination disambiguation as
sequence alignment

It is widely acknowledged that coordinate conjunc-
tions often consist of two or more conjuncts having
similar syntactic constructs. Our coordination detec-
tion model also follows this observation. To detect
such similar constructs, we use the sequence align-
ment technique (Gusfield, 1997).

2.1 Sequence alignment

Sequence alignment is defined in terms of transfor-
mation of one sequence (string) into another through
an alignment, or a series of edit operations. Each of
the edit operations has an associated cost, and the
cost of an alignment is defined as the total cost of
edit operations involved in the alignment. The min-
imum cost alignment can be computed by dynamic
programming in a state space called an edit graph,
such as illustrated in Figure 1. In this graph, a com-
plete path starting from the upper-left initial vertex
and arriving at the lower-right terminal vertex con-
stitutes a global alignment. Likewise, a partial path
corresponds to a local alignment.

Sequence alignment can also be formulated with
the scores of edit operations instead of their costs. In
this case, the sequence alignment problem is that of
finding a series of edit operations with the maximum

score.

2.2 Edit graph for coordinate conjunctions

A fundamental difference between biological local
sequence alignment and coordination detection is
that the former deals with finding local homologies
between two (or more) distinct sequences, whereas
coordination detection is concerned with local simi-
larities within a single sentence.

The maximal local alignment between two iden-
tical sequences is a trivial (global) alignment of
identity transformation (the diagonal path in an edit
graph). Coordination detection thus reduces to find-
ing off-diagonal partial paths with the highest sim-
ilarity score. Such paths never cross the diagonal,
and we can limit our search space to the upper trian-
gular part of the edit graph, as illustrated in Figure 2.

3 Automatic parameter tuning

Given a suitable substitution matrix, i.e., function
from edit operations to scores, it is straightforward
to find optimal alignments, or coordinate conjunc-
tions in our task, by running the Viterbi algorithm in
an edit graph.

In computational biology, there exist established
substitution matrices (e.g., PAM and BLOSUM)
built on a generative model of mutations and their
associated probabilities.

Such convenient substitution matrices do not ex-
ist for coordination detection. Moreover, optimal
score functions are likely to vary from one domain
(or language) to another. Instead of designing a
specific function for a single domain, we propose a
general discriminative learning model in which the
score function is a linear function of the features as-
signed to vertices and edges in the state space, and
the weight of the features are automatically tuned for
given gold standard data (training examples) drawn
from the application domain. Designing heuristic
rules for coordination detection, such as those pro-
posed in previous studies, translates to the design of
suitable features in our model.

Our learning method is an extension of Collins’s
perceptron-based method for sequence labeling
(Collins, 2002). However, a few incompatibilities
exists between Collins’ sequence labeling method
and edit graphs used for sequence alignment.
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Figure 2: An edit graph for coordinate detection

1. Collins’s method, like the linear-chain condi-
tional random fields (CRFs) (Lafferty et al.,
2001; Sha and Pereira, 2003), seeks for a com-
plete path from the initial vertex to the terminal
using the Viterbi algorithm. In an edit graph, on
the other hand, coordinations are represented
by partial paths. And we somehow need to
complement the partial path to make a com-
plete path.

2. A substitution matrix, which defines the score
of edit operations, can be represented as a func-
tion of features defined on edges. But to deal
with complex coordinations, a more expressive
score function is sometimes desirable, so that
scores can be computed not only on the basis of
a single edit operation, but also on consecutive
edit operations. Edit graphs are not designed to
accommodate features for such a higher-order
interaction of edit operations.

To reconcile these incompatibilities, we derive
a more finer-grained model from the original edit
graph. In presenting the description of our model be-
low, we reserve the terminology ‘vertex’ and ‘edge’
for the original edit graph, and use ‘node’ and ‘arc’
for our new model, to avoid confusion.

3.1 State space for learning coordinate
conjunctions

The new model is also based on the edit graph. In
this model, we create a node for each triple (v, p,e),

(a) (b) (c) (d) (e)

Figure 3: Five node types created for a vertex in an
edit graph: (a) Inside Delete, (b) Inside Insert, (c) In-
side Substitute, (d) Outside Delete, and (e) Outside
Insert.

