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Abstract

Ordinal regression which is known with learning to rank has long been used in information re-
trieval (IR). Learning to rank algorithms, have been tailored in document ranking, information
filtering, and building large aligned corpora successfully. In this paper, we propose to use this
algorithm for query modeling in cross-language environments. To this end, first we build a
query-generated training data using pseudo-relevant documents to the query and all translation
candidates. The pseudo-relevant documents are obtained by top-ranked documents in response
to a translation of the original query. The class of each candidate in the training data is deter-
mined based on presence/absence of the candidate in the pseudo-relevant documents. We learn
an ordinal regression model to score the candidates based on their relevance to the context of the
query, and after that, we construct a query-dependent translation model using a softmax function.
Finally, we re-weight the query based on the obtained model. Experimental results on French,
German, Spanish, and Italian CLEF collections demonstrate that the proposed method achieves
better results compared to state-of-the-art cross-language information retrieval methods, particu-
larly in long queries with large training data.

1 Introduction

The multilingual environment of the Web has long required the researchers in information retrieval (IR)
to introduce powerful algorithms for bridging the gaps between the languages (Nie, 2010; Ganguly et
al., 2012; Dadashkarimi et al., 2016). Generally, these algorithms can be categorized as follows: (1)
translating the query of the user to the language of the documents (Ganguly et al., 2012), (2) translat-
ing all of the documents into the language of the user (Oard, 1998), (3) translating the query and the
documents into a third language (Kishida and Kando, 2005), (4) bringing the query and the documents
into a shared low-dimensional space (Vulic and Moens, 2015; Dadashkarimi et al., 2016), and (5) using
semantic/concept networks (Franco-Salvador et al., 2014). Usually the query translation approach has
been opted as the most efficient and effective approach in the literature (Vulic and Moens, 2015; Nie,
2010). Ma et al. (2012), have shown that cross-language information retrieval (CLIR) takes more advan-
tage of weighting all translations than selecting the most probable ones. But, building this translation
model demands a statistical analysis of translation candidates over an aligned corpus or a single target
collection (Talvensaari et al., 2007; Liu et al., 2005; Ganguly et al., 2012).

Aligned corpora have been exploited in CLIR successfully (Rahimi et al., 2016; Talvensaari et al.,
2007). But, these resources are either scarce in some languages or specific to a few number of domains.
Therefore, recently query-dependent collections have been shown to be more effective and are available
to many languages (Dadashkarimi et al., 2016; Ganguly et al., 2012). Pseudo-relevant documents are
useful resources to this end. In this paper we propose to use pseudo-relevant documents to build a query-
dependent translation model. To this aim, first we take top-ranked documents retrieved in response
to a simple translation of the query as a pseudo-relevant collection; we expect relevant translations to
appear in the collection by accepting a limited amount of noise. Thus we build a training data based
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on presence/absence of the translations in the collection and a number of embedded features. At the
next step we aim to learn an ordinal regression model over the translation candidates and then build a
translation model for the query using a softmax function. The final model is used in the second retrieval
run.

Since this model requires rather large training data, it is expected to be more useful for long queries,
where there is enough information about the user intention. Experimental results on French, Spanish,
German, and Italian CLEF collections demonstrate that the proposed method performs better than state-
of-the-art dictionary-based CLIR methods particularly in long queries.

In Section 2 we provide an overview on related works and then we propose the method and all the
formulations in Section 3. Experimental results and related discussions are provided in Section 4. We
conclude the paper and provide future works in Section 5.

2 Previous Works

2.1 Query Translation in CLIR

Query translation is opted as an efficient way for bridging the gap between the source language of the
query qs and the language of a target collection C = {d1, d2, .., d|C|} in CLIR (Nie, 2010). In statistical
language modeling, a query translation is defined as building a translation model p(wt|qs

i ; q
s) where wt

is a translation candidate and qs
i is a query term. Monz and Dorr (2005) introduced an expectation max-

imization algorithm for estimating this probability: p(wt|qs
i )

n = p(wt|qs
i )

n−1 +
∑

wt′
awt,wt′ .p(wt′ |qs

i )
where awt,wt′ is a mutual information of a couple of translations. This probability is computed itera-
tively and then is used for building query model p(wt|qs). Dadashkarimi et al. (2014) and Cao et al.
(2008), employed similar methods with bigram probabilities p(wt|wt′). On the other hand, Pirkola et
al. (2001) introduced structured queries for CLIR in which each translation of a query term can be con-
sidered as a member of a synonym set. Structured queries use a number of operators for building this
set. For example #sum(#syn(w1, .., wk)#syn(w′1, .., w′k′)) treats occurrences of wt in a document
as occurrences of its set and then sums over all the sets for estimating score of a document. There are
also selection-based methods that consider only a limited subset of translations in their retrieval task.
Nie (2010), demonstrated that these approaches suffer from lower coverage compared to the weighting
approaches.

