
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 1340–1349, Osaka, Japan, December 11-17 2016.

Sentence Similarity Learning by Lexical Decomposition and Composition

Zhiguo Wang and Haitao Mi and Abraham Ittycheriah
IBM T.J. Watson Research Center

Yorktown Heights, NY, USA
{zhigwang, hmi, abei}@us.ibm.com

Abstract

Most conventional sentence similarity methods only focus on similar parts of two input sen-
tences, and simply ignore the dissimilar parts, which usually give us some clues and semantic
meanings about the sentences. In this work, we propose a model to take into account both the
similarities and dissimilarities by decomposing and composing lexical semantics over sentences.
The model represents each word as a vector, and calculates a semantic matching vector for each
word based on all words in the other sentence. Then, each word vector is decomposed into a sim-
ilar component and a dissimilar component based on the semantic matching vector. After this,
a two-channel CNN model is employed to capture features by composing the similar and dis-
similar components. Finally, a similarity score is estimated over the composed feature vectors.
Experimental results show that our model gets the state-of-the-art performance on the answer
sentence selection task, and achieves a comparable result on the paraphrase identification task.

1 Introduction

Sentence similarity is a fundamental metric to measure the degree of likelihood between a pair of sen-
tences. It plays an important role for a variety of tasks in both NLP and IR communities. For example, in
paraphrase identification task, sentence similarity is used to determine whether two sentences are para-
phrases or not (Yin and Schütze, 2015; He et al., 2015). For question answering and information retrieval
tasks, sentence similarities between query-answer pairs are used for assessing the relevance and ranking
all the candidate answers (Severyn and Moschitti, 2015; Wang and Ittycheriah, 2015).

However, sentence similarity learning has following challenges:

1. There is a lexical gap between semantically equivalent sentences. Take the E1 and E2 in Table 1
for example, they have the similar meaning but with different lexicons.

2. Semantic similarity should be measured at different levels of granularity (word-level, phrase-level
and syntax-level). E.g., “not related” in E2 is an indivisible phrase when matching with “irrelevant”
in E1 (shown in square brackets).

3. The dissimilarity (shown in angle brackets) between two sentences is also a significant clue (Qiu et
al., 2006). For example, by judging the dissimilar parts, we can easily identify that E3 and E5 share
the similar meaning “The study is about salmon”, because “sockeye” belongs to the salmon family,
and “flounder” does not. Whereas the meaning of E4 is quite different from E3, which emphasizes
“The study is about red (a special kind of) salmon”, because both “sockeye” and “coho” are in the
salmon family. How we can extract and utilize those information becomes another challenge.

In order to handle the above challenges, researchers have been working on sentence similarity al-
gorithms for a long time. To bridge the lexical gap (challenge 1), some word similarity metrics were
proposed to match different but semantically related words. Examples include knowledge-based met-
rics (Resnik, 1995) and corpus-based metrics (Jiang and Conrath, 1997; Yin and Schütze, 2015; He et
al., 2015). To measure sentence similarity from various granularities (challenge 2), researchers have ex-
plored features extracted from n-grams, continuous phrases, discontinuous phrases, and parse trees (Yin
and Schütze, 2015; He et al., 2015; Heilman and Smith, 2010). The third challenge did not get much

1340

E1 The research is [irrelevant] to sockeye.
E2 The study is [not related] to salmon.
E3 The research is relevant to salmon.
E4 The study is relevant to sockeye, 〈instead of coho〉.
E5 The study is relevant to sockeye, 〈rather than flounder〉.

Table 1: Examples for sentence similarity learning, where sockeye means “red salmon”, and coho means
“silver salmon”. “coho” and “sockeye” are in the salmon family, while “flounder” is not.

attention in the past, the only related work of Qiu et al. (2006) explored the dissimilarity between sen-
tences in a pair for paraphrase identification task, but they require human annotations in order to train a
classifier, and their performance is still below the state of the art.