(a) (b)

Figure 4: Series of edit operations with an equiv-
alent net effect. (a) (Insert,Delete), and (b)
(Delete, Insert). (b) is prohibited in our model.

where v is a vertex in the original edit graph, e ∈
{Delete, Insert,Substitute} is an admissible1 edit op-
eration at v, and p ∈ {Inside,Outside} is a polarity
denoting whether or not the edit operation e is in-
volved in an alignment.

For a node (v, p,e), we call the pair (p,e) its type.
All five possible node types for a single vertex of an
edit graph are shown in Figure 3. We disallow type
(Outside,Substitute), as it is difficult to attribute an
intuitive meaning to substitution when two words
are not aligned (i.e., Outside).

Arcs between nodes are built according to the
transitions allowed in the original edit graph. To be
precise, an arc between node (v1, p1,e1) and node
(v2, p2,e2) is created if and only if the following
three conditions are met. (i) Edit operations e1 and
e2 are admissible at v1 and v2, respectively; (ii) the
sink of the edge for e1 at v1 is v2; and (iii) it is not
the case with p1 = p2 and (e1,e2) = (Delete, Insert).

Condition (iii) is introduced so as to disallow tran-
sition (Delete, Insert) depicted in Figure 4(b). In
contrast, the sequence (Insert,Delete) (Figure 4(a))
is allowed. The net effects of these edit operation
sequences are identical, in that they both skip one
word each from the two sequences to be aligned. As
a result, there is no use in discriminating between
these two, and one of them, namely (Delete, Insert),
is prohibited.

1For a vertex v at the border of an edit graph, some edit op-
erations are not applicable (e.g., Insert and Substitute at vertices
on the right border in Figure 2); we say such operations are in-
admissible at v. Otherwise, an edit operation is admissible.
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Figure 5: A coordination with four conjuncts repre-
sented as (a) chainable, and (b) non-chainable partial
paths. We take (a) as the canonical representation.

3.2 Learning task

By the restriction of condition (iii) introduced above
and the omission of (Outside, Substitute) from the
node types, we can uniquely determine the com-
plete path (from the initial node to the terminal node)
that conjoins all the local alignments by Outside
nodes (which corresponds to edges in the original
edit graph). In Figure 2, the augmented Outside
edges in this unique path are plotted as dotted lines
for illustration.

Thus we obtain a complete path which is compat-
ible with Collins’s perceptron-based sequence learn-
ing method. The objective of the learning algo-
rithms, which we will describe in Section 4, is to
optimize the weight of features so that running the
Viterbi algorithm will yield the same path as the gold
standard.

Because a node in our state space corresponds to
an edge in the original edit graph (see Figure 3), an
arc in our state space is actually a pair of consec-
utive edges (or equivalently, edit operations) in the
original graph. Hence our model is more expressive
than the original edit graph in that the score function
can have a term (feature) defined on a pair of edit
operations instead of one.

3.3 More complex coordinations

Even if a coordination comprises three or more con-
juncts, our model can handle them, as it can be rep-
resented as a set of pairwise local alignments that
are chainable (Gusfield, 1997, Section 13.3). If pair-
wise local alignments are chainable, a unique com-
plete path that conjoins all these alignments can be
determined, allowing the same treatment as the case
with two conjuncts.

For instance, a coordination with four conjuncts

(A, B, C and D) can be decomposed into a set of pair-
wise alignments {(A,B),(B,C),(C,D)} as depicted
in Figure 5(a). This set of alignments are chain-
able and thus constitute the canonical encoding for
this coordination; any other pairwise decomposition
for these four conjuncts, like {(A,B),(B,C),(A,D)}
(Figure 5(b)), is not chainable.

Our model can handle multiple non-nested coor-
dinations in a single sentence as well, as they can
also be decomposed into chainable pairwise align-
ments. It cannot encode nested coordinations like
(A, B, and (C and D)), however.