2.2 Pseudo-relevance Feedback for Query Modeling

Top-ranked documents F = {d1, d2, .., d|F |} in response to the query of a user have long been consid-
ered as informative resources for query modeling (Lavrenko and Croft, 2001; Zhai and Lafferty, 2001;
Lv and Zhai, 2014). Relevance models are proposed by (Lavrenko et al., 2002; Lavrenko and Croft,
2001) in both monolingual and cross-lingual environments for language modeling. To this end, Zhai
and Lafferty (2001) proposed the mixture model for monolingual environments based on an expectation
maximization algorithm. Lv and Zhai (2014) proposed a divergence minimization algorithm that outper-
forms most of the competitive baselines. There are also a further number of powerful algorithms based
on machine learning methods in this area (Liu, 2009). Dadashkarimi et al. (2016), employed a diver-
gence minimization framework for pseudo-relevance feedback using embedded features of words from
a positive and a negative sample set of feedback documents. Liu et al. (2005), introduced maximum co-
herence model for query translation whose aim is to estimate overall coherence of translations based on
their mutual information. Dadashkarimi et al. (2016), recently published another work for query transla-
tion using low-dimensional vectors of feedback terms from a couple of pseudo-relevant collections. The
cross-lingual word embedding translation model (CLWETM) first learns the vectors of feedback terms
separately and then aims at finding a query dependant transformation matrix W for projecting the source
vectors to their equivalents in the target language. The projected vectors WT vw are then used to build a
translation model for the query. The authors have shown that CLWETM outperforms the state-of-the-art
dictionary-based cross-lingual relevance models.
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Figure 1: The whole process of building translation model using ordinal linear regression and query-
generated training data.

3 Learning to Weight Translations using Query-generated Training Data and
Embedded Features

In this section we propose a learning approach for weighting translations of query terms. To this end we
first elaborate on building a query-generated training data in Section 3.1. In Section 3.2, we introduce
the formulations of the proposed method and finally in Section 3.3 we introduce a number of embedded
features used in the learning process.

3.1 Query-generated Training Data for Ordinal Regression
Let q = {q1, .., qm} be the query and let qt = {w1, ..wn} be all the translation candidates of
q. We expect correct translations to appear in pseudo-relevant collection F by accepting a lim-
ited amount of noise (see Section 2.2). As an example, let the query be q = {world, cup, 2018}
and assume that qt = {[monde, univers], [coupe, tasse], [2018]} is the set of translation can-
didates in French. By using a uniform distribution of weights over translation words, qt =
{[(1/2,monde), (1/2, univers)], [(1/2, coupe), (1/2, tasse)], [(1, 2018)]} could be a simple query
model in the target language. Since {monde, coupe, 2018} are conceptually better translations, we ex-
pect them to appear in F . Thus, the presence/absence of the translations in F can be indicators of their
relevance to the query. We use this information for building a query-generated training data to learn an
ordinal regression model for scoring the translations. Let yi ∈ {−1,+1} indicates the presence/absence
of wi represented by feature vector xi ∈ Rn, and then assume that D = {(xi, yi) ∈ R|xi|×{−1,+1}} is
the training data. D is then be used as the training data for our regression model.

3.2 Learning to Rank for Ordinal Translation Regression
We aim to find f(x) = wT x + b, where w ∈ R|x| is the weight vector and b is a bias both specific to a
query, satisfying the following constraint:

f(xi) > f(xj)⇐⇒ yi > yj ∀(xi, yi), (xj , yj) ∈ D (1)
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Table 1: Descriptions of the features in x.