In this paper, we propose a novel model to tackle all these challenges jointly by decomposing and
composing lexical semantics over sentences. Given a sentence pair, the model represents each word as
a low-dimensional vector (challenge 1), and calculates a semantic matching vector for each word based
on all words in the other sentence (challenge 2). Then based on the semantic matching vector, each word
vector is decomposed into two components: a similar component and a dissimilar component (challenge
3). We use similar components of all the words to represent the similar parts of the sentence pair, and dis-
similar components of every word to model the dissimilar parts explicitly. After this, a two-channel CNN
operation is performed to compose the similar and dissimilar components into a feature vector (challenge
2 and 3). Finally, the composed feature vector is utilized to predict the sentence similarity. Experimental
results on two tasks show that our model gets the state-of-the-art performance on the answer sentence
selection task, and achieves a comparable result on the paraphrase identification task.

In following parts, we start with a brief overview of our model (Section 2), followed by the details of
our end-to-end implementation (Section 3). Then we evaluate our model on answer sentence selection
and paraphrase identifications tasks (Section 4).

2 Model Overview

In this section, we propose a sentence similarity learning model to tackle all three challenges (mentioned
in Section 1). To deal with the first challenge, we represent each word as a distributed vector, so that
we can calculate similarities for formally different but semantically related words. To tackle the second
challenge, we assume that each word can be semantically matched by several words in the other sentence,
and we calculate a semantic matching vector for each word vector based on all the word vectors in the
other side. To cope with the third challenge, we assume that each semantic unit (word) can be partially
matched, and can be decomposed into a similar component and a dissimilar component based on its
semantic matching vector.

Figure 1 shows an overview of our sentence similarity model. Given a pair of sentences S and T , our
task is to calculate a similarity score sim(S, T) in following steps:

Word Representation. Word embedding of Mikolov et al. (2013) is an effective way to handle the
lexical gap challenge in the sentence similarity task, as it represents each word with a distributed vector,
and words appearing in similar contexts tend to have similar meanings (Mikolov et al., 2013). With
those pre-trained embeddings, we transform S and T into sentence matrixes S = [s1, ..., si, ..., sm] and
T = [t1, ..., tj , ..., tn], where si and tj are d-dimension vectors of the corresponding words, and m and
n are sentence length of S and T respectively.

Semantic Matching. In order to judge the similarity between two sentences, we need to check whether
each semantic unit in one sentence is covered by the other sentence, or vice versa. For example, in
Table 1, to check whether E2 is a paraphrase of E1, we need to know the single word “irrelevant” in E1

is matched or covered by the phrase “not related” in E2. In our model, we treat each word as a primitive
semantic unit, and calculate a semantic matching vector ŝi for each word si by composing part or full
word vectors in the other sentence T . In this way, we can match a word si to a word or phrase in T .

1341

Sentence S

Similar
Component S+

Dissimilar
Component S-

Decomposition

Feature Vector 	

Sentence T

Composition

Feature Vector

Word Representation

Similarity Assessing

s1,…,si,…,sm

Dissimilar
Component T-

!
S

!
T

Similarity sim(S,T)

t1,…,tj,…,tn

Word Similarity Am×n

Similar
Component T+

ai, j

t̂1,..., t̂ j,..., t̂nŝ1,..., ŝi,..., ŝn

Sematic Matching

Figure 1: Model overview.

Similarly, for the reverse direction, we also calculate all semantic matching vectors t̂j in T .

ŝi = fmatch(si, T) ∀si ∈ S
t̂j = fmatch(tj , S) ∀tj ∈ T

(1)

We explore different fmatch functions later in Section 3.
Decomposition. After the semantic matching phase, we have the semantic matching vectors of ŝi and

t̂j . We interpret ŝi (or t̂j) as a semantic coverage of word si (or tj) by the sentence T (or S). However,
it is not necessary that all the semantics of si (or tj) are fully covered by ŝi (or t̂j). Take the E1 and E2

in Table 1 for example, the word “sockeye” in E1 is only partially matched by the word “salmon” (the
similar part) in E2, as the full meaning of “sockeye” is “red salmon” (the semantic meaning of “red”
is the dissimilar part). Motivated by this phenomenon, our model further decomposes word si (or tj),
based on its semantic matching vector ŝi (or t̂j), into two components: similar component s+i (or t+j) and
dissimilar component s−i (or t−j). Formally, we define the decomposition function as:

