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Abstract

Existing neural models usually predict the tag of the current token independent of the neigh-
boring tags. The popular LSTM-CRF model considers the tag dependencies between every two
consecutive tags. However, it is hard for existing neural models to take longer distance dependen-
cies of tags into consideration. The scalability is mainly limited by the complex model structures
and the cost of dynamic programming during training. In our work, we first design a new model
called “high order LSTM” to predict multiple tags for the current token which contains not only
the current tag but also the previous several tags. We call the number of tags in one prediction
as “order”. Then we propose a new method called Multi-Order BiLSTM (MO-BiLSTM) which
combines low order and high order LSTMs together. MO-BiLSTM keeps the scalability to high
order models with a pruning technique. We evaluate MO-BiLSTM on all-phrase chunking and
NER datasets. Experiment results show that MO-BiLSTM achieves the state-of-the-art result in
chunking and highly competitive results in two NER datasets. 1

1 Introduction

Chunking and named entity recognition are sequence labeling tasks whose target is to find the correct
segments and give them the correct labels. The tags inside a segment have internal dependencies. The
tags in consecutive segments may have dependencies, too. Therefore, it is natural to take the tag depen-
dencies into consideration when making a prediction in such sequence labeling tasks.

Recently, methods have been proposed to capture tag dependencies for neural networks. Collobert et
al. (2011) proposed a method based on convolutional neural networks, which can use dynamic program-
ming in training and testing stage (like a CRF layer) to capture tag dependencies. Furthermore, Huang
et al. (2015) proposed LSTM-CRF by combining LSTM and CRF for structured learning. They use a
transition matrix to model the tag dependencies. A similar structure is adopted by Ma and Hovy (2016).
Their model also involves an external layer to extract some character level features.

However, it is not explicit how to model the dependencies of more tags or use the dependency infor-
mation in these lines of work. We then propose a solution to capture long distance tag dependencies and
use them for dependency-aware prediction of tags. For clarity, we first give some detailed explanations
of the related terms in our work. “order” means the number of tags that a prediction involves in a model.
An order-2 tag is a bigram which contains the previous tag and the current tag at a certain time step, as
shown in Figure 1. Higher order tags are defined in a similar way.

We first develop a simple method to implement high order models. But these models, which are
supposed to capture more tag dependency information, perform worse and worse as the order of models
increases. One possible reason is that trying to capture more tag dependencies raises the difficulty of
prediction. We name these models as single order models and propose a new method based on them. The
proposed Multi-Order LSTM (MO-LSTM) combines multi-order information from these single order
models to decode. It keeps the scalability with a proposed pruning technique and performs well in our

1The code is available at https://github.com/lancopku/Multi-Order-LSTM
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1: An illustration of tags of different orders.

tasks. Experiments show that MO-LSTM achieves the state-of-the-art F1 score in all-phrase chunking
and competitive scores in two NER datasets.

The contributions of this work are as follows:

• We extend the LSTM model to higher order models. However, the performance of the high order
models which are supposed to capture longer tag dependencies is getting worse when increasing the
order.

• We propose a model integrating low order and high order models. It keeps the scalability in both
training and testing stage with a pruning technique.

• The proposed MO-LSTM achieves an evident error reduction in chunking and NER tasks. It pro-
duces the state-of-the-art F1 score in chunking and highly competitive results in two NER datasets.

2 Single Order LSTM

We first propose a simple training and decoding method which enables the existing models to extend to
higher order models. Take the order-2 model as an example, for each word we combine its previous tag
and its current tag to produce a bigram tag as its new tag to predict. Hence, the model can be trained with
the “new” bigram (order-2) tag set.

Formally, given an input sequence x = {x1, x2, · · · , xT }, where xt denotes the t-th word in a sentence
and T denotes the sentence length. The sequence y = {y1, y2, · · · , yT } represents a possible label se-
quence for x. We denote Y(1) as the set of all possible order-1 labels, and yt ∈ Y(1). The order-1 model
can be represented as:

s1(y1, y2, · · · , yT |x; θ) =
T∏
t=1

s(yt|x; θ) (1)

where θ is the parameters of the model. In implementation, we use a Bi-LSTM with a softmax layer to
compute the score s(yt|x; θ).

