
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 122–131, Prague, June 2007. c©2007 Association for Computational Linguistics

Characterizing the Errors of Data-Driven Dependency Parsing Models

Ryan McDonald
Google Inc.

76 Ninth Avenue
New York, NY 10011

ryanmcd@google.com

Joakim Nivre
Växjö University Uppsala University

35195 Växjö 75126 Uppsala
Sweden Sweden
nivre@msi.vxu.se

Abstract

We present a comparative error analysis
of the two dominant approaches in data-
driven dependency parsing: global, exhaus-
tive, graph-based models, and local, greedy,
transition-based models. We show that, in
spite of similar performance overall, the two
models produce different types of errors, in
a way that can be explained by theoretical
properties of the two models. This analysis
leads to new directions for parser develop-
ment.

1 Introduction

Syntactic dependency representations have a long
history in descriptive and theoretical linguistics and
many formal models have been advanced (Hudson,
1984; Mel’čuk, 1988; Sgall et al., 1986; Maruyama,
1990). A dependency graph of a sentence repre-
sents each word and its syntactic modifiers through
labeled directed arcs, as shown in Figure 1, taken
from the Prague Dependency Treebank (Böhmová et
al., 2003). A primary advantage of dependency rep-
resentations is that they have a natural mechanism
for representing discontinuous constructions, aris-
ing from long distance dependencies or free word
order, through non-projective dependency arcs, ex-
emplified by the arc from jedna to Z in Figure 1.

Syntactic dependency graphs have recently
gained a wide interest in the computational lin-
guistics community and have been successfully em-
ployed for many problems ranging from machine
translation (Ding and Palmer, 2004) to ontology

Figure 1: Example dependency graph.

construction (Snow et al., 2004). In this work we
focus on a common parsing paradigm called data-
driven dependency parsing. Unlike grammar-based
parsing, data-driven approaches learn to produce de-
pendency graphs for sentences solely from an anno-
tated corpus. The advantage of such models is that
they are easily ported to any domain or language in
which annotated resources exist.

As evident from the CoNLL-X shared task on de-
pendency parsing (Buchholz and Marsi, 2006), there
are currently two dominant models for data-driven
dependency parsing. The first is what Buchholz and
Marsi (2006) call the “all-pairs” approach, where ev-
ery possible arc is considered in the construction of
the optimal parse. The second is the “stepwise” ap-
proach, where the optimal parse is built stepwise and
where the subset of possible arcs considered depend
on previous decisions. Theoretically, these models
are extremely different. The all-pairs models are
globally trained, use exact (or near exact) inference
algorithms, and define features over a limited history
of parsing decisions. The stepwise models use local
training and greedy inference algorithms, but define
features over a rich history of parse decisions. How-
ever, both models obtain similar parsing accuracies

122



McDonald Nivre
Arabic 66.91 66.71

Bulgarian 87.57 87.41
Chinese 85.90 86.92

Czech 80.18 78.42
Danish 84.79 84.77
Dutch 79.19 78.59

German 87.34 85.82
Japanese 90.71 91.65

Portuguese 86.82 87.60
Slovene 73.44 70.30
Spanish 82.25 81.29
Swedish 82.55 84.58
Turkish 63.19 65.68
Overall 80.83 80.75

Table 1: Labeled parsing accuracy for top scoring
systems at CoNLL-X (Buchholz and Marsi, 2006).

on a variety of languages, as seen in Table 1, which
shows results for the two top performing systems in
the CoNLL-X shared task, McDonald et al. (2006)
(“all-pairs”) and Nivre et al. (2006) (“stepwise”).

Despite the similar performance in terms of over-
all accuracy, there are indications that the two types
of models exhibit different behaviour. For example,
Sagae and Lavie (2006) displayed that combining
the predictions of both parsing models can lead to
significantly improved accuracies. In order to pave
the way for new and better methods, a much more
detailed error analysis is needed to understand the
strengths and weaknesses of different approaches.
In this work we set out to do just that, focusing on
the two top performing systems from the CoNLL-X
shared task as representatives of the two dominant
models in data-driven dependency parsing.

