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Abstract

The paper applies a deep recurrent neural network to the task of sentence boundary detection in
Sanskrit, an important, yet underresourced ancient Indian language. The deep learning approach
improves the F scores set by a metrical baseline and by a Conditional Random Field classifier by
more than 10%.

1 Introduction

Most NLP tasks that deal with written texts take it for granted that sentences are separated reliably by
punctuation marks, although punctuation has been added quite late to many writing systems. The large
corpora in Old- and Middle-Indian languages, which belong to the central sources for understanding the
history of South Asia, generally lack dedicated punctuation marks. This paper applies deep recurrent
neural networks (RNN) to a combination of morphological and lexical features for detecting sentence
boundaries (SB) in Sanskrit, the oldest and most important of these Indian languages.

Traditional editions of Sanskrit texts use a scriptio continua, which lacks several orthographic el-
ements that structure texts in modern Western languages. Single words are frequently not separated
by blank spaces due to missing orthographic regulation, or because the words are merged through the
euphonic rules called sandhi (“connection”).1 Moreover, Sanskrit texts don’t have a consistent and un-
ambiguous system for marking SBs. Editors and scribes insert so called (double) dan. d. as (“sticks”,
indicated by | and || in this paper) to mark the end of metrical structures. The position of these dan. d. as
can be derived directly from the prosodic structure of a text, and dan. d. as always occur at the end of text
lines, which coincide with half-verses in most printed editions. While single dan. d. as mark the end of
a half-verse, double dan. d. as should, at least theoretically, indicate, where a stanza in the given metre is
completed. Double dan. d. as typically occur after every second line or half-verse of a metrical text, be-
cause the stanzas are finished at these points. In this function, they are meant to improve the readability
of a text. As many sentences terminate at the end of a half-verse or of a stanza, dan. d. as provide a good
baseline for punctuation prediction (refer to Table 3). Many editors, however, also insert double dan. d. as
after a single or after three metrical lines, when they feel that a sentence is completed at these positions.2

In this way, the purely metrical motivation of double dan. d. as is mingled with the new function of a punc-
tuation mark – leaving aside the fact that the philologically interesting inner-line SBs cannot be marked
in the dan. d. a system.

Linguistic peculiarities of Sanskrit complicate the task. English, for example, encodes a large amount
of its syntax through a strongly regulated word order, and structures its sentences by subordinating con-
juctions. While these data provide a lot of the information necessary for restoring punctuation, Sanskrit
has a rather loose word order with a tendency to subject-object-verb constructions, it uses conjunctions
quite sparingly, and their position provides only weak indications for the presence of SBs. As the Indian

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/

1The two words parvatasya agre, for example, are merged into one string parvatasyāgre by the rule a+a=ā; refer to Kielhorn
(1888, 6ff.) for an overview. Sandhi is one of the main problems for Sanskrit NLP.

2Refer to Hopkins (1901, 194): “The number of verses in a (. . . ) stanza may be decreased or increased by one or two (. . . ).
Sometimes, however, where one or three hemistichs make a stanza, it is merely a matter of editing.”
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grammatical tradition has emphasized (Section 2), determining the boundaries of a sentence is equivalent
to grasping its full semantic meaning.

The need for reliable punctuation on sentence level is beyond question. Access to full sentences is
central for NLP tasks such as dependency parsing or role labeling. In addition, detecting SBs is also im-
portant from a philological perspective. The metrical texts considered in this paper belong to a tradition
of (pseudo-)oral poetry that still survives in parts of India (Smith, 1987). The constituent structure of
sentences (e.g., extensive right branchings) or the presence of enjambements, which are easily detected
when SBs are known, provide important evidence for understanding the transition of these epics from
an oral to a written state (Sellmer, 2015; Parry, 1930). More generally, Sanskrit provides a challenging
application scenario for NLP due to the richness of its phonetics (sandhi), morphology, lexicon, and se-
mantics. In spite of its historical importance, it is heavily underressourced from the perspective of NLP,
and the size of its corpus prevents a purely manual annotation of linguistic phenomena.3

The remainder of the paper is structured as follows. Section 2 sketches how a sentence was defined
in the tradition of classical Indian grammar, and summarizes related research from NLP and automatic
speech recognition. Section 3 reports results of a test annotation, details the annotation guideline, and
describes the data prepared for this study. Section 4 introduces the features and the deep learning model.
Section 5 describes the evaluation baselines given by prosodical markers and a CRF model, discusses the
performance of the model, and identifies critical areas. Section 6 summarizes the paper.