Feature Description
[uwj ]k the k−th dimension of wj in its low dimensional vector uwj ∈ Rc×1

p(wj |C) the maximum likelihood probability of wj in the collection
p(wj |θF ) the maximum likelihood probability of wj in the feedback documents
p(wj |qt) the maximum likelihood probability of wj in the simple translation of the query∑

wj′ /∈qwj
p(wj , wj′) sum of the bi-gram probability of wj with all translations of qwj′ 6= qwj

where f(x) should give higher rank to a pseudo relevant translation wi compared to a non-relevant
translation wj . If we define the set of all translation words’ pairs with P = {(i, j) : yi > yj}, finding
f(x) requires minimizing the following loss function:

L(θ) =
1
2

wT w s.t. ∀(i, j) ∈ P : (wT xi) ≥ (wT xj) (2)

Generally speaking, Equation 2 shows loss-function of an ordinal regression with parameter w (Herbrich
et al., 1999; Joachims, 2006). Here, the goal is to score w ∈ qt based on the embedded feature vectors
x1:n and build a translation model as follows:

p(wj |q) =
1
m

δwje
wT xj+b∑

wj′
δwj′e

wT xj′+b
(3)

where δwj is a weight function specific to each word and m is the number of query terms. We choose
δwj = c(wj , F )

1
2 equal to the count of wj in F to the power of 1

2 . This power is for rewarding rare
words and penalizing the common ones (Goldberg and Levy, 2014). Figure 1 shows the whole process
of building training data and weighting the translations.

3.3 Embedded Features
In Section 3.1 we proposed a query-dependant training data. In this section, we shed light on x, the
feature vectors in D. As shown in Table 1, we exploited two categories of features: query-dependent
features and query-independent features. p(wj |C) and [uwj ]k are independent of the query and capture
the frequency of wj in the collection and the semantic information of wj in the target language respec-
tively. On the other hand, the other features are specific to the q. p(wj |θF ) captures frequency of wj

in the pseudo-relevant documents. For example in q = {world, cup, 2018}, although the frequency of
[tasse] in collection is more than [coupe], but in F , [coupe] is a more frequent translation compared to
[tasse]. p(wj |qt) is a useful feature for long queries where there are multiple instances of a topical term
in the query. According to (Dadashkarimi et al., 2014; Gao et al., 2005),

∑
wj′ /∈qwj

p(wj , wj′) captures
coherence of wj with the context of the query.

4 Experiments

4.1 Experimental Settings
Details of the used collections are provided in Table 2. As shown in the table we provided experiments on
four European languages. For each collection we experiment on both short queries, derived from title of
the topics, and long queries, derived from title and description of the topics. We used Lemur toolkit in all
experiments1. All the queries and documents are stemmed using the Porter stemmer (Porter, 1997). The
collections are also normalized and purified from stopwords2. We used Dirichlet smoothing method with
prior µ = 1000 in a statistical language modeling framework with KL-divergence similarity measure.

1http://www.lemurproject.org/
2http://www.unine.ch/info/clef/
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Table 2: Collection Characteristics

ID Lang. Collection Queries (title+description) #docs #qrels

IT Italy
La Stampa 94,

AGZ 94
CLEF 2003-2003,

Q:91-140
108,577 4,327

SP Spanish EFE 1994 CLEF 2002, Q:91-140 215,738 1,039

DE German
Frankfurter Rundschau 94,
SDA 94, Der Spiegel 94-95

CLEF 2002-03, Q:91-140 225,371 1,938

FR French
Le Monde 94,

SDA French 94-95
CLEF 2002-03, Q:251-350 129,806 3,524

Table 3: Comparison of different query translation methods for short queries. Superscripts 1/2/3/4/5/6
indicate that the MAP improvements over the corresponding methods are statistically significant (2-tail
t-test, p ≤ 0.05). ∗ indicates 0.05 ≤ p ≤ 0.1 (compared to the proposed method L2R).

FR (short) DE (short) ES (short) IT (short)
ID MAP P@5 P@10 MAP P@5 P@10 MAP P@5 P@10 MAP P@5 P@10

1 MONO 0.3262 0.412 0.374 0.2675 0.432 0.369 0.3518 0.496 0.432 0.2949 0.368 0.311
2 TOP-1 0.2211 0.312 0.273 0.2015 0.253 0.233 0.2749 0.367 0.326 0.1566 0.221 0.190
3 UNIF 0.1944 0.269 0.236 0.2148 0.282 0.237 0.236 0.294 0.249 0.1526 0.200 0.156
4 STRUCT 0.1677 0.250 0.226 0.1492 0.227 0.204 0.2472 0.335 0.328 0.0994 0.133 0.118
5 BiCTM 0.2156 0.314 0.275 0.2126 0.282 0.261 0.2652∗ 0.343 0.316 0.1504 0.217 0.177
6 CLWETM 0.2312 0.331 0.281 0.2158 0.282 0.255 0.2915 0.384 0.337 0.1630 0.221 0.194
7 L2R 0.22962−5 0.312 0.288 0.21702−4 0.290 0.265 0.27492−4 0.380 0.320 0.16382−5 0.229 0.190