2 Two Models for Dependency Parsing

2.1 Preliminaries

Let L = {l1, . . . , l|L|} be a set of permissible arc
labels. Let x = w0, w1, . . . , wn be an input sen-
tence where w0=root. Formally, a dependency graph
for an input sentence x is a labeled directed graph
G = (V,A) consisting of a set of nodes V and a
set of labeled directed arcs A ⊆ V × V × L, i.e., if
(i, j, l) ∈ A for i, j ∈ V and l ∈ L, then there is an

arc from node i to node j with label l in the graph.
A dependency graph G for sentence x must satisfy
the following properties:

1. V = {0, 1, . . . , n}

2. If (i, j, l) ∈ A, then j 6= 0.

3. If (i, j, l) ∈ A, then for all i′ ∈ V − {i} and
l′ ∈ L, (i′, j, l′) /∈ A.

4. For all j ∈ V −{0}, there is a (possibly empty)
sequence of nodes i1, . . . , im∈V and labels
l1, . . . , lm, l∈L such that (0, i1, l1),(i1, i2, l2),
. . . , (im, j, l)∈A.

The constraints state that the dependency graph
spans the entire input (1); that the node 0 is a root
(2); that each node has at most one incoming arc
in the graph (3); and that the graph is connected
through directed paths from the node 0 to every other
node in the graph (4). A dependency graph satisfy-
ing these constraints is a directed tree originating out
of the root node 0. We say that an arc (i, j, l) is non-
projective if not all words k occurring between i and
j in the linear order are dominated by i (where dom-
inance is the transitive closure of the arc relation).

2.2 Global, Exhaustive, Graph-Based Parsing
For an input sentence, x = w0, w1, . . . , wn consider
the dense graph Gx = (Vx, Ax) where:

1. Vx = {0, 1, . . . , n}
2. Ax = {(i, j, l) | ∀ i, j ∈ Vx and l ∈ L}

Let D(Gx) represent the subgraphs of graph Gx

that are valid dependency graphs for the sentence
x. Since Gx contains all possible labeled arcs, the
set D(Gx) must necessarily contain all valid depen-
dency graphs for x.

Assume that there exists a dependency arc scoring
function, s : V × V × L → R. Furthermore, define
the score of a graph as the sum of its arc scores,

s(G = (V,A)) =
∑

(i,j,l)∈A

s(i, j, l)

The score of a dependency arc, s(i, j, l) represents
the likelihood of creating a dependency from word
wi to word wj with the label l. If the arc score func-
tion is known a priori, then the parsing problem can
be stated as,

123



G = arg max
G∈D(Gx)

s(G) = arg max
G∈D(Gx)

∑
(i,j,l)∈A

s(i, j, l)

This problem is equivalent to finding the highest
scoring directed spanning tree in the graph Gx origi-
nating out of the root node 0, which can be solved for
both the labeled and unlabeled case in O(n2) time
(McDonald et al., 2005b). In this approach, non-
projective arcs are produced naturally through the
inference algorithm that searches over all possible
directed trees, whether projective or not.

The parsing models of McDonald work primarily
in this framework. To learn arc scores, these mod-
els use large-margin structured learning algorithms
(McDonald et al., 2005a), which optimize the pa-
rameters of the model to maximize the score mar-
gin between the correct dependency graph and all
incorrect dependency graphs for every sentence in a
training set. The learning procedure is global since
model parameters are set relative to the classification
of the entire dependency graph, and not just over sin-
gle arc attachment decisions. The primary disadvan-
tage of these models is that the feature representa-
tion is restricted to a limited number of graph arcs.
This restriction is required so that both inference and
learning are tractable.