To extend the order-1 model to an order-2 model, we transform the unigram label sequence into a
bigram label sequence y0y1, y1y2, · · · , yT−1yT , where y0 is a special START symbol. The bigram label
is defined as a combination of two consecutive label yt−1 and yt, and Y(2) is the set of all possible bigram
labels that appear in the training set. The order-2 model can then be written as:

s2(y1, y2, · · · , yT |x; θ) =
T∏
t=1

s(yt−1yt|x; θ) (2)

Similar to the order-1 model, the score s(yt−1yt|x; θ) is computed by a Bi-LSTM with a softmax layer.
In implementation, the difference with the order-1 model is that the unigram label is replaced with the
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Figure 2: An illustration of the single order model and the multi-order model. The single order-1 model
is a BiLSTM.

bigram label. In this way, the model can be further extended to order-n:

sn(y1, y2, · · · , yT |x; θ) =
T∏
t=1

s(yt−n+1 · · · yt|x; θ) (3)

As the order of the models increases, the models are supposed to learn more tag dependencies. How-
ever, according to our experiments, the performance of these models is getting worse, and the detailed
results are shown in Section 4. An intuitive reason to explain the experimental phenomena is that the
increasing size of the label set makes it more difficult to predict a correct label of the input word. An-
other potential reason is that the complex structure leads to overfitting problem. Sun (2014) suggests that
complex structures are actually harmful to the generalization ability in structured prediction.

3 Multi-Order BiLSTM

The performance of single high order models deteriorates as the order increases. But they might cap-
ture some kinds of useful dependency information. To make use of these dependency information, we
introduce a multi-order model which combines the low-order and high-order information. The proposed
multi-order model consists of several single order models (as described in Section 2) of different orders.
At the training stage, these models are trained separately as usual. At the decoding stage, we propose a
new decoding method to combine the low order model and the high order model. Since both low order
information and high order information is used when decoding, the proposed method is named Multi-
Order BiLSTM (MO-BiLSTM). In this section, we first give the details of the training and the decoding
process, and then introduce a pruning technique to improve the efficiency of MO-BiLSTM.

3.1 Multi-Order Training
Our proposed multi-order-n model is a mixture of k single order models with different orders, where n
is the maximum order of the single order models. When n = 1, the multi-order model becomes a single
order-1 model, i.e. a BiLSTM. The order set of the single order models is the subset of {1, 2, · · · , n}.
For example, if the maximum order n is 3, the combination of the single order models can be [1, 2], [1, 3],
[2, 3], or [1, 2, 3]. Formally, we denote the order set as {o1, o2, · · · , ok}, where oi<oj and i<j. In our
implementation, n is equal to k in both training and decoding stage.

At the training stage, we train k single order models separately following Eq. 3:

θi = argmax
θ

soi(y1, y2, · · · , yT |x; θ) = argmax
θ

T∏
t=1

s(yt−oi+1 · · · yt|x; θ) (4)

where θi is the parameters of the i-th single order model of the order oi. After training, we obtain a set
of k independent models: {s(yt−o1+1 · · · yt|x; θ1), · · · , s(yt−oi+1 · · · yt|x; θi)}, which learns the label
dependency of different orders.

3.2 Multi-Order Decoding
For the purpose of simplicity and clarity, we first describe the proposed decoding method of MO-
BiLSTM in the order-2 case, and then we extend it to the general order-n case.
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Algorithm 1 Multi-order decoding with pruning in the order-n case

1: Input: sentence x, trained order-1 LSTM s1(y|x) in Eq. 1, multi-order-n LSTM sn(y|x) in Eq. 6
2: for t = 1...T do
3: Select the top-k uni-labels by the order-1 scores:
4: Ỹ1 = topkTag(s1(yt|x)), Ỹ2 = topkTag(s1(yt−1|x)), · · · , Ỹn = topkTag(s1(yt−n+1|x))
5: Combine n top-k uni-label sets into a n-gram label set:
6: Y = Ỹ1 × Ỹ2 × · · · × Ỹn
7: for each (y1, y2, · · · , yn) ∈ Y do
8: Previous tag state dt−1 = y1y2 · · · yn−1