[s+i ; s−i] = fdecomp(si, ŝi) ∀si ∈ S
[t+j ; t−j] = fdecomp(tj , t̂j) ∀tj ∈ T

(2)

Composition. Given a similar component matrix S+ = [s+1 , ..., s
+
m] (or T+ = [t+1 , ..., t

+
n]) and a

dissimilar component matrix S− = [s−1 , ..., s
−
m] (or T− = [t−1 , ..., t

−
n]), our goal in this step is how

to utilize those information. Besides the suggestion from Qiu et al. (2006) that the significance of the
dissimilar parts alone between two sentences has a great effect of their similarity, we also think that the
dissimilar and similar components have strong connections. For example, in Table 1, if we only look at
the dissimilar or similar part alone, it is hard to judge which one betweenE4 andE5 is more similar toE3.
We can easily identify that E5 is more similar to E3, when we consider both the similar and dissimilar

1342

parts. Therefore, our model composes the similar component matrix and dissimilar component matrix
into a feature vector ~S (or ~T) with the composition function:

~S = fcomp(S+, S−)
~T = fcomp(T+, T−)

(3)

Similarity assessing. In the final stage, we concatenate the two feature vectors (~S and ~T) and predict
the final similarity score:

sim(S, T) = fsim(~S, ~T) (4)

3 An End-to-End Implementation

Section 2 gives us a glance of our model. In this section, we describe details of each phase.

3.1 Semantic Matching Functions
This subsection describes our specifications for the semantic matching function fmatch in Eq. (1). The
goal of fmatch is to generate a semantic matching vector ŝi for si by composing the vectors from T .

For a sentence pair S and T , we first calculate a similarity matrix Am×n, where each element ai,j ∈
Am×n computes the cosine similarity between words si and tj as

ai,j =
sT
i tj

‖si‖ · ‖tj‖ ∀si ∈ S,∀tj ∈ T. (5)

Then, we define three different semantic matching functions over Am×n:

fmatch(si, T) =

∑n

j=0 ai,jtj∑n
j=0 ai,j

global∑k+w
j=k−w ai,jtj∑k+w
j=k−w ai,j

local-w

tk max

(6)

where k = argmaxj ai,j . The idea of the global function is to consider all word vectors tj in T . A
semantic matching vector ŝi is a weighted sum vector of all words tj in T , where each weight is the
normalized word similarity ai,j . The max function moves to the other extreme. It generates the semantic
matching vector by selecting the most similar word vector tk from T . The local-w function takes a
compromise between global and max, where w indicates the size of the window to consider centered at
k (the most similar word position). So the semantic matching vector is a weighted average vector from
tk−w to tk+w.

3.2 Decomposition Functions
This subsection describes the implementations for the decomposition function fdecomp in Eq. (2). The
intention of fdecomp is to decompose a word vector sj based on its semantic matching vector ŝj into a
similar component s+i and a dissimilar component s−i , where s+i indicates the semantics of si covered
by ŝi and s−i indicates the uncovered part. We implement three types of decomposition function: rigid,
linear and orthogonal.

The rigid decomposition only adapts to the max version of fmatch. First, it detects whether there is
an exactly matched word in the other sentence, or si equal to ŝi. If yes, the vector si is dispatched to
the similar component s+i , and the dissimilar component is assigned with a zero vector 0. Otherwise, the
vector si is assigned to the dissimilar component s−i . Eq. (7) gives the formal definition:

[s+i = si; s−i = 0] if si = ŝi

[s+i = 0; s−i = si] otherwise
(7)

The motivation for the linear decomposition is that the more similar between si and ŝi, the higher
proportion of si should be assigned to the similar component. First, we calculate the cosine similarity