The specific model studied in this work is that
presented by McDonald et al. (2006), which factors
scores over pairs of arcs (instead of just single arcs)
and uses near exhaustive search for unlabeled pars-
ing coupled with a separate classifier to label each
arc. We call this system MSTParser, which is also
the name of the freely available implementation.1

2.3 Local, Greedy, Transition-Based Parsing

A transition system for dependency parsing defines

1. a set C of parser configurations, each of which
defines a (partially built) dependency graph G

2. a set T of transitions, each a function t :C→C

3. for every sentence x = w0, w1, . . . , wn,

(a) a unique initial configuration cx

(b) a set Cx of terminal configurations

1http://mstparser.sourceforge.net

A transition sequence Cx,m = (cx, c1, . . . , cm) for a
sentence x is a sequence of configurations such that
cm ∈ Cx and, for every ci (ci 6= cx), there is a tran-
sition t ∈ T such that ci = t(ci−1). The dependency
graph assigned to x by Cx,m is the graph Gm defined
by the terminal configuration cm.

Assume that there exists a transition scoring func-
tion, s : C × T → R. The score of a transition
t in a configuration c, s(c, t), represents the likeli-
hood of taking transition t out of configuration c.
The parsing problem consists in finding a terminal
configuration cm ∈ Cx, starting from the initial
configuration cx and taking the optimal transition
t∗ = arg maxt∈T s(c, t) out of every configuration
c. This can be seen as a greedy search for the optimal
dependency graph, based on a sequence of locally
optimal decisions in terms of the transition system.

Many transition systems for data-driven depen-
dency parsing are inspired by shift-reduce parsing,
where configurations contain a stack for storing par-
tially processed nodes. Transitions in such systems
add arcs to the dependency graph and/or manipu-
late the stack. One example is the transition system
defined by Nivre (2003), which parses a sentence
x = w0, w1, . . . , wn in O(n) time, producing a pro-
jective dependency graph satisfying conditions 1–4
in section 2.1, possibly after adding arcs (0, i, lr)
for every node i 6= 0 that is a root in the output
graph (where lr is a special label for root modifiers).
Nivre and Nilsson (2005) showed how the restric-
tion to projective dependency graphs could be lifted
by using graph transformation techniques to pre-
process training data and post-process parser output,
so-called pseudo-projective parsing.

To learn transition scores, these systems use dis-
criminative learning methods, e.g., memory-based
learning or support vector machines. The learning
procedure is local since only single transitions are
scored, not entire transition sequences. The primary
advantage of these models is that features are not re-
stricted to a limited number of graph arcs but can
take into account the entire dependency graph built
so far. The main disadvantage is that the greedy
parsing strategy may lead to error propagation.

The specific model studied in this work is that pre-
sented by Nivre et al. (2006), which uses labeled
pseudo-projective parsing with support vector ma-
chines. We call this system MaltParser, which is also

124



the name of the freely available implementation.2

2.4 Comparison

These models differ primarily with respect to three
important properties.

1. Inference: MaltParser uses a transition-based
inference algorithm that greedily chooses the
best parsing decision based on a trained clas-
sifier and current parser history. MSTParser
instead uses near exhaustive search over a
dense graphical representation of the sentence
to find the dependency graph that maximizes
the score.

2. Training: MaltParser trains a model to make
a single classification decision (choose the next
transition). MSTParser trains a model to maxi-
mize the global score of correct graphs.

3. Feature Representation: MaltParser can in-
troduce a rich feature history based on previ-
ous parser decisions. MSTParser is forced to
restrict the score of features to a single or pair
of nearby parsing decisions in order to make
exhaustive inference tractable.

These differences highlight an inherent trade-off be-
tween exhaustive inference algorithms plus global
learning and expressiveness of feature representa-
tions. MSTParser favors the former at the expense
of the latter and MaltParser the opposite.

3 The CoNLL-X Shared Task

The CoNLL-X shared task (Buchholz and Marsi,
2006) was a large-scale evaluation of data-driven de-
pendency parsers, with data from 13 different lan-
guages and 19 participating systems. The official
evaluation metric was the labeled attachment score
(LAS), defined as the percentage of tokens, exclud-
ing punctuation, that are assigned both the correct
head and the correct dependency label.3

The output of all systems that participated in the
shared task are available for download and consti-
tute a rich resource for comparative error analysis.