The embedding features [uwj ]k are computed with word2vec introduced in (Mikolov et al., 2013) on
each collection; size of the window, number of negative samples and size of the vectors are set to typical
values of 10, 45, and 100 respectively. We also used the svm-rank toolkit for learning w (Joachims,
2006)3.

As shown in Table 3 and Table 4 we have the following experimental runs: (1) Monolingual retrieval
run (MONO). It is the primary comparison baseline for CLIR in the literature (Pirkola et al., 2001;
Levow et al., 2005); (2) translating by top-ranked translation of a bilingual dictionary (TOP-1) (Ma et
al., 2012; Esfahani et al., 2016; Dadashkarimi et al., 2014); (3) uniform weighting of translations in the
query language modeling (UNIF); (4) structured query using #syn operator as described in Section 2.1
(STRUCT); (5) binary coherence translation model (BiCTM) introduced in (Dadashkarimi et al., 2014);
cross-lingual word embedding translation model (CLWETM) recently introduced by (Dadashkarimi et
al., 2016); and (6) the proposed learning to rank (L2R) algorithm. We used the simple STRUCT method
for our initial retrieval run to build the query-generated training data as described in Equation 3.1.

4.2 Performance Comparison and Discussion

All the experimental results are provided in Table 3 and Table 4. As shown in Table 3, although L2R
outperforms most of the baselines with short queries, the improvements with respect to CLWETM, the
most competitive baseline, are marginal. The first reason for these outcomes could be the lower number
of training data as shown in Table 6. L2R reaches 70.39%, 81.46%, 78.14%, and 55.54% of performances
of the monolingual run in FR, DE, ES, and IT collections respectively.

On the other hand, the proposed L2R outperforms all the baselines with long queries in almost all the
metrics. According to Table 4, L2R reaches 77.77%, 70.11%, 77.84%, 61.79% of performance of the
monolingual run in FR, DE, ES, and IT collections respectively. Although CLWETM, the state-of-the-art
dictionary-based translation model, takes advantage of a couple of collections in the source and target
language, L2R successfully outperforms CLWETM with only one collection in the target. Nevertheless,
the authors did not exploit comparable corpora for their evaluations and used a pool of multiple news
agencies in the source language instead.

3https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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Table 4: Comparison of different query translation methods for long queries. Superscripts 1/2/3/4/5/6
indicate that the MAP improvements over the corresponding methods are statistically significant (2-tail
t-test, p ≤ 0.05). n−m indicates all methods in range [n, ..,m].

FR (long) DE (long) ES (long) IT (long)
ID MAP P@5 P@10 MAP P@5 P@10 MAP P@5 P@10 MAP P@5 P@10

1 MONO 0.4193 0.535 0.473 0.3938 0.528 0.478 0.5281 0.672 0.596 0.3947 0.502 0.436
2 TOP-1 0.3077 0.396 0.343 0.2242 0.308 0.250 0.3762 0.480 0.432 0.2195 0.280 0.262
3 UNIF 0.2709 0.356 0.309 0.2425 0.284 0.254 0.3243 0.368 0.334 0.2095 0.231 0.200
4 STRUCT 0.1800 0.265 0.239 0.2103 0.252 0.250 0.2951 0.400 0.376 0.1942 0.244 0.224
5 BiCTM 0.3050 0.390 0.350 0.2442 0.328 0.278 0.3841 0.464 0.434 0.2172 0.262 0.242
6 CLWETM 0.3167 0.410 0.366 0.2622 0.348 0.308 0.4029 0.500 0.462 0.2380 0.298 0.267
7 L2R 0.32612−6 0.428 0.368 0.27612−6 0.364 0.328 0.41112−6 0.504 0.446 0.24392−6 0.302 0.262

Table 5: Translation model for the English topic ’Brain-Drain Impact’ to French.