4 Algorithms

4.1 Reducing the cost of training data
construction

Our learning method is supervised, meaning that it
requires training data annotated with correct labels.
Since a label in our problem is local alignments
(or paths in an edit graph) representing coordina-
tions, the training sentences have to be annotated
with word-by-word alignments.

There are two reasons relaxing this requirement
is desirable. First, it is expensive to construct such
data. Second, there are coordinate conjunctions
in which word-by-word correspondence is unclear
even for humans. In Figure 2, for example, a word-
by-word alignment of ‘standard’ with ‘dense’ is de-
picted, but it might be more natural to regard a word
‘standard’ as being aligned with two words ‘dose
dense’ combined together.

Even if word-by-word alignment is uncertain, the
boundaries of conjuncts are often obvious, and it is
also much easier for human annotators to mark only
the beginning and end of each conjunct. Thus we
would like to allow for training examples in which
only alignment boundaries are specified, instead of
a full word-by-word alignment.

For these examples, conjunct boundaries corre-
sponds to a rectangular region rather than a sin-
gle path in an edit graph. The shaded box in Fig-
ure 2 illustrates the rectangular region determined by
the boundaries of an alignment between the phrases
“182% for the dose dense arm” and “99% for the
standard arm.” There are many possible alignment
paths in this box, among which we do not know
which one is correct (or even likely). To deal with
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input: Set of examples S = {(xi,Yi)}
Iteration cutoff T

output: Averaged weight vector w̄
1: w̄← 0; w← 0
2: for t ← 1 . . . T do
3: Δw← 0
4: for each (xi,Yi) ∈ S do
5: y← argmaxy∈Yi w · f (xi,y)
6: y′ ← argmaxy∈A(xi) w · f (xi,y)
7: Δ f ← f (xi,y)− f (xi,y′)
8: Δw← Δw+Δ f
9: end for

10: if Δw = 0 then
11: return w̄
12: end if
13: w← w+Δw
14: w̄← [(t−1)w̄+w]/t
15: end for
16: return w̄

Figure 6: Path-based algorithm

this difficulty, we propose two simple heuristics we
call the (i) path-based and (ii) box-based methods.
As mentioned earlier, both of these methods are
based on Collins’s averaged-perceptron algorithm
for sequence labeling (Collins, 2002).

4.2 Path-based method

Our first method, which we call the “path-based”
algorithm, is shown in Figure 6. We denote by A(x)
all possible alignments (paths) over x. The algorithm
receives T , the maximum number of iterations, and
a set of examples S = {(xi,Yi)} as input, where xi is a
sentence (a sequence of words with their attributes,
e.g., part-of-speech, lemma, prefixes, and suffixes)
and Yi ⊂ A(xi) is the set of admissible alignments
(paths) for xi. When a sentence is fully annotated
with a word-by-word alignment y, Yi = {y} is a sin-
gleton set. In general boundary-only examples we
described in Section 4.1, Yi holds all possible align-
ments compatible with the marked range, or equiv-
alently, paths that pass through the upper-left and
lower-right corners of a rectangular region. Note
that it is not necessary to explicitly enumerate all the
member paths of Yi; the set notation here is only for
the sake of presentation.

The external function f (x,y) returns a vector
(called the global feature vector in (Sha and Pereira,
2003)) of the number of feature occurrences along
the alignment path y. In the beginning (line 5 in the
figure) of the inner loop, the target path (alignment)

input: Set of examples S = {(xi,Yi)}
Iteration cutoff T

output: Averaged weight vector w̄
1: w̄← 0; w← 0
2: for each (xi,Yi) ∈ S do
3: gi← (1/|Yi|)∑y∈Yi

f (xi,y)
4: end for
5: for t ← 1 . . . T do
6: Δw← 0
7: for each (xi,Yi) ∈ S do
8: y′ ← argmaxy∈A(xi) w · f (xi,y)
9: Convert y′ into its box representation Y ′

10: g′ ← (1/|Y ′i |)∑y∈Y ′i f (xi,y)
11: Δ f ← gi−g′
12: Δw← Δw+Δ f
13: end for
14: if Δw = 0 then
15: return w̄
16: end if
17: w← w+Δw
18: w̄← [(t−1)w̄+w]/t
19: end for
20: return w̄

Figure 7: Box-based algorithm

is recomputed with the current weight vector w. The
argmax in lines 5 and 6 can be computed efficiently
(O(n2), where n is the number of words in x) by run-
ning a pass of the Viterbi algorithm in the edit graph
for x. The weight vector w varies between iterations,
and so does the most likely alignment with respect
to w. Hence the recomputation in line 5 is needed.