2http://w3.msi.vxu.se/users/nivre/research/MaltParser.html
3In addition, results were reported for unlabeled attachment

score (UAS) (tokens with the correct head) and label accuracy
(LA) (tokens with the correct label).

The data used in the experiments below are the out-
puts of MSTParser and MaltParser for all 13 lan-
guages, together with the corresponding gold stan-
dard graphs used in the evaluation. We constructed
the data by simply concatenating a system’s output
for every language. This resulted in a single out-
put file for each system and a corresponding single
gold standard file. This method is sound because the
data sets for each language contain approximately
the same number of tokens – 5,000. Thus, evalu-
ating system performance over the aggregated files
can be roughly viewed as measuring system perfor-
mance through an equally weighted arithmetic mean
over the languages.

It could be argued that a language by language
comparison would be more appropriate than com-
paring system performance across all languages.
However, as table Table 1 shows, the difference in
accuracy between the two systems is typically small
for all languages, and only in a few cases is this
difference significant. Furthermore, by aggregating
over all languages we gain better statistical estimates
of parser errors, since the data set for each individual
language is very small.

4 Error Analysis

The primary purpose of this study is to characterize
the errors made by standard data-driven dependency
parsing models. To that end, we present a large set of
experiments that relate parsing errors to a set of lin-
guistic and structural properties of the input and pre-
dicted/gold standard dependency graphs. We argue
that the results can be correlated to specific theoreti-
cal aspects of each model – in particular the trade-off
highlighted in Section 2.4.

For simplicity, all experiments report labeled
parsing accuracies. Identical experiments using un-
labeled parsing accuracies did not reveal any addi-
tional information. Furthermore, all experiments are
based on the data from all 13 languages together, as
explained in section 3.

4.1 Length Factors

It is well known that parsing systems tend to have
lower accuracies for longer sentences. Figure 2
shows the accuracy of both parsing models relative
to sentence length (in bins of size 10: 1–10, 11–20,

125



10 20 30 40 50 50+
Sentence Length (bins of size 10)

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

De
pe

nd
en

cy
 A

cc
ur

ac
y MSTParser

MaltParser

Figure 2: Accuracy relative to sentence length.

etc.). System performance is almost indistinguish-
able. However, MaltParser tends to perform better
on shorter sentences, which require the greedy in-
ference algorithm to make less parsing decisions. As
a result, the chance of error propagation is reduced
significantly when parsing these sentences. The fact
that MaltParser has a higher accuracy (rather than
the same accuracy) when the likelihood of error
propagation is reduced comes from its richer feature
representation.

Another interesting property is accuracy relative
to dependency length. The length of a dependency
from word wi to word wj is simply equal to |i− j|.
Longer dependencies typically represent modifiers
of the root or the main verb in a sentence. Shorter
dependencies are often modifiers of nouns such as
determiners or adjectives or pronouns modifying
their direct neighbours. Figure 3 measures the pre-
cision and recall for each system relative to depen-
dency lengths in the predicted and gold standard de-
pendency graphs. Precision represents the percent-
age of predicted arcs of length d that were correct.
Recall measures the percentage of gold standard arcs
of length d that were correctly predicted.

Here we begin to see separation between the two
systems. MSTParser is far more precise for longer
dependency arcs, whereas MaltParser does better
for shorter dependency arcs. This behaviour can
be explained using the same reasoning as above:
shorter arcs are created before longer arcs in the
greedy parsing procedure of MaltParser and are less
prone to error propagation. Theoretically, MST-
Parser should not perform better or worse for edges
of any length, which appears to be the case. There
is still a slight degradation, but this can be attributed
to long dependencies occurring more frequently in
constructions with possible ambiguity. Note that

even though the area under the curve is much larger
for MSTParser, the number of dependency arcs with
a length greater than ten is much smaller than the
number with length less than ten, which is why the
overall accuracy of each system is nearly identical.
For all properties considered here, bin size generally
shrinks in size as the value on the x-axis increases.