1343

α between si and ŝi. Then, we decompose si linearly based on α. Eq. (8) gives the corresponding
definition:

α =
sT
i ŝi

‖si‖ · ‖ŝi‖
s+i = αsi

s−i = (1− α)si

(8)

The orthogonal decomposition is to decompose a vector in the geometric space. Based on the semantic
matching vector ŝi, our model decomposes si into a parallel component and a perpendicular component.
Then, the parallel component is viewed as the similar component s+i , and perpendicular component is
taken as the dissimilar component s−i . Eq. (9) gives the concrete definitions.

s+i =
si · ŝi

ŝi · ŝi
ŝi parallel

s−i = si − s+i perpendicular

(9)

3.3 Composition Functions
The aim of composition function fcomp in Eq. (3) is to extract features from both the similar component
matrix and the dissimilar component matrix. We also want to acquire similarities and dissimilarities of
various granularity during the composition phase. Inspired from Kim (2014), we utilize a two-channel
convolutional neural networks (CNN) and design filters based on various order of n-grams, e.g., unigram,
bigram and trigram.

The CNN model involves two sequential operations: convolution and max-pooling. For the convolu-
tion operation, we define a list of filters {wo}. The shape of each filter is d×h, where d is the dimension
of word vectors and h is the window size. Each filter is applied to two patches (a window size h of
vectors) from both similar and dissimilar channels, and generates a feature. Eq. (10) expresses this
process.

co,i = f(wo ∗ S+
[i:i+h] + wo ∗ S−[i:i+h] + bo) (10)

where the operation A ∗ B sums up all elements in B with the corresponding weights in A, S+
[i:i+h]

and S−[i:i+h] indicate the patches from S+ and S−, bo is a bias term and f is a non-linear function (we
use tanh in this work). We apply this filter to all possible patches, and produce a series of features
~co = [co,1, co,2, ..., co,O]. The number of features in ~co depends on the shape of the filter wo and the
length of the input sentence. To deal with variable feature size, we perform a max-pooling operation
over ~co by selecting the maximum value co = max ~co. Therefore, after these two operations, each filter
generates only one feature. We define several filters by varying the window size and the initial values.
Eventually, a vector of features is captured by composing the two component matrixes, and the feature
dimension is equal to the number of filters.

3.4 Similarity Assessment Function
The similarity assessment function fsim in Eq. (4) predicts a similarity score by taking two feature
vectors as input. We employ a linear function to sum up all the features and apply a sigmoid function to
constrain the similarity within the range [0, 1].

3.5 Training
We train our sentence similariy model by maximizing the likelihood on a training set. Each training
instance in the training set is represented as a triple (Si, Ti, Li), where Si and Ti are a pair of sentences,
and Li ∈ {0, 1} indicates the similarity between them. We assign Li = 1 if Ti is a paraphrase of Si for
the paraphrase identification task, or Ti is a correct answer for Si for the answer sentence selection task.
Otherwise, we assign Li = 0. We implement the mathematical expressions with Theano (Bastien et al.,
2012) and use Adam (Kingma and Ba, 2014) for optimization.

1344

4 Experiment

4.1 Experimental Setting
We evaluate our model on two tasks: answer sentence selection and paraphrase identification. The answer
sentence selection task is to rank a list of candidate answers based on their similarities to a question
sentence, and the performance is measured by mean average precision (MAP) and mean reciprocal rank
(MRR). We experiment on two datasets: QASent and WikiQA. The statistics of the two datasets can be
found in Yang et al. (2015), where QASent (Wang et al., 2007) was created from the TREC QA track,
and WikiQA (Yang et al., 2015) is constructed from real queries of Bing and Wikipedia. The paraphrase
identification task is to detect whether two sentences are paraphrases based on the similarity between
them. The metrics include the accuracy and the positive class F1 score. We experiment on the Microsoft
Research Paraphrase corpus (MSRP) (Dolan et al., 2004), which includes 2753 true and 1323 false
instances in the training set, and 1147 true and 578 false instances in the test set. We build a development
set by randomly selecting 100 true and 100 false instances from the training set. In all experiments, we
set the size of word vector dimension as d =300, and pre-train the vectors with the word2vec toolkit
(Mikolov et al., 2013) on the English Gigaword (LDC2011T07).