9: Current tag state dt = y2y3 · · · yn
10: Compute the transition score s = sn(y

1, y2, · · · , yn|x) by multi-order-n LSTM
11: Compute the maximum score at current state A[t][dt] = max(A[t][dt], A[t− 1][dt−1] ∗ s)
12: Output: The optimal tag sequence y∗ by backtracking the path of the maximum score A[T ][dT ]

As shown in Figure 2, in the order-2 case the multi-order model is a mixture of 2 single order models,
i.e. single order-1 model (Eq. 1) and single order-2 model (Eq. 2). At the decoding stage, the multi-
order model takes account of both the order-1 model and the order-2 model. We need a new decoding
approach to unify the decisions of both models. Since the order-1 model and order-2 model predict the
label sequence independently, we choose to multiply the scores of order-1 model and order-2 model to
get a global score, and use a dynamic programming algorithm to search for the label sequence with the
maximum score:

y∗1, y
∗
2, · · · , y∗T = argmax

y
s1(y1, y2, · · · , yT |x; θ1)× s2(y1, y2, · · · , yT |x; θ2)

= argmax
y

T∏
t=1

s(yt|x; θ1)× s(yt−1, yt|x; θ2)
(5)

where s(yt|x; θ1) and s(yt−1, yt|x; θ2) are the score predictions of the single order-1 model and the
single order-2 model, respectively. The details of the dynamic programming algorithm are shown in
Section 3.3.

Further, we extend the order-2 case to a general order-n case. The difference with the order-2 case
is that there are k single order models to approximate the scores of the generated label sequence. We
approximate the scores by multiplying all the scores of these trained single order models, and then decode
the sequence with the maximum score. Formally, it can be written as:

y∗1, y
∗
2, · · · , y∗T = argmax

y

k∏
i=1

soi(y1, y2, · · · , yT |x; θi)

= argmax
y

k∏
i=1

T∏
t=1

s(yt−oi+1 · · · yt|x; θi)

(6)

where s(yt−oi+1 · · · yt|x; θi) is the score prediction of the i-th single order model of the order oi.

3.3 Scalable Decoding with Pruning
Here, we introduce an efficient dynamic programming algorithm to search for the label sequence with
the maximum score. The scores of different n-gram labels are jointly considered in our model. Orig-
inally, we should consider all possible n-gram labels at every position of the sentence during dynamic
programming. However, it will lead to a huge search space and a lot of time. In order to reduce the time
cost, we can prune the unnecessary searching branches. For example, an order-1 model assigns a very
low probability to the uni-label “I” of the t-th word, which means the order-1 model is confident that the
t-th word can hardly be labeled as “I”. Therefore, it is unnecessary to take account of the bi-gram labels
“I-B”, “I-I”, and “I-O” at the next time step.



727

Model All-Chunking English-NER Dutch-NER
Single Order-1 BiLSTM 93.89 88.23 77.20
Single Order-2 BiLSTM 93.71 (-0.18) 87.61 (-0.62) 76.61 (-0.59)
Single Order-3 BiLSTM 93.34 (-0.55) 87.47 (-0.76) 76.47 (-0.73)
Multi-Order-1 BiLSTM 93.89 88.23 77.20
Multi-Order-2 BiLSTM 94.93 (+1.04) 90.23 (+2.00) 80.95 (+3.75)
Multi-Order-3 BiLSTM 95.01 (+1.12) 90.70 (+2.47) 81.76 (+4.56)

Table 1: Results of single order models and MO-BiLSTM. The number in parentheses means the im-
provements or reductions compared to the results of order-1 models. All-Chunking denotes All-Phrase-
Chunking.