4.3 Box-based method

Our next method, called “box-based,” is designed
on the following heuristic. Given a rectangle region
representing a local alignment (hence all nodes in
the region are of polarity Inside) in an edit graph,
we distribute feature weights in proportion to the
probability of a node (or an arc) being passed by a
path from the initial (upper left) node to the termi-
nal (lower right) node of the rectangle. We assume
paths are uniformly distributed.

Figure 8 displays an 8× 8 sub-grid of an edit
graph. The figure under each vertex shows the num-
ber of paths passing through the vertex. Vertices
near the upper-left and the lower-right corner have
a large frequency, and the frequency drops exponen-
tially towards the top right corner and the bottom
left corner, hence placing a strong bias on the paths
near diagonals. This distribution fits our preference
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Figure 8: Number of paths passing through the ver-
tices of an 8×8 grid.

towards alignments with a larger number of substi-
tutions.

The pseudo-code for the box-based algorithm is
shown in Figure 7. For each example xi and its pos-
sible target labels (alignments) Yi, this algorithm first
(line 3) computes and stores in the vector gi the aver-
age number of feature occurrences in all possible tar-
get paths in Yi. This quantity can be computed sim-
ply by summing over all nodes and edges feature oc-
currences multiplied by the pre-computed frequency
of each nodes and arcs at which these features occur.
analogously to the forward-backward algorithm. In
each iteration, the algorithm scans every example
(lines 7–13), computing the Viterbi path y′ (line 8)
according to the current weight vector w. Line 9
then converts y′ to its box representation Y ′, by se-
quentially collapsing consecutive Inside nodes in y′

as a box. For instance, let y′ be the local alignment
depicted as the bold line in Figure 2. The box Y ′

computed in line 9 for this y′ is the shaded area in the
figure. In parallel to the initialization step in line 3,
we store in g′ the average feature occurrences in Y ′

and update the current weight vector w by the differ-
ence between the target gi and g′. These steps can
be interpreted as a Viterbi approximation for com-
puting the optimal set Y ′ of alignments directly.

5 Related work

5.1 Discriminative learning of edit distance

In our model, the state space of sequence alignment,
or edit graph, is two-dimensional (which is actu-
ally three-dimensional if the dimension for labels is
taken into account). This is contrastive to the one
dimensional models used by Collins’s perceptron-
based sequence method (Collins, 2002) which our
algorithms are based upon, and by the linear-chain
CRFs.

McCallum et al. (McCallum et al., 2005) pro-
posed a CRF tailored to learning string edit distance
for the identity uncertainty problem. The state space
in their work is two dimensional just like our model,
but it is composed of two decoupled subspaces, each
corresponding to ‘match’ and ‘mismatch,’ thus shar-
ing only the initial state. It is not possible to make
a transition from a state in the ‘match’ state space to
the ‘mismatch’ space (and vice versa). As we can
see from the decoupled state space, this method is
based on global alignment rather than local align-
ment; it is not clear whether their method can iden-
tify local homologies in sequences. Our method uses
a single state space in which both ‘match (inside)’
and ‘mismatch (outside)’ nodes co-exist and transi-
tion between them is permitted.

5.2 Inverse sequence alignment in
computational biology

In computational biology, the estimation of a sub-
stitution matrix from data is called the inverse se-
quence alignment problem. Until recently, there
have been a relatively small number of papers in
this field despite a large body of literature in se-
quence alignment. Theoretical studies in the inverse
sequence alignment include (Pachter and Sturmfels,
2004; Sun et al., 2004). Recently, CRFs have been
applied for optimizing the substitution matrix in the
context of global protein sequence alignment (Do et
al., 2006).