4.2 Model Properties
There are several alternative options in our model, e.g., the semantic matching functions, the decom-
position operations, and the filter types. The choice of these options may affect the final performance.
In this subsection, we present some experiments to demonstrate the properties of our model, and find a
good configuration that we use to evaluate our final model. All the experiments in this subsection were
performed on the QASent dataset and evaluated on the development set.

First, we evaluated the effectiveness of various semantic matching functions. We switched the seman-
tic matching functions among {max, global, local-l}, where l ∈ {1, 2, 3, 4}, and fixed the other options
as: the linear decomposition, the filter types including {unigram, bigram, trigram}, and 500 filters for
each type. Figure 2 (a) presents the results. We found that the max function worked better than the
global function on both MAP and MRR. By increasing the window size, the local-l function acquired
progressive improvements when the window size is smaller than 4. But after we enlarged the window
size to 4, the performance dropped. The local-3 function worked better than the max function in term
of the MAP, and also got a comparable MRR. Therefore, we use the local-3 function in the following
experiments.

Second, we studied the effect of various decomposition operations. We varied the decomposition
operation among {rigid, linear, orthogonal}, and kept the other options unchanged. Figure 2 (b) shows
the performance. We found that the rigid operation got the worst result. This is reasonable, because the
rigid operation decomposes word vectors by exactly matching words. The orthogonal operation got a
similar MAP as the linear operation, and it worked better in term of MRR. Therefore, we choose the
orthogonal operation in the following experiments.

Third, we tested the influence of various filter types. We constructed 5 groups of filters: win-1 contains
only the unigram filters, win-2 contains both unigram and bigram filters, win-3 contains all the filters in
win-2 plus trigram filters, win-4 extends filters in win-3 with 4-gram filters, and win-5 adds 5-gram filters
into win-4. We generate 500 filters for each filter type (with different initial values). Experimental
results are shown in Figure 2 (c). At the beginning, adding higher-order ngram filters was helpful for the
performance. The performance reached to the peak, when we used the win-3 filters. After that, adding
more complex filters decreased the performance. Therefore, the trigram is the best granularity for our
model. In the following experiments, we utilize filter types in win-3.

4.3 Comparing with State-of-the-art Models
In this subsection, we evaluated our model on the test sets of QASent, WikiQA and MSRP.

QASent dataset. Table 2 presents the performances of the state-of-the-art systems and our model,
where the performances were evaluated with the standard trec eval-8.1 script 1. Given a pair of sentences,

1http://trec.nist.gov/trec eval/

1345

(a) Semantic matching. (b) Decomposition. (c) Filter types in composition.

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

MAP MRR

win-1

win-2

win-3

win-4

win-5

0.73

0.75

0.77

0.79

0.81

0.83

0.85

MAP MRR

max

global

local-1

local-2

local-3

local-4 0.6

0.65

0.7

0.75

0.8

0.85

0.9

MAP MRR

rigid

linear

orthogonal

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

MAP MRR

win-1

win-2

win-3

win-4

win-5

Figure 2: Influence of different configuration.

Models MAP MRR

Severyn and Moschitti (2015)
(CNN only) 0.6709 0.7280

Severyn and Moschitti (2015)
(CNN + sparse features) 0.7459 0.8078

Wang and Ittycheriah (2015)
(Word embedding alignment) 0.7460 0.8200

dos Santos et al. (2016)
(Attention-based CNN) 0.7530 0.8511

This work 0.7714 0.8447

Table 2: Results on the QASent dataset.