In implementation, we use the order-1 labels with high scores to evaluate whether to prune the high
order labels. More precisely, we simply keep the top-k order-1 labels at each position. The order-n labels
for a specific position is generated by the top-k labels of n tokens around the position. Suppose a task
has totally 50 labels. The order-1 model should compute 50 scores of these labels at each time step. As
for the order-3 model, the number of the scores to be computed becomes 503. The original search space
before pruning for dynamic programming at each time step is 503. But if we only keep top-5 order-1
labels at each position and prune the order-n labels, the search space will be reduced from 503 to 53.

According to our experiments, the pruning technique saves a lot of time in the decoding stage and
results in no loss of accuracy, and we find top-5 pruning works the best in order to balance the accuracy
and the time cost. Details of the experiments can be found in Section 4. Algorithm 1 shows the detailed
process of multi-order decoding with pruning in the order-n case.

4 Experiments

4.1 Datasets

Chunking and named entity recognition are sequence labeling tasks that are sensitive to tag dependen-
cies. The tags inside a segment have internal dependencies. The tags in consecutive segments may have
dependencies, too. Thus, we conduct experiments on the chunking and NER tasks to evaluate the pro-
posed method. The test metric is F1-score. The chunking data is from CoNLL-2000 shared task (Sang
and Buchholz, 2000), where we need to identify constituent parts of sentences (nouns, verbs, adjectives,
etc.). To distinguish it from NP-chunking, it is referred to as the all-phrase chunking. We use the English
NER data from the CoNLL-2003 shared task (Sang and Meulder, 2003). There are four types of enti-
ties to be recognized: PERSON, LOCATION, ORGANIZATION, and MISC. The other NER dataset is
the Dutch-NER dataset from the shared task of CoNLL-2002. The types of entities are the same as the
English NER dataset.

4.2 Experimental Details

Our model uses a single layer for the forward and backward LSTMs whose dimensions are set to 200.
We use the Adam learning method (Kingma and Ba, 2014) with the default hyper parameters. We set the
dropout (Srivastava et al., 2014) rate to 0.5.

Following previous work (Huang et al., 2015), we extract some spelling features and context features.
We did not use extra resources, with the exception of using Senna embeddings2 in Chunking and English-
NER tasks. The embeddings in Dutch-NER tasks are randomly initialized with a size of 50. The code is
implemented with the python package Tensorflow (Abadi et al., 2016).

4.3 Effect of Multi-Order Setting

For simplicity, the single order model of order-n is denoted as single order-n model and the multi-order
model in the order-n case is denoted as multi-order-nmodel. To verify the effectiveness of MO-BiLSTM,

2Downloaded from http://ronan.collobert.com/senna/
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Model All-Chunking English-NER Dutch-NER
Order-1 14 10 11
Order-2 154 39 44
Order-3 832 138 158

Table 2: The sizes of tag set of different order.

we conduct comparison experiments of single order models and multi-order models. The results are
shown in Table 1. The performance of single order BiLSTM models is getting worse with the growing
of the order. An intuitive reason is that the increasing size of tag set raises the difficulty to make a correct
tag prediction of a word. Although the performance of single high order models is far from satisfactory,
the multi-order models perform well with consistent growth of F1-score on three datasets. In chunking,
the MO-BiLSTM at order-3 obtains a 18.3% error reduction compared to BiLSTM. It also performs well
in the NER tasks, resulting in a 21.6% and a 20.0% error reductions in English-NER and Dutch-NER
compared to BiLSTM baselines, respectively.

The results suggest that high order dependency information is indeed beneficial to the prediction.
Furthermore, the adopted multi-order setting makes the learned tag dependency specific to the input
words. The reason is that the proposed high order model encodes the tag dependency into a single
“output tag”, and model the “output tag” relations using a BiLSTM conditioned on the input words. The
tag dependency in previous work is represented by a transition matrix, which cannot capture the relations
of tag dependencies with respect to the input words. Moreover, MO-BiLSTM can take advantage of the
subtle tag dependencies captured by single-order models and naturally integrate multi-order information
to make tag prediction. The decoding process of MO-BiLSTM finds a global optimum tag sequence,
which significantly reduces the risk of mistakes.