4.2 Graph Factors

The structure of the predicted and gold standard de-
pendency graphs can also provide insight into the
differences between each model. For example, mea-
suring accuracy for arcs relative to their distance to
the artificial root node will detail errors at different
levels of the dependency graph. For a given arc, we
define this distance as the number of arcs in the re-
verse path from the modifier of the arc to the root.
Figure 4 plots the precision and recall of each sys-
tem for arcs of varying distance to the root. Preci-
sion is equal to the percentage of dependency arcs in
the predicted graph that are at a distance of d and are
correct. Recall is the percentage of dependency arcs
in the gold standard graph that are at a distance of d
and were predicted.

Figure 4 clearly shows that for arcs close to the
root, MSTParser is much more precise than Malt-
Parser, and vice-versa for arcs further away from the
root. This is probably the most compelling graph
given in this study since it reveals a clear distinction:
MSTParser’s precision degrades as the distance to
the root increases whereas MaltParser’s precision in-
creases. The plots essentially run in opposite direc-
tions crossing near the middle. Dependency arcs fur-
ther away from the root are usually constructed early
in the parsing algorithm of MaltParser. Again a re-
duced likelihood of error propagation coupled with
a rich feature representation benefits that parser sub-
stantially. Furthermore, MaltParser tends to over-
predict root modifiers, because all words that the
parser fails to attach as modifiers are automatically
connected to the root, as explained in section 2.3.
Hence, low precision for root modifiers (without a
corresponding drop in recall) is an indication that the
transition-based parser produces fragmented parses.

The behaviour of MSTParser is a little trickier to
explain. One would expect that its errors should be
distributed evenly over the graph. For the most part
this is true, with the exception of spikes at the ends

126



0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 P

re
cis

io
n MSTParser

MaltParser

0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

Figure 3: Dependency arc precision/recall relative to predicted/gold dependency length.

of the plot. The high performance for root modifica-
tion (distance of 1) can be explained through the fact
that this is typically a low entropy decision – usu-
ally the parsing algorithm has to determine the main
verb from a small set of possibilities. On the other
end of the plot there is a sharp downwards spike for
arcs of distance greater than 10. It turns out that
MSTParser over-predicts arcs near the bottom of the
graph. Whereas MaltParser pushes difficult parsing
decisions higher in the graph, MSTParser appears to
push these decisions lower.

The next graph property we will examine aims to
quantify the local neighbourhood of an arc within
a dependency graph. Two dependency arcs, (i, j, l)
and (i′, j′, l′) are classified as siblings if they repre-
sent syntactic modifications of the same word, i.e.,
i = i′. Figure 5 measures the precision and recall
of each system relative to the number of predicted
and gold standard siblings of each arc. There is
not much to distinguish between the parsers on this
metric. MSTParser is slightly more precise for arcs
that are predicted with more siblings, whereas Malt-
Parser has slightly higher recall on arcs that have
more siblings in the gold standard tree. Arcs closer
to the root tend to have more siblings, which ties this
result to the previous ones.

The final graph property we wish to look at is the
degree of non-projectivity. The degree of a depen-
dency arc from word w to word u is defined here
as the number of words occurring between w and u
that are not descendants of w and modify a word that
does not occur between w and u (Nivre, 2006). In
the example from Figure 1, the arc from jedna to Z
has a degree of one, and all other arcs have a degree
of zero. Figure 6 plots dependency arc precision and
recall relative to arc degree in predicted and gold
standard dependency graphs. MSTParser is more

precise when predicting arcs with high degree and
MaltParser vice-versa. Again, this can be explained
by the fact that there is a tight correlation between a
high degree of non-projectivity, dependency length,
distance to root and number of siblings.

4.3 Linguistic Factors

It is important to relate each system’s accuracy to a
set of linguistic categories, such as parts of speech
and dependency types. Therefore, we have made
an attempt to distinguish a few broad categories
that are cross-linguistically identifiable, based on the
available documentation of the treebanks used in the
shared task.