2 Related Work

Classical Sanskrit was systematically de- and prescribed in the famous grammar As.t.ādhyāyı̄ of
Pān. ini (around 350 BCE, Scharfe (1977)), who used Sanskrit as a metalanguage, and applied meth-
ods such as rewrite rules and rule inheritance for minimizing the text length (Kiparsky, 2009). While the
As.t.ādhyāyı̄ deals exhaustively with phonetics and morphology, syntax only plays a subordinate role. Its
main syntactic contribution is the kāraka theory, which describes the interaction between nominal case
suffixes and verbs (Cardona, 1976, 215ff.). The grammatical tradition following Pān. ini provided em-
pirical, verb-centered definitions of sentences (Matilal, 1966, 377ff.). Because many Sanskrit sentences
don’t overtly express the copula “to be”, these definitions gave rise to extended discussions about the un-
derlying grammatical and cognitive structures of sentences such as pus. pam. raktam (flower:NSG red:NSG),
which may mean “a red flower” or the complete sentence “the flower is red” (Deshpande, 1991). Missing
copulae introduce a high degree of ambiguity in the SB detection task, as will be seen in Section 5.3.
The later philosophical school of Nyāya concentrated on the conditions that make a sentence meaningful
and complete for a competent speaker of Sanskrit (Matilal, 1966, 385ff.), and that include the semantic
compatibility of the words (yogyatā) and their correct grouping (sam. nidhi; see Kulkarni et al. (2015)). If
an utterance fulfills these conditions, it creates the intended cognition (śābdabodha) in the listener. So,
the Indian tradition claims that only a competent speaker can determine the boundary of a sentence, but
does not provide formal criteria for deciding if a sentence is complete or not.

Related research in NLP mainly deals with punctuation restoration in speech transcripts, and in lan-
guages such as Chinese that traditionally don’t use punctuation marks for structuring syntactic sequences.
Liu et al. (2005) contrast Hidden Markov Models (HMM), Maximum Entropy classifiers and Conditional
Random Fields (CRF). They obtain a significant decrease of the SB detection error when processing
lexical and automatically induced POS features using a CRF. Baldwin and Joseph (2009) perform simul-
taneous case and punctuation restoration in English texts. They process automatically annotated lexical,
POS, and chunk features with a linear kernel Support Vector Machine. The authors report the highest
F score for punctuation restoration, when they iteratively label the training and test sets with the output
of the classifier, and retrain with the augmented feature space (“iterative retagging”). Zhao et al. (2012)
train CRFs on the task of inserting punctuation in Chinese text, using features from different annotation
levels of a Chinese treebank, and observe an increase in the F score, when higher level features such as

3There exist no reliable estimations of the real size of Sanskrit literature. The GRETIL website (http://gretil.
sub.uni-goettingen.de/), which provides digital transcripts of a few percent of all printed Sanskrit texts, may contain
around 15 million lexical tokens (estimation of the author; numbers may be significantly higher due to Sandhi). Large parts of
the Sanskrit literature are still only transmitted as manuscripts.
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POS tags or chunks are combined with lexical information. Tilk and Alumäe (2015) model the restora-
tion of commas and periods in Estonian speech transcripts with a two-stage Long Short-term Memory
(LSTM) approach. The first LSTM is trained on a large written corpus with lexical information in 1-hot-
encoding as predictors and the associated punctuation as predicted classes. Following Seide et al. (2011,
26), the authors combine the output of the last hidden layer of this text LSTM with duration features
from a smaller corpus of punctuated speech transcripts. This combined feature set is fed into a second
LSTM that performs the final classification.

Algorithms based on short range models (n-grams, HMMs) or those requiring strict positional infor-
mation may not be applicable to Sanskrit for several reasons. Sanskrit has a relatively free word order
(Gillon and Shaer, 2005; Hock, 2013), and encodes many syntactical relations through its morphology, so
that the positional information inherent in an n-gram model may not contribute as strongly as in English
or Chinese. In addition, Sanskrit NLP suffers from data sparsity in the lexical domain. The corpus on
which the models are trained contains 3,950,000 disambiguated lexical tokens. New data for pretraining
a lexical model cannot be generated on the fly, because the phonetic phenomenon of Sandhi introduces a
high degree of ambiguity (Hellwig, 2015b), and sufficiently large digitized Sanskrit corpora are missing.