MO-BiLSTM also results in a growing size of tag set. The sizes of tag set from order-1 model to
order-3 model are given in Table 2 respectively. The tag size of the model is beyond a hundred at order-3
case. Although the size of tag set grows as the order of model increases, it is acceptable in such sequence
labeling problems compared to the vocabulary size in machine translation which can be over millions.

4.4 Effect of Pruning

The effect of pruning on speeding up the decoding is presented in Table 3. As shown, the pruning
technique has shown a great ability to save time with no loss of accuracy. We then give a detailed analysis
of the pruning technique. Original search process of dynamic programming considers all possible high
order dependencies. However, most low-order tags have been assigned very low probabilities by low-
order models and they will form almost impossible high-order tags. Thus, we only keep a small subset
of all low-order tags, which makes the possible combinations shrink rapidly so that the cost of dynamic
programing is greatly reduced. We also find that the pruned search space has no effect on the performance
of the models. We suppose it is almost unlikely that the best tag sequence is out of the pruned search
space. Hence, the accuracy is kept to the full extent, as shown in our experiments.

Model All-Chunking English-NER Dutch-NER
Time (s) F1 Time (s) F1 Time (s) F1

Multi-Order-2 BiLSTM w/o pruning 31.59 94.93 19.23 90.23 26.60 80.95
Multi-Order-2 BiLSTM 13.64 94.93 13.13 90.23 18.42 80.95
Multi-Order-3 BiLSTM w/o pruning 215.21 95.01 51.78 90.70 69.79 81.76
Multi-Order-3 BiLSTM 44.81 95.01 20.43 90.70 28.66 81.76

Table 3: Effect of pruning on speeding up the decoding.
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All-Chunking F1
SVM classifier (Kudo and Matsumoto, 2001) 93.91
Second order CRF (Sha and Pereira, 2003) 94.30
Second order CRF (McDonald et al., 2005) 94.29
Specialized HMM + voting scheme (Shen and Sarkar, 2005) 94.01
Second order CRF (Sun et al., 2008) 94.34
Conv network tagger (senna) (Collobert et al., 2011) 94.32
CRF-ADF (Sun et al., 2014) 94.52
BiLSTM-CRF (Senna) (Huang et al., 2015) 94.46
Edge-based CRF (Ma and Sun, 2016) 94.80
Encoder-decoder-pointer framework(Zhai et al., 2017) 94.72
BiLSTM (our implementation) 93.89
MO-BiLSTM (this work) 95.01

Table 4: All-Chunking: Comparison with state-of-the-art models.

English-NER F1
Combination of HMM, Maxent etc. (Florian et al., 2003) 88.76
Semi-supervised model combination (Ando and Zhang, 2005) 89.31
Conv-CRF (Senna + Gazetteer) (Collobert et al., 2011) 89.59
CRF with Lexicon Infused Embeddings (Passos et al., 2014) 90.90
BiLSTM-CRF (Senna) (Huang et al., 2015) 90.10
BiLSTM-CRF (Lample et al., 2016) 90.94
BiLSTM-CNNs-CRF (Ma and Hovy, 2016) 91.21
Iterated Dilated CNNs (Strubell et al., 2017) 90.65
CNN-CNN-LSTM (Shen et al., 2018) 90.89
BiLSTM (our implementation) 88.23
MO-BiLSTM (this work) 90.70

Table 5: English-NER: Comparison with state-of-the-art models.

Dutch-NER F1
AdaBoost (decision trees) (Carreras et al., 2002) 77.05
Semi-structured resources (Nothman et al., 2013) 78.60
Variant of Seq2Seq (Gillick et al., 2015) 78.08
Character-Level Stacked BiLSTM (Kuru et al., 2016) 79.36
BiLSTM-CRF (Lample et al., 2016) 81.74
Special Decoder + Attention (Martins and Kreutzer, 2017) 80.29
BiLSTM (our implementation) 77.20
MO-BiLSTM (this work) 81.76

Table 6: Dutch-NER: Comparison with state-of-the-art models. Gillick et al. (2015) reported a F1-score
of 82.84 in their work, but this result is based on multilingual resources.