For parts of speech, we distinguish verbs (includ-
ing both main verbs and auxiliaries), nouns (includ-
ing proper names), pronouns (sometimes also in-
cluding determiners), adjectives, adverbs, adposi-
tions (prepositions, postpositions), and conjunctions
(both coordinating and subordinating). For depen-
dency types, we distinguish a general root category
(for labels used on arcs from the artificial root, in-
cluding either a generic label or the label assigned
to predicates of main clauses, which are normally
verbs), a subject category, an object category (in-
cluding both direct and indirect objects), and various
categories related to coordination.

Figure 7 shows the accuracy of the two parsers
for different parts of speech. This figure measures
labeled dependency accuracy relative to the part of
speech of the modifier word in a dependency rela-
tion. We see that MaltParser has slightly better ac-
curacy for nouns and pronouns, while MSTParser
does better on all other categories, in particular con-
junctions. This pattern is consistent with previous
results insofar as verbs and conjunctions are often
involved in dependencies closer to the root that span

127



2 4 6 8 10
Distance to Root

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

De
pe

nd
en

cy
 P

re
cis

io
n MSTParser

MaltParser

2 4 6 8 10
Distance to Root

0.76

0.78

0.8

0.82

0.84

0.86

0.88

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

Figure 4: Dependency arc precision/recall relative to predicted/gold distance to root.

0 2 4 6 8 10+
Number of Modifier Siblings

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 P

re
cis

io
n MSTParser

MaltParser

0 2 4 6 8 10+
Number of Modifier Siblings

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

Figure 5: Dependency arc precision/recall relative to number of predicted/gold siblings.

longer distances, while nouns and pronouns are typ-
ically attached to verbs and therefore occur lower in
the graph, with shorter distances. Empirically, ad-
verbs resemble verbs and conjunctions with respect
to root distance but group with nouns and pronouns
for dependency length, so the former appears to be
more important. In addition, both conjunctions and
adverbs tend to have a high number of siblings, mak-
ing the results consistent with the graph in Figure 5.

Adpositions and especially adjectives constitute
a puzzle, having both high average root distance
and low average dependency length. Adpositions do
tend to have a high number of siblings on average,
which could explain MSTParser’s performance on
that category. However, adjectives on average occur
the furthest away from the root, have the shortest
dependency length and the fewest siblings. As such,
we do not have an explanation for this behaviour.

In the top half of Figure 8, we consider precision
and recall for dependents of the root node (mostly
verbal predicates), and for subjects and objects. As
already noted, MSTParser has considerably better
precision (and slightly better recall) for the root cat-
egory, but MaltParser has an advantage for the nomi-
nal categories, especially subjects. A possible expla-
nation for the latter result, in addition to the length-
based and graph-based factors invoked before, is that

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

Verb Noun Pron Adj Adv Adpos Conj

Part of Speech (POS)

La
be

le
d 

At
ta

ch
m

en
t S

co
re

 (L
AS

)

MSTParser
MaltParser

Figure 7: Accuracy for different parts of speech.

MaltParser integrates labeling into the parsing pro-
cess, so that previously assigned dependency labels
can be used as features, which may be important to
disambiguate subjects and objects.

Finally, in the bottom half of Figure 8, we dis-
play precision and recall for coordinate structures,
divided into different groups depending on the type
of analysis adopted in a particular treebank. The cat-
egory CCH (coordinating conjunction as head) con-
tains conjunctions analyzed as heads of coordinate
structures, with a special dependency label that does
not describe the function of the coordinate structure
in the larger syntactic structure, a type of category
found in the so-called Prague style analysis of coor-
dination and used in the data sets for Arabic, Czech,

128



0 1 2 3 4 5 6 7+
Non-Projective Arc Degree

0.55

0.6

0.65

0.7

0.75

0.8

0.85
De

pe
nd

en
cy

 P
re

cis
io

n MSTParser
MaltParser

0 1 2 3 4 5 6 7+
Non-Projective Arc Degree

0.6

0.65

0.7

0.75

0.8

0.85

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

Figure 6: Dependency arc precision/recall relative to predicted/gold degree of non-projectivity.