CRFs as used by Liu et al. (2005) and Zhao et al. (2012) are more flexible than HMMs in modeling
the feature space involved in SB detection, because their input features can, in principle, come from
arbitrarily long ranges around a focus word, and because they are trained to maximize the classification
accuracy. RNNs as used by Tilk and Alumäe (2015) are equally able to capture the long-range interac-
tions between morphology, lexicon, and output symbols that can be hypothesized to play an important
role in SB detection. Section 5 will compare their efficiency in the present task. The problems of explod-
ing and vanishing gradients (Pascanu et al., 2013) can be handled with Long Short-Term Memory units
(LSTM, for the vanishing ones (Hochreiter and Schmidhuber, 1997), combined with a gradient cutoff)
or with Hessian free training of the network (Martens and Sutskever, 2011). Stacked LSTMs as used by
Sutskever et al. (2014) with bidirectional units (Schuster and Paliwal, 1997) seem to provide a promising
approach for labeling SBs in Sanskrit.

3 Data

3.1 Test annotation
The discussion in Section 2 has shown, that the Sanskrit grammatical tradition does not provide a solid
basis for developing a practical annotation guideline for SBs. As a consequence, ten sequences of at
least two metrical lines that contain complex syntactic phenomena were annotated independently by
three external annotators and the author of the paper. Given the small size of the data set, this annotation
was not primarily meant to determine the true inter-annotator agreement (IAA), but rather to obtain
quantitative support for ambiguous cases in the annotation guideline. The lines were tokenized according
to Western editorial standards without resolving Sandhis and compounds.

Assuming that a period can be inserted after each of the 360 tokens, the annotation yielded an IAA
of 0.805, using Fleiss’ κ (Fleiss, 1971). When only those tokens are considered after which at least
one annotator inserted a period, the IAA drops to κ = 0.312. A detailed analysis shows that almost all
unanimous annotations concern periods that coincide with (double) dan. d. as, while there is substantial
disagreement about inner-line periods.

3.2 Guideline
Drawing from the results of the initial annotation and from ideas proposed in Matilal (1966), this paper
defines a Sanskrit sentence as a sequence of words that contains at least an overtly expressed finite verb
(type s1; minimal sentence length: one word4), or two non-verbal elements with an unexpressed copula
denoting equivalence or existence5 (type s2). s1 and s2 can be expanded by (recursive and/or compound)
subordinate clauses and matrix sentences. As a direct consequence, sentences on the s1 or s2 levels that

4Sentences such as gacchāni ‘I shall go’ don’t need to overtly express the personal pronoun aham.
5Existence: hastināpure van. ik “[there is/was a] merchant in [the city of] Hastināpura”; equivalence: pus. pam. raktam, see

page 2.
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are connected by a (coordinating) conjunction such as ca ‘and’ are interpreted as separate sentences in
this paper. The following three cases need special consideration:

Overtly Expressed Subjects No period is inserted between main clauses separated by a coordinating
conjunction such as ca ‘and’, if the first sentence overtly expresses the subject, and the following
sentences use the same subject without overtly expressing it.

The particle iti The particle iti ‘thus’ marks the end of a direct speech, or of a personal opinion presented
as a direct speech. The direct speech terminated by iti is interpreted as a matrix sentence and,
therefore, not separated by an SB.

Formulae and interjections Interjections and formulaic phrases are marked as separate clauses, if they
are not embedded as matrix sentences.6

3.3 Data
One annotator used the guideline (Section 3.2) to mark sentence ends in 226 chapters with 96,292 lexical
tokens, which were drawn from the metrical texts in the Digital Corpus of Sanskrit (DCS, Hellwig
(2015a)7). Although each chapter constitutes a single long sequence with unknown punctuation, most
metrical texts simulate an oral presentation by inserting the stock line “[some person] said8” between
closed narrative blocks. Therefore, the chapters have been split up into a total of 609 of such blocks
(“sequences”), which represent the individual statements of the persons participating in a conversation.
The epic Mahābhārata (MBH) contributes most of the data. Because the text has probably grown over
centuries and incorporated diverse written and oral sources (Brockington, 1998), the predominance of
the MBH does not bias the data unduly towards the style of one author.