6 Empirical evaluation

6.1 Dataset and Task

We used the GENIA Treebank beta corpus (Kim et
al., 2003)2 for evaluation of our methods. The cor-

2http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
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pus consists of 500 parsed abstracts in Medline with
a total of 4529 sentences.

Although the Penn Treebank Wall Street Journal
(WSJ) is the de facto standard corpus for evaluating
chunking and parsing performance, it lacks adequate
structural information on coordinate conjunctions,
and therefore does not serve our purpose. Many
coordinations in the Penn Treebank are given a flat
bracketing like (A, B, and C D), and thus we cannot
tell which of ((A, B, and C) D) and ((A), (B), and
(C D)) gives a correct alignment. The GENIA cor-
pus, in contrast, distinguishes ((A, B, and C) D) and
((A), (B), and (C D)) explicitly, by providing more
detailed bracketing. In addition, the corpus contains
an explicit tag “COOD” for marking coordinations.

To avoid nested coordinations, which admittedly
require techniques other than the one proposed in
this paper, we selected from the GENIA corpus sen-
tences in which the conjunction “and” occurs just
once. After this operation, the number of sentences
reduced to 1668, from which we further removed 32
that are not associated with the ‘COOD’ tag, and
3 more whose annotated tree structures contained
obvious errors. Of the remaining 1633 sentences,
1061 were coordinated noun phrases annotated with
NP-COOD tags, 226 coordinated verb phrases (VP-
COOD), 142 coordinated adjective phrases (ADJP-
COOD), and so on. Because the number of VP-
COOD, ADJP-COOD, and other types of coordi-
nated phrases are too small to make a meaningful
benchmark, we focus on coordinated noun phrases
in this experiment.

The task hence amounts to identifying coordi-
nated NPs and their constituent conjuncts in the
1633 sentences, all of which contain a coordination
marker “and” but only 1061 of which are actually
coordinated NPs.

6.2 Baselines

We used several publicly available full parsers
as baselines: (i) the Bikel parser (Bikel,
2005) version 0.9.9c with configuration file
bikel.properties (denoted as Bikel/Bikel),
(ii) the Bikel parser in the Collins parser emula-
tion mode (using collins.properties file)
(Bikel/Collins), and (iii) Charniak and Johnson’s
reranking parser (Charniak-Johnson) (Charniak and
Johnson, 2005). We trained Bikel’s parser and its

Collins emulator with the GENIA corpus, WSJ, and
the combination of the two. Charniak and Johnson’s
parser was used as distributed at Charniak’s home
page (and is WSJ trained).

Another baseline we used is chunkers based
on linear-chain CRFs and the standard BIO la-
bels. We trained two types of CRF-based chun-
kers by using different BIO sequences, one for
the conjunct bracketing and the other for coor-
dination bracketing. The chunkers were imple-
mented with T. Kudo’s CRF++ package version
0.45. We varied its regularization parameters C
among C ∈ {0.01,0.1,1,10,100,1000}, and the best
results among these are reported below.

6.3 Features

Let x = (x1, . . . ,xn) be a sentence, with its member
xk a vector of attributes for the kth word. The at-
tributes include word surface, part-of-speech (POS),
and suffixes, among others.

Table 1 summarizes (i) the features assigned to a
node whose corresponding edge in the original edit
graph for x is emanating from row i and column j,
and (ii) the features assigned to the arcs (consisting
of two edges in the original edit graph) whose joint
(the vertex between the two edges) is a vertex at row
i and column j.

We also tested the path-based and box-based
methods, and the CRF chunkers both with and with-
out the word and suffix features.

Although this is not a requirement of our model or
algorithms, every feature we use in this experiment
is binary; if the condition associated with a feature
is satisfied, the feature takes a value of 1; otherwise,
it is 0. A condition typically asks whether or not
specific attributes match those at a current node, arc,
or their neighbors.

We used the POS tags from the GENIA corpus
as the POS attribute. The morphological features
include 3- and 4-gram suffixes and indicators of
whether a word includes capital letters, hyphens, and
digits.