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

Root Subj Obj

Dependency Type (DEP)

De
pe

nd
en

cy
 P

re
cis

io
n

MSTParser
MaltParser

72.0%

74.0%

76.0%

78.0%

80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

Root Subj Obj

Dependency Type (DEP)

De
pe

nd
en

cy
 R

ec
al

l

MSTParser
MaltParser

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

CCH CCD CJCC CJCJ

Dependency Type (DEP)

De
pe

nd
en

cy
 P

re
cis

io
n

MSTParser
MaltParser

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

CCH CCD CJCC CJCJ

Dependency Tyle (DEP)

De
pe

nd
en

cy
 R

ec
al

l

MSTParser
MaltParser

Figure 8: Precision/recall for different dependency types.

and Slovene. The category CCD (coordinating con-
junction as dependent) instead denotes conjunctions
that are attached as dependents of one of the con-
juncts with a label that only marks them as conjunc-
tions, a type of category found in the data sets for
Bulgarian, Danish, German, Portuguese, Swedish
and Turkish. The two remaining categories con-
tain conjuncts that are assigned a dependency label
that only marks them as conjuncts and that are at-
tached either to the conjunction (CJCC) or to an-
other conjunct (CJCJ). The former is found in Bul-
garian, Danish, and German; the latter only in Por-
tuguese and Swedish. For most of the coordination
categories there is little or no difference between the
two parsers, but for CCH there is a difference in both
precision and recall of almost 20 percentage points
to MSTParser’s advantage. This can be explained by

noting that, while the categories CCD, CJCC, and
CJCJ denote relations that are internal to the coor-
dinate structure and therefore tend to be local, the
CCH relations hold between the coordinate struc-
ture and its head, which is often a relation that spans
over a greater distance and is nearer the root of the
dependency graph. It is likely that the difference in
accuracy for this type of dependency accounts for a
large part of the difference in accuracy noted earlier
for conjunctions as a part of speech.

4.4 Discussion

The experiments from the previous section highlight
the fundamental trade-off between global training
and exhaustive inference on the one hand and ex-
pressive feature representations on the other. Error
propagation is an issue for MaltParser, which typi-

129



cally performs worse on long sentences, long depen-
dency arcs and arcs higher in the graphs. But this is
offset by the rich feature representation available to
these models that result in better decisions for fre-
quently occurring arc types like short dependencies
or subjects and objects. The errors for MSTParser
are spread a little more evenly. This is expected,
as the inference algorithm and feature representation
should not prefer one type of arc over another.

What has been learned? It was already known that
the two systems make different errors through the
work of Sagae and Lavie (2006). However, in that
work an arc-based voting scheme was used that took
only limited account of the properties of the words
connected by a dependency arc (more precisely, the
overall accuracy of each parser for the part of speech
of the dependent). The analysis in this work not only
shows that the errors made by each system are dif-
ferent, but that they are different in a way that can be
predicted and quantified. This is an important step
in parser development.

To get some upper bounds of the improvement
that can be obtained by combining the strengths of
each models, we have performed two oracle experi-
ments. Given the output of the two systems, we can
envision an oracle that can optimally choose which
single parse or combination of sub-parses to predict
as a final parse. For the first experiment the oracle
is provided with the single best parse from each sys-
tem, say G = (V,A) and G′ = (V ′, A′). The oracle
chooses a parse that has the highest number of cor-
rectly predicted labeled dependency attachments. In
this situation, the oracle accuracy is 84.5%. In the
second experiment the oracle chooses the tree that
maximizes the number of correctly predicted depen-
dency attachments, subject to the restriction that the
tree must only contain arcs from A ∪ A′. This can
be computed by setting the weight of an arc to 1 if
it is in the correct parse and in the set A ∪ A′. All
other arc weights are set to negative infinity. One can
then simply find the tree that has maximal sum of
arc weights using directed spanning tree algorithms.
This technique is similar to the parser voting meth-
ods used by Sagae and Lavie (2006). In this situa-
tion, the oracle accuracy is 86.9%.