Models MAP MRR

Yang et al. (2015)
(2-gram CNN) 0.6520 0.6652

dos Santos et al. (2016)
(Attention-based CNN) 0.6886 0.6957

Miao et al. (2015)
(Attention-based LSTM) 0.6886 0.7069

Yin et al. (2015)
(Attention-based CNN) 0.6921 0.7108

This work 0.7058 0.7226

Table 3: Results on the WikiQA dataset.

Severyn and Moschitti (2015) employed a CNN model to compose each sentence into a vector separately,
and joined the two sentence vectors to compute the sentence similarity. Because only the sentence-
level granularity was used, the performance is much lower (the second row of Table 2). After adding
some word overlap features between the two sentences, the performance was improved significantly
(the third row of Table 2). Therefore, the lower-level granularity is an indispensable factor for a good
performance. Wang and Ittycheriah (2015) conducted word alignment for a sentence pair based on word
vectors, and measured the sentence similarity based on a couple of word alignment features. They got
a slightly better performance (the fourth row of Table 2), which indicates that the vector representation
for words is helpful to bridging the lexical gap problem. dos Santos et al. (2016) introduced the attention
mechanism into the CNN model, and learnt sentence representation by considering the influence of the
other sentence. They got better performance than all the other previous work. Our model makes use
of all these useful factors and also considers the dissimilarities of a sentence pair. We can see that our
model (the last row of Table 2) got the best MAP among all previous work, and a comparable MRR than
dos Santos et al. (2016).

WikiQA dataset. Table 3 presents the results of our model and several state-of-the-art models. Yang
et al. (2015) constructed the dataset and reimplemented several baseline models. The best performance
(shown at the second row of Table 3) was acquired by a bigram CNN model combining with the word
overlap features. Miao et al. (2015) models the sentence similarity by enriching LSTMs with a latent
stochastic attention mechanism. The corresponding performance is given at the fourth row of Table
3. Yin et al. (2015) introduced the attention mechanism into the CNN model, and captured the best
performance (the fifth row of Table 3). The semantic matching phase in our model is similar to the
attention mechanism. But different from the previous models, our model utilizes both the similarity and
dissimilarity simultaneously. The last row of Table 3 shows that our model is more effective than the
other models.

MSRP dataset. Table 4 summarized the results from our model and several state-of-the-art models.
Yin and Schütze (2015) employed a CNN model to learn sentence representations on multiple level of

1346

Models Acc F1

Yin and Schütze (2015) (without pretraining) 72.5 81.4

Yin and Schütze (2015) (with pretraining) 78.4 84.6

He et al. (2015) (without POS embeddings) 77.8 N/A

He et al. (2015) (without Para. embeddings) 77.3 N/A

He et al. (2015) (POS and Para. embeddings) 78.6 84.7

Yin et al. (2015) (with sparse features) 78.9 84.8

Ji and Eisenstein (2013) 80.4 86.0

This work 78.4 84.7

Table 4: Experimental results for paraphrase identification on MSRP corpus.

granularity and modeled interaction features at each level for a pair of sentences. They obtained their best
performance by pretraining the model on a language modeling task (the 3rd row of Table 4). However,
their model heavily depends on the pretraining strategy. Without pretraining, they got a much worse
performance (the second row of Table 4). He et al. (2015) proposed a similar model to Yin and Schütze
(2015). Similarly, they also used a CNN model to extract features at multiple levels of granularity.
Differently, they utilized some extra annotated resources, e.g., embeddings from part-of-speech (POS)
tags and PARAGRAM vectors trained from the Paraphrase Database (Ganitkevitch et al., 2013). Their
model outperformed Yin and Schütze (2015) without the need of pretraining (the sixth row of Table 4).
However, the performance was reduced after removing the extra resources (the fourth and fifth rows of
Table 4). Yin et al. (2015) applied their attention-based CNN model on this dataset. By adding a couple of
sparse features and using a layerwise training strategy, they got a pretty good performance. Comparing to
these neural network based models, our model obtained a comparable performance (the last row of Table
4) without using any sparse features, extra annotated resources and specific training strategies. However,
the best performance so far on this dataset is obtained by Ji and Eisenstein (2013). In their model, they
just utilized several hand-crafted features in a Support Vector Machine (SVM) model. Therefore, the
deep learning methods still have a long way to go for this task.