A total of 9,562 SBs has been annotated. 85.6% of the SBs coincide with (double) dan. d. as, which
provide a strong baseline for SB detection (Table 3). The annotated chapters contain a total of 9,027 word
types, 3,838 of which are hapax legomena. The sentences have a mean length of 10 tokens (median: 8),
and 90% of all sentence lengths are found in the interval [3,20].

4 Experimental Settings

4.1 Features
This section describes which features were considered for SB detection, and motivates their use. Their
influence on the prediction accuracy is reported in Section 5.1.

Dan. d. a information Because dan. d. as provide a strong baseline for SB detection (see Table 3), and
omitting them drastically reduces the F score in all configurations, they are used as features in all settings.
(Double) dan. d. as are encoded as dummy variables.

Morphological Information Sanskrit has a rich, though partly ambiguous Indo-Aryan morphology.
Nouns, adjectives, pronouns, and declinable verbal participles are inflected in eight cases, three numbers
(including dual), and three genders, while finite verbal forms occur in three numbers, three persons, and
over tenses and modes (aspects). Although Sanskrit also uses conjunctions to join subordinate and main
clauses, verbal subordination is typically expressed by the indeclinable absolutive (gerund; tvānta and
lyabanta).9

As morphology provides strong indications for the inner structure of a sentence, it is included in the
feature set either in 1-hot- (1h, each observed combination of morphological subfeatures is mapped to

6Refer to Wackernagel (1978 (reprint from 1896, II, 5) on short sentences with a particle-like function.
7This corpus collects 279 texts from different domains with 3,950,000 tokens with gold-annotations on the morphological,

lexical, and word semantic level.
8vyāsa uvāca “[The sage] Vyāsa said” is a typical example of these stock lines, which are always terminated by a single

dan. d. a, and not written in śloka metre.
9A typical toy example for this construction runs like: rāmo (‘Rāma’ NSG) vanam. (‘forest’ ASG) gatvā (‘go’ ABS) sı̄tām.

(‘Sı̄tā’ ASG) paśyati (‘see’ PR3.SG), “Rāma, having gone to the forest, sees Sı̄tā.” = “After Rāma has gone to the forest, he
sees Sı̄tā.”
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a distinct position in a 1-hot vector vM ) or in a decomposed encoding, in which each position of vM

encodes the presense or absence of a subfeature such as ‘nominative’ or ‘perfect tense’ (dec, refer to the
featurization in Cotterell and Schütze (2015, 1289)). Both encoding modes (1h, dec) don’t distinguish
between different morphological derivations of tenses and modes.

Because the DCS does not contain syntactic annotations, morphological information is also used to
generate possible syntactic links. Given a context size of s = 5, a word wp at position p in a sequence,
and the set of words Wq = {wq| |q− p| ≤ s, q 6= p}, a link between wp and wq is generated, if (1) p < q
and wp belongs to the same compound (samāsa) as wq, (2) wp and wq are nominal forms with the same
case, number, and gender, (3) if one of wp and wq is a verb and the other one a congruent nominative,
(4) if one of wp and wq is an absolutive and the other one a finite verb, or (5) if wp and wq belong to a
set of correlative conjunctions and pronouns such as yadā ‘when’-tadā ‘then’ or yad ‘which’-tad ‘that’.
These links are encoded as two sums weighted with 1

|p−q| for the left and right contexts. Although the
existence of a link does not guarantee that wp and wq belong to the same sentence, t-tests of the weighted
values with the SB labels as binary factor yield highly significant test statistics of t = −31.99 (left) and
t = 45.70 (right), such that testing the predictive power of these features appears justified.

Lexical Information Sanskrit has a rich vocabulary, and Sanskrit authors put importance on the use
of synonyms. An unsophisticated text such as the MBH, for example, uses 35 synonyms to denote
the warrior Arjuna, or 14 for the concept “mountain”. As a consequence, one faces considerable data
sparsity, when lexical information is used in 1-hot encoding. Low dimensional embeddings built from
reduced vector space models (VSM, Turney and Pantel (2010)) or from neural networks (Bengio et al.,
2003; Mikolov et al., 2011) have been shown to offer a workaround for this problem. Therefore, word
embeddings generated with the word2vec tool (Mikolov et al., 2011)10 are used as lexical features in
all configurations marked with w2v.

As an alternative to a fully lexicalized model, the setting indecl uses the set of the most frequent
100 conjunctions and indeclinables in 1-hot encoding as the sole lexical information. This setting is
motivated by the idea that these words indicate the basic structure of a sentence.