4.5 Comparison with State-of-the-art Systems

Table 4 shows the results on all-phrase chunking task compared with previous work. We achieve the state-
of-the-art performance in all-phrase chunking. Our model outperforms the popular method BiLSTM-
CRF (Huang et al., 2015) by a large margin. Shen and Sarkar (2005) also reported a 95.23 F1-score in
their paper. However, this result is based on noun phrase chunking (NP-chunking). All phrase chunking
task contains much more tags to predict than NP-chunking, so it is more difficult.
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GOLD
The ministry updated port conditions and shipping warnings for the Gulf
of Mexico (LOC), Caribbean and Pacific Coast

BiLSTM
The ministry updated port conditions and shipping warnings for the Gulf
(LOC) of Mexico(LOC) , Caribbean and Pacific Coast

MO-BiLSTM
The ministry updated port conditions and shipping warnings for the Gulf
of Mexico (LOC), Caribbean and Pacific Coast.

GOLD
About 200 Burmese students marched briefly from troubled Yangon In-
stitute of Technology (ORG) in northern Rangoon on Friday.

BiLSTM
About 200 Burmese students marched briefly from troubled Yangon
(LOC) Institute of Technology (ORG) in northern Rangoon on Friday.

MO-BiLSTM
About 200 Burmese students marched briefly from troubled Yangon In-
stitute of Technology (ORG) in northern Rangoon on Friday.

Table 7: Examples of the predictions of BiLSTM and MO-BiLSTM of order-3.

Table 5 shows the comparison results on the English-NER dataset. Ma and Hovy (2016) reported the
best result of English NER. The main architecture of their network is BiLSTM-CRF equipped with a
CNN layer to extract character-level representations of words. Our model performs slightly worse than
it but outperforms BiLSTM-CRFs reported in other papers (Huang et al., 2015; Lample et al., 2016).

The comparison results on Dutch NER are shown in Table 6. Gillick et al. (2015) keeps the best result
of Dutch NER. However, the model is trained on four languages. With the monolingual setting, their
model achieves 78.08 on F1 score. Another competitive result is reported in the work of Lample et al.
(2016). Their model is a BiLSTM-CRF model with an external LSTM layer to extract character-level
representations of words. Our model gets the best score when there is no extra resources.

4.6 Case Study

We observe that MO-BiLSTM mainly helps in two aspects: the prediction of boundaries of a segment and
the recognition of long segments. Table 7 shows two cases that MO-BiLSTM model predicts correctly
but BiLSTM fails to recognize the entities. In the first case, “Gulf of Mexico” should be recognized as
the entity “Location”. BiLSTM recognizes “Gulf” and “Mexico” as locations, but fails to recognize “of”
as a part of the entity, so that an entire entity is split. The reason is that BiLSTM model predicts the tag
independently, and it predicts “O” as the tag of “of” regardless of the neighboring tags. On the contrary,
MO-BiLSTM takes account of the neighboring tags, and works well in this case. Considering that both
the left tag and the right tag are labeled “LOC”, the word “of” has a larger probability to be a part of the
entity.

The second case contains an entity of type “LOC”. BiLSTM succeeds in recognizing the boundary
of the entity but predicts a wrong entity type for the word “Yongon”. Although “Yangon” is a city, it
should not be recognized as a location because it is a part of an organization. BiLSTM does not consider
the neighboring tag, and makes a wrong prediction, while MO-BiLSTM succeeds in predicting a correct
entity by considering the neighboring tag.