5 Related Work

The semantic matching functions in subsection 3.1 are inspired from the attention-based neural machine
translation (Bahdanau et al., 2014; Luong et al., 2015). However, most of the previous work using the
attention mechanism in only LSTM models. Whereas our model introduces the attention mechanism
into the CNN model. A similar work is the attention-based CNN model proposed by Yin et al. (2015).
They first build an attention matrix for a sentence pair, and then directly take the attention matrix as a
new channel of the CNN model. Differently, our model uses the attention matrix (or similarity matrix)
to decompose the original sentence matrix into a similar component matrix and a dissimilar component
matrix, and then feeds these two matrixes into a two-channel CNN model. The model can then focus
much on the interactions between similar and dissimilar parts of a sentence pair.

6 Conclusion

In this work, we proposed a model to assess sentence similarity by decomposing and composing lexical
semantics. To bridge the lexical gap problem, our model represents each word with its context vector.
To extract features from both the similarity and dissimilarity of a sentence pair, we designed several
methods to decompose the word vector into a similar component and a dissimilar component. To extract
features at multiple levels of granularity, we employed a two-channel CNN model and equipped it with
multiple types of ngram filters. Experimental results show that our model is quite effective on both the

1347

answer sentence selection task and the paraphrase identification task .

Acknowledgments

We thank the anonymous reviewers for useful comments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow, Arnaud Bergeron, Nicolas
Bouchard, and Yoshua Bengio. 2012. Theano: new features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Unsupervised construction of large paraphrase corpora: Ex-
ploiting massively parallel news sources. In Proceedings of the 20th international conference on Computational
Linguistics, page 350. Association for Computational Linguistics.

Cı́cero Nogueira dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. 2016. Attentive pooling networks.

Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2013. Ppdb: The paraphrase database. In
HLT-NAACL, pages 758–764.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-perspective sentence similarity modeling with convolu-
tional neural networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1576–1586.

Michael Heilman and Noah A Smith. 2010. Tree edit models for recognizing textual entailments, paraphrases, and
answers to questions. In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 1011–1019. Association for Computational
Linguistics.

Yangfeng Ji and Jacob Eisenstein. 2013. Discriminative improvements to distributional sentence similarity. In
EMNLP, pages 891–896.

Jay J Jiang and David W Conrath. 1997. Semantic similarity based on corpus statistics and lexical taxonomy.
arXiv preprint cmp-lg/9709008.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing, pages 1746–1751.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. In International Conference
on Learning Representation (ICLR).

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025.

Yishu Miao, Lei Yu, and Phil Blunsom. 2015. Neural variational inference for text processing. arXiv preprint
arXiv:1511.06038.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781.

Long Qiu, Min-Yen Kan, and Tat-Seng Chua. 2006. Paraphrase recognition via dissimilarity significance classifi-
cation. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pages
18–26. Association for Computational Linguistics.

Philip Resnik. 1995. Using information content to evaluate semantic similarity in a taxonomy. arXiv preprint
cmp-lg/9511007.

Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to rank short text pairs with convolutional deep neural
networks. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 373–382. ACM.

1348

Zhiguo Wang and Abraham Ittycheriah. 2015. Faq-based question answering via word alignment. arXiv preprint
arXiv:1507.02628.

Mengqiu Wang, Noah A Smith, and Teruko Mitamura. 2007. What is the jeopardy model? a quasi-synchronous
grammar for qa. In EMNLP-CoNLL, volume 7, pages 22–32.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. Wikiqa: A challenge dataset for open-domain question
answering. In Proceedings of the Conference on Empirical Methods in Natural Language Processing.

Wenpeng Yin and Hinrich Schütze. 2015. Convolutional neural network for paraphrase identification. In Proceed-
ings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 901–911.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. 2015. Abcnn: Attention-based convolutional
neural network for modeling sentence pairs.

1349