UNIF BiCTM CLWETM L2R
term candidate p(w|q) candidate p(w|q) candidate p(w|q) candidate p(w|q)

impact effet 0.125 effet 0.074646 effet 0.11913 effet 0.143442
impact impact 0.125 impact 1.35E-03 impact 1.07E-07 impact 0.15437
impact choc 0.125 choc 1.16E-03 choc 1.07E-07 choc 0.042613
impact enfonc 0.125 enfonc 4.26E-04 enfonc 1.07E-07 enfonc 0.068032
impact frapper 0.125 frapper 0.513367 frapper 0.855057 frapper 0.050397
impact incident 0.125 incident 3.91E-01 incident 1.07E-07 incident 0.377201
impact porte 0.125 porte 0.017560 porte 0.025813 porte 0.120816
impact influer 0.125 influer 5.51E-05 influer 1.07E-07 influer 0.04313
brain tete 0.340 tete 0.999197 tete 0.993176 tete 0.556568
brain cerveau 0.340 cerveau 0.000758 cerveau 0.003412 cerveau 0.357755
brain cervelle 0.340 cervelle 4.53E-05 cervelle 0.003412 cervelle 0.085677
drain pert 0.143 pert 0.192359 pert 0.189706 pert 0.371849
drain evacu 0.143 evacu 0.227306 evacu 0.216075 evacu 0.318367
drain epuis 0.143 epuis 0.043371 epuis 0.044900 epuis 0.028666
drain purg 0.143 purg 0.536827 purg 0.538518 purg 0.112147

Table 5 shows three translation models for the topic ’Brain-Drain Impact’ based on UNIF, BiCTM,
CLWETM, and L2R. As shown in the table BiCTM and CLWETM are more likely to be trapped in a
local optimum. BiCTM originally estimates the query model based on co-occurrences of translations
through a collection and thus does not use the pseudo-relevant data. Therefore, it is possible that some
translations are co-occurred with each other in the collection but not in a query-dependent collection. On
the other hand, CLWETM considers semantic information of the query using low-dimensional vectors
of the candidates in top-ranked documents and then combines the obtained translation model with a
collection dependent model. CLWETM expects this combination to prevent the final model to be biased
to each of the query-dependent/independent collection. This expectation works well in very short queries
in which there is a limited information about the intention of the user (e.g., bi-gram queries). But when
the original query has an informative knowledge about the intention of the user (i.e., long queries), it
is better to consider statistics of the original query as a number of feature alongside the other query-
dependent/independent features. For example in Table 5 [tete] absorbed all translation weight of ’brain’
and then prevented the model to have more coverage/recall. On the other hand, appearing [cerveau]
as a relevant observation in D, lead L2R to distribute translation probability more justly between [tete]
and [cerveau]. Therefore, we believe that L2R defines a reliable hyperplane discriminating between the
context words and the noisy ones more effectively.

4.3 Parameter Sensitivity

|D| is the only parameter in the proposed L2R method. For each collection, we opted |D| that gives the
optimum MAP on L2R over a small subset of queries and then tested on remaining topics (Gao et al.,
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Table 6: Expected number of query terms (|q|) and size of the query-generated training data (|D|).
FR DE ES IT

short long short long short long short long
|q| |D| |q| |D| |q| |D| |q| |D| |q| |D| |q| |D| |q| |D| |q| |D|

2.76 10.62 11.58 53.44 2.8 15.62 11.54 82.7 2.8 11.6 11.56 59.9 2.82 11.14 11.73 60.76
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Figure 2: MAP sensitivity of L2R to the number of feedback documents in short and long queries
respectively.

2005; Dadashkarimi et al., 2016). As shown in Figure 2, the proposed method works stably in all the
collections. In long queries, amount of the improvements are clearly larger than the short ones (see the
amounts of jumps from |D| = 0 to |D| = 20 ).

5 Conclusion and Future Works

In this paper we proposed a learning to rank method based on ordinal regression on a query-generated
training data. We built the query-generated training data of translation words by using their pres-
ence/absence in pseudo-relevant documents as labels. This training data consists of embedded features
representing each translation word. The result of the regression model was used in the scoring function
to weight the translation words.

The method was tested on four different collections in four European languages. The experiments
showed that the proposed method outperforms the state-of-the-art dictionary-based CLIR methods, es-
pecially in long queries, and it reached up to 81.46% of the performance in the monolingual task. As a
future work, the authors would like to test the model on multi-lingual information filtering.
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