4.7 Error Analysis

To better analyze the basic model and the MO-BiLSTM, we investigate the cases that can not be handled
well in English-NER dataset, and the result is summarized in Figure 3. All the unrecognized entities are
classified into five categories, which are “boundary-1”, “boundary-2”, “boundary-3”, “type”, and “no
common words”. “Boundary-1” denotes the cases that the gold entity contains a predicted entity, and
“boundary-2” means the gold entity is contained by a prediction. “Boundary-3” represents the case that
the gold entity and our prediction overlap. “Type” means a entity’s boundaries are recognized correctly
but its entity type is misclassified. When there are no common words between the predicted entity
and any gold entity, it is denoted as “no common words”. We count the number of wrongly predicted
entities of these different categories, and the result is shown in Figure 3a. The “boundary” error (the
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Figure 3: Error analysis of BiLSTM and MO-BiLSTM on English-NER.

sum of “boundary-1”, “boundary-2”, and “boundary-3”), which represents the model misidentifies the
entity’s boundaries, is the major error type of BiLSTM. The reason is that the boundary is made up
of two tags, but BiLSTM model predicts each tag independently. Our MO-BiLSTM is able to capture
the dependencies between two tags, so it can significantly decrease the number of boundary recognition
error. That is also the reason why “boundary” error is not the major error of MO-BiLSTM.

We further compare the number of entities belonging to “boundary” error between BiLSTM and MO-
BiLSTM. According to Figure 3b, it shows that the “boundary” error of MO-BiLSTM has a reduction
rate of nearly 40% compared with BiLSTM. In order to analyze the influence of the length of entities,
we divide the entities into 2 groups according to their lengths, and calculate the recognition error rate
of different lengths of entities. The result is shown in Figure 3c. We observe that the MO-BiLSTM
model has a significant reduction in the recognition error of long entities from 27.42% to 14.52%. The
large reduction in error rate proves that the MO-BiLSTM model is able to capture longer distance tag
dependencies compared with BiLSTM.

5 Related Work

Huang et al. (2015) and Lample et al. (2016) stacked a CRF layer on BiLSTM to capture the global tag
dependencies. The difference between their work is the way to capture character-level information. Their
proposed BiLSTM-CRF performs well in sequence labeling tasks. However, the dynamic programming
must be done in both training and testing stage. The MO-BiLSTM does not need dynamic programming
during training. Muller et al. (2013) proposed a model that also prunes the tag set using a lower order
model, but dynamic programming is required in both training and testing stage like prior work. Besides
the difference that we do not need dynamic programing in training stage, the pruning technique is dif-
ferent. We directly model the high order states in the training stage, while Muller et al. (2013) merges
lower order states to get higher order states. Soltani and Jiang (2016) propose a model called higher order
recurrent neural networks (HORNNs). They proposed to use more memory units to keep track of more
preceding RNN states, which are all recurrently fed to the hidden layers as feedback. These structures of
Soltani’s work are also termed “higher order” models, but the definition is different from ours.

There are several other neural networks that use new techniques to improve sequence labeling. Ling
et al. (2015) and Yang et al. (2016) used BiSLTM to compose character embeddings to words represen-
tation. Martins and Kreutzer (2017) used an attention mechanism to decide what is the “best” word to
focus on next in sequence labeling tasks. Zhai et al. (2017) proposed to separate the segmenting and la-
beling in chunking. Segmentation is done by a pointer network and a decoder LSTM is used for labeling.
Shen et al. (2018) used active learning to strategically choose most useful examples in NER datasets.

6 Conclusions

In this paper, we focus on extending LSTM to higher order models in order to capture more tag dependen-
cies for segmenting and labeling sequence data. We introduce a single order model, which is supposed
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to capture more tag dependencies. However, the performance of the single order model is getting worse
when increasing the order. To address this problem, we propose to integrate dependency information of
different orders to decode. The proposed method, which is called MO-BiLSTM, keeps the scalability
to high order models with a pruning technique. Experiments show that MO-BiLSTM achieves better
performance than many existing popular methods. It produces the state-of-the-art result in chunking and
competitive results in two NER datasets. At the end, we analyze the advantage and limitation of the
MO-BiLSTM. We find that MO-BiLSTM mainly helps in the prediction of segment boundaries and the
recognition of long segments.
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Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B.
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems. CoRR, abs/1603.04467.

Rie Kubota Ando and Tong Zhang. 2005. A framework for learning predictive structures from multiple tasks and
unlabeled data. Journal of Machine Learning Research, 6:1817–1853.
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