For the baseline CRF-based chunkers, we assign
the word, POS (from GENIA), and the morphologi-
cal features to nodes, and the POS features to edges.
The feature set is identical to those used for our pro-
posed methods, except for features defined on row-
column combination (i.e., those defined over both i
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Table 1: Features for the proposed methods
Substitute (diagonal) nodes
(∗,Substitute,∗)

Indicators of the word, POS, and morphological attributes of xi, x j , (xi−1,xi),
(xi,xi+1), (x j−1,x j), (x j,x j+1), and (xi, x j), respectively combined with the
type of the node.
For each of the word, POS, and morphological attributes, an indicator of
whether the respective attribute is identical in xi and x j , combined with the
type of the node.

Delete (vertical) nodes
(∗,Delete,∗)

Indicators of the word, POS, and morphological attributes of xi, x j , x j−1,
(xi−1,xi), (xi,xi+1), and (x j−1,x j), combined with the type of the node.

Insert (horizontal) nodes
(∗, Insert,∗)

Indicators of the word, POS, and morphological attributes of xi, xi−1, x j,
(xi−1,xi), (x j−1,x j), and (x j, x j+1), combined with the type of the node.

Any arcs
(∗,∗,∗)→ (∗,∗,∗)

Indicators of the POS attribute of xi, xi−1, x j, x j−1, (xi−2,xi−1), (xi−1,xi),
(xi,xi+1), (x j−2,x j−1), (x j−1,x j), (x j,x j+1), (xi−1,x j−1), (xi−1,x j), (xi, x j−1)
and (xi,x j), combined with the type pair of the arc.

Arcs between nodes of different polarity
(∗, Inside,∗)→ (∗,Outside,∗) and
(∗,Outside,∗)→ (∗, Inside,∗)

Indicator of the distance j− i between two words xi and x j, combined with the
type pair of the arc.

and j in Table 1. The latter cannot be incorporated
as a local features in chunkers based on linear chain.

For the Bikel (and its Collins emulation) parsers
which accepts POS tags output by external taggers
upon testing, we gave them the POS tags from the
GENIA corpus, for fair comparison with the pro-
posed methods and CRF-based chunkers.

6.4 Evaluation criteria

We employed two evaluation criteria: (i) correctness
of the conjuncts output by the algorithm, and (ii) cor-
rectness of the range of coordinations as a whole.

For the correctness of conjuncts, we further use
two evaluation criteria. The first evaluation method
(“pairwise evaluation”) is based on the decomposi-
tion of coordinations into the canonical set of pair-
wise alignments, as described in Section 3.3. After
the set of pairwise alignments is obtained, each pair-
wise alignment is transformed into a box surrounded
by their boundaries. Using these boxes, we evaluate
precision, recall and F rates through the following
definition. The precision measures how many of the
boxes output by the algorithm exactly match those
in the gold standard, and the recall rate is the per-
centage of boxes found by the algorithm. The F rate
is the harmonic mean of the precision and the recall.

The second evaluation method (“chunk-based
evaluation”) for conjuncts is based on whether the
algorithm correctly outputs the beginning and end of
each conjunct, in the same manner as the chunking
tasks. Here, we adopt the evaluation criteria for the

CoNLL 99 NP bracketing task3; the precision equals
how many of the NP conjuncts output by the algo-
rithm are correct, and the recall is the percentage of
NP conjuncts found by the algorithm.

Of these two evaluation methods for conjuncts, it
is harder to obtain a higher pairwise evaluation score
than the chunk-based evaluation. To be counted as a
true positive in the pairwise evaluation, two consec-
utive chunks must be output correctly by the algo-
rithm.

For the correctness of the coordination range, we
check if both the start of the first coordinated con-
junct and the end of the last conjunct in the gold
match those output by the algorithm The reason we
evaluate coordination range is to compare our pro-
posed method with the full parsers trained on WSJ
(but applied to GENIA). Although WSJ and GE-
NIA differ in the way conjuncts are annotated, they
are mostly identical on how the range of coordina-
tions are annotated, and hence comparison is feasi-
ble in terms of coordination range. For the baseline
parsers, we regard the bracketing directly surround-
ing the coordination marker “and” as their output.