In both cases we see a clear increase in accuracy:
86.9% and 84.5% relative to 81% for the individual
systems. This indicates that there is still potential

for improvement, just by combining the two existing
models. More interestingly, however, we can use
the analysis to get ideas for new models. Below we
sketch some possible new directions:

1. Ensemble systems: The error analysis pre-
sented in this paper could be used as inspiration
for more refined weighting schemes for ensem-
ble systems of the kind proposed by Sagae and
Lavie (2006), making the weights depend on a
range of linguistic and graph-based factors.

2. Hybrid systems: Rather than using an ensem-
ble of several parsers, we may construct a sin-
gle system integrating the strengths of each
parser described here. This could defer to
a greedy inference strategy during the early
stages of the parse in order to benefit from a
rich feature representation, but then default to
a global exhaustive model as the likelihood for
error propagation increases.

3. Novel approaches: The two approaches inves-
tigated are each based on a particular combina-
tion of training and inference methods. We may
naturally ask what other combinations may
prove fruitful. For example, what about glob-
ally trained, greedy, transition-based models?
This is essentially what Daumé III et al. (2006)
provide, in the form of a general search-based
structured learning framework that can be di-
rectly applied to dependency parsing. The ad-
vantage of this method is that the learning can
set model parameters relative to errors resulting
directly from the search strategy – such as error
propagation due to greedy search. When com-
bined with MaltParser’s rich feature represen-
tation, this could lead to significant improve-
ments in performance.

5 Conclusion

We have presented a thorough study of the dif-
ference in errors made between global exhaustive
graph-based parsing systems (MSTParser) and lo-
cal greedy transition-based parsing systems (Malt-
Parser). We have shown that these differences can
be quantified and tied to theoretical expectations of
each model, which may provide insights leading to
better models in the future.

130



References
A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká.

2003. The PDT: A 3-level annotation scenario. In
A. Abeillé, editor, Treebanks: Building and Using
Parsed Corpora, chapter 7. Kluwer Academic Publish-
ers.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared task
on multilingual dependency parsing. In Proc. CoNLL.

Hal Daumé III, John Langford, and Daniel Marcu. 2006.
Search-based structured prediction. In Submission.

Y. Ding and M. Palmer. 2004. Synchronous dependency
insertion grammars: A grammar formalism for syntax
based statistical MT. In Workshop on Recent Advances
in Dependency Grammars (COLING).

R. Hudson. 1984. Word Grammar. Blackwell.

H. Maruyama. 1990. Structural disambiguation with
constraint propagation. In Proc. ACL.

R. McDonald, K. Crammer, and F. Pereira. 2005a. On-
line large-margin training of dependency parsers. In
Proc. ACL.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005b.
Non-projective dependency parsing using spanning
tree algorithms. In Proc. HLT/EMNLP.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multi-
lingual dependency analysis with a two-stage discrim-
inative parser. In Proc. CoNLL.

I.A. Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

J. Nivre and J. Nilsson. 2005. Pseudo-projective depen-
dency parsing. In Proc. ACL.

J. Nivre, J. Hall, J. Nilsson, G. Eryigit, and S. Marinov.
2006. Labeled pseudo-projective dependency parsing
with support vector machines. In Proc. CoNLL.

J. Nivre. 2003. An efficient algorithm for projective de-
pendency parsing. In Proc. IWPT.

J. Nivre. 2006. Constraints on non-projective depen-
dency parsing. In Proc. EACL.

K. Sagae and A. Lavie. 2006. Parser combination by
reparsing. In Proc. HLT/NAACL.

P. Sgall, E. Hajičová, and J. Panevová. 1986. The Mean-
ing of the Sentence in Its Pragmatic Aspects. Reidel.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In Proc. NIPS.

131