Yuret (1998) has shown that pointwise mutual information (PMI) between words can be used for
building dependency structures. Therefore, normalized PMI for a window of size s = 5 around each wp

is added to the feature space in analogy to the syntactic links described above. PMI is either calculated
from lexical information (lpmi), or from a mixture of lexical and word semantic data (lspmi).

4.2 Network Architecture and Settings
The RNN consists of a linear input layer with a dropout rate of 0.1 (Hinton et al., 2012), one or more
bidirectional LSTM layers without peephole units, and a softmax output layer. All network weights are
randomly initialized with a uniform distribution in [−0.01,+0.01]. The initial learning rate is set to
0.0008, and linearly decreased to the value of 0.0001. Training is performed with stochastic gradient
descent, gradient clipping at the LSTM units, and a constant momentum of 0.95. Because the output of
the network is a single binary variable, it is decoded using a threshold of 0.5. The model is implemented
in C++.

The experiments reported in Section 5 are performed with a ten-fold cross-validation (CV). In order to
make the results comparable to each other, the same random split of the data was used in all experiments.

5 Evaluation

5.1 Feature Selection
In order to assess how the features (Section 4.1) influence the classification results, flat networks with
dropout and one bidirectional LSTM are trained on subsets of morphological and lexical features. Table
1 shows that the decomposed morphological encoding creates better results than the 1-hot encoding.
It may be conjectured that the decomposed version can estimate the relevance of rare morphological
features (e.g., genitive dual) from their more frequent subfeatures (e.g., genitive in all numbers). The

10Settings: Trained with full chapters, i.e. dan. d. as were ignored; embedding size: 200, bow, window size: 10, 5 iterations.
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Enc. Links? P R F
dec no 85.08 79.41 82.15
dec yes 85.58 77.92 81.57
1h no 84.83 78.42 81.50
1h yes 84.62 78.02 81.19

Table 1: Influence of morphological features on precision and recall of LSTMs. Enc.: encoding type;
links: hardcoded morphological links used? LSTM architecture: dropout → bidirectional LSTM →
softmax, 100 hidden units, 10 CVs, 50 iterations; lexical features: freqindecl, lexical links: lpmi

Lexicon Links P R F
none none 83.50 78.59 80.97
freqindecl lpmi 84.44 78.68 81.46
freqindecl none 84.86 77.65 81.10
freqindecl lspmi 85.08 79.24 82.05
w2v lpmi = Table 1, row 1
w2v none 85.78 79.01 82.26
w2v lspmi 85.50 79.31 82.28

Table 2: Influence of lexical features; settings as in Table 1; decomposed morphological features (dec),
no morphological links

hard-coded morphological links don’t improve the performance, and are therefore discarded from the
feature set.

Table 2 shows that lexical features have a noticeable, though not too large effect on the classification
results. While the fully unlexicalized setting produces the worst results, the combination of word embed-
dings (w2v) with semantically enriched lexical links (lspmi) produces the best F scores (Table 2). This
result demonstrates that neural language models create meaningful embeddings even from small train-
ing corpora, although the full lexical disambiguation of the training data is certainly helpful in learning
proper representations.

The LSTM models for the final evaluation are trained on decomposed morphological features, neural
embeddings of size 200, and semantically enriched lexical links. The basic architecture follows the
description in Section 4.2, and the number of inner bidirectional LSTM layers is set to 2 or 3.

5.2 Comparing baseline models and LSTMs
Table 3 presents the baselines and the results for different LSTM architectures. The prosodical baselines
are calculated by inserting an SB either at each dan. d. a or double dan. d. a (“baseline dan. d. a”), or at each
double dan. d. a only (“baseline double dan. d. a”). As remarked in Section 1, editors tend to move double
dan. d. as by one line, if they are able to indicate an SB in this way. Therefore, double dan. d. as present a
rather precise baseline for SB detection in metrical Sanskrit texts, although their recall is low.

As many previous papers apply CRFs to SB detection (Section 2), CRFs trained with morphological
features and different levels of lexical features are used as a second set of baselines. The central rows in
Table 3 show that the F scores of CRFs are only slightly higher than those of the prosodical baselines.
Error analysis reveals that CRFs base their predictions mainly on dan. d. a information, which explains the
comparatively small differences between the F scores of the two baselines (75.55 vs. 73.80).