In (Clegg and Shepherd, 2007), an F score of 75.5
is reported for the Bikel parser on coordination de-
tection. Their evaluation is based on dependencies,
which is different from our evaluation criteria which
are all based on boundaries. Generally speaking, our
evaluation criterion seems stricter, as exemplified in
Figures 7 and 8 of Clegg and Shepherd’s paper; in
these figures, our evaluation criterion would result

3http://www.cnts.ua.ac.be/conll99/npb/
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Table 2: Performance on conjunct bracketing. P: precision (%), R: recall (%), F: F rate.

Pairwise evaluation Chunk-based evaluation
Method P R F P R F
Path-based method 61.4 56.2 58.7 70.9 66.9 68.9
Path-based method without word and suffix features 61.7 58.8 60.2 71.2 69.7 70.5
Box-based method 60.6 58.3 59.4 70.5 69.1 69.8
Box-based method without word and suffix features 59.5 58.3 58.9 69.7 69.5 69.6
Linear-chain CRF chunker (conjunct bracketing) 62.6 51.4 56.4 71.0 66.1 68.5
Bikel/Collins, trained with GENIA 50.0 48.6 49.3 65.0 64.2 64.6
Bikel/Bikel, trained with GENIA 50.1 47.8 49.0 63.9 61.3 62.6

Table 3: Performance on coordination bracketing. P: precision (%), R: recall (%), F: F rate.

Method P R F
Path-based method 58.2 55.3 56.7
Path-based method without words and suffix features 57.7 56.6 57.2
Box-based method 55.6 54.4 55.0
Box-based method without words and suffix features 54.8 54.6 54.7
Linear-chain CRF chunker, trained with conjunct bracketing 43.9 46.7 45.3
Linear-chain CRF chunker, trained with coordination bracketing 58.4 51.0 54.5
Bikel/Collins, trained with GENIA 44.0 45.4 44.7
Bikel/Collins, trained with WSJ 42.3 43.2 42.7
Bikel/Collins, trained with GENIA+WSJ 43.3 45.1 44.1
Bikel/Bikel, trained with GENIA 44.8 45.4 45.1
Bikel/Bikel, trained with WSJ 40.7 41.5 41.1
Bikel/Bikel, trained with GENIA+WSJ 43.9 45.8 44.9
Charniak-Johnson reranking parser 48.3 45.2 46.7

in zero true positive, whereas their evaluation counts
the dependency arc from ‘genes’ to ‘human’ as one
true positive.

6.5 Results

The results of conjunct and coordination bracketing
are shown in Tables 2 and 3, respectively. These
are the results of a five-fold cross validation. We
ran the proposed methods until convergence or the
cutoff iteration of T = 10000, whichever comes first.

The path-based method (without words and suf-
fixes) and box-based method (with full features)
each achieved 2.0 and 1.3 point improvements over
the CRF chunker in terms of the F score in conjunct
identification (chunk-based evaluation), 3.8 and 3.0
point improvement in terms of pairwise evaluation,
and 2.7 and 0.5 points in coordinate identification,
respectively. Our methods also showed a perfor-
mance considerably higher than the baseline parsers.

The performance of the path-based method was
better when the word and suffix features were re-
moved, while the box-based method and CRF chun-
kers performed better with these features.

7 Conclusions

We have proposed a new coordination learning and
disambiguation method that can incorporate many
different features, and automatically optimize their
weights on training data.

In the experiment of Section 6, the proposed
method obtained a performance superior to a linear-
chain chunker and to the state-of-art full parsers.

We used only syntactic and morphological fea-
tures, and did not use external similarity measures
like thesauri and corpora, although they are reported
to be effective for disambiguating coordinations. We
note that it is easy to incorporate such external sim-
ilarity measures as a feature in our model, thanks to
its two-dimensional state space. The similarity of
two words derived from an external knowledge base
can be assigned to a Substitute node at a correspond-
ing location in the state space in a straightforward
manner. This is a topic we are currently working on.

We are also planning to reimplement our algo-
rithms using CRFs instead of the averaged percep-
tron algorithm.
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