Bidirectional LSTMs significantly outperform both baselines. Comparing Tables 1, 2 and 3 shows
that their F scores increase with their depth, i.e. the number of stacked LSTM layers. When using a
deeper architecture, the strongest improvements are observed in the model recall. The best single model
in Table 3 almost reaches precision and recall of the two metrical baselines, and improves the F score of
the double dan. d. a baseline by almost 13%.
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Classifier Architecture P R F
Prosodical baseline dan. d. a 59.34 85.54 70.07

double dan. d. a 89.34 62.86 73.80
CRF no lex. 83.85 68.75 75.55

freqindecl 83.82 68.74 75.54
w2v 85.73 67.24 75.37

LSTM 2, dropout 86.92 80.70 83.70
3 87.07 75.62 80.94
3, dropout 88.53 85.13 86.79

Table 3: Comparison of baselines and LSTM architectures; settings for CRF: lpmi, dec, features ex-
tracted from a window of size ±6 around each word, 10 CVs; settings for LSTM: w2v, embedding size:
200, lspmi, no morph. links; 100 hidden units in each bidirectional LSTM layer, 10 CVs, 50 epochs

Length class
bi-ei-ii Proportion 1 (≤ 4 words) 2 (5-9 w.) 3 (10-14 w.) 4 (15-29 w.) 5 (≥ 30 w.)
1-1-1 65.08 733 (41.91) 2234 (64.94) 2348 (80.25) 865 (66.03) 43 (31.39)
0-1-1 12.01 516 (29.50) 507 (14.74) 82 (2.80) 36 (2.75) 7 (5.11)
1-0-1 11.47 369 (21.10) 499 (14.51) 171 (5.84) 50 (3.82) 8 (5.84)
1-1-0 6.98 8 (0.46) 90 (2.62) 238 (8.13) 272 (20.76) 59 (43.07)
0-0-0 0.38 5 (0.29) 9 (0.26) 10 (0.34) 9 (0.69) 3 (2.19)
0-0-1 1.41 89 (5.09) 32 (0.93) 6 (0.21) 6 (0.46) 2 (1.46)
1-0-0 1.61 15 (0.86) 33 (0.96) 49 (1.67) 46 (3.51) 11 (8.03)
0-1-0 1.07 14 (0.80) 36 (1.05) 22 (0.75) 26 (1.98) 4 (2.92)

Table 4: Sentence based evaluation of the output of the best RNN from Table 3, stratified by sentence
length classes (columns 3ff.). Column 1: bi = 1: b(eginning) of sentence si is detected; ei = 1: e(nd)
detected; ii = 1: the i(nner) part of si does not contain superfluous SBs.

5.3 Discussion
Table 3 demonstrates that RNNs clearly outperform both baselines, and that stacking the bidirectional
LSTM layers further improves the performance. However, the results don’t tell much about the actual
usability of the SB labeler, especially about how many full sentences were labeled correctly, and which
sentence structures or types are prone for errors. To assess these questions, a metric similar to the “strict”
evaluation in Liu and Shriberg (2007) is used. Instead of measuring the annotation precision for single
instances of SBs, this metric considers if full sentences have been annotated correctly, and where errors
occur in their annotation. For every sentence si in the gold annotation it is tested, if the RNN has marked
the beginning bi of si (= the end of si−1) and the end ei of si correctly, and if it has inserted additional
SBs in between bi and ei (variable ii). A sentence is accepted as correct in this evaluation, if bi and ei
are correct (bi = 1, ei = 1), and if there exist no superfluous SBs between them (ii = 1).

Table 4 shows the proportions of the 23 = 8 combinations of these three binary labels for the output of
the best RNN from Table 3 (3 hidden layers, dropout). The model achieves an overall “strict” accuracy
of 65.08% (configuration 1-1-1, column 2). If the configurations in which only one SB has been missed
(0-1-1, 1-0-1) or in which wrong SBs have been inserted between two correctly labeled SBs (1-1-0) are
accepted as partial matches, this “lenient” accuracy goes up to 95.54%.

It has been noted in Section 1 that sentences starting or ending in the middle of a text line convey
important text historical information. In addition, the CRF failed almost completely to detect these more
unusual SBs. In order to examine how these cases are handled by the LSTM, the output of the best
LSTM from Table 3 has been stratified according to the start and end positions of the sentences. It may
be expected that sentences starting at the beginning of a text line (b) and ending at a dan. d. a (d) or double
dan. d. a (d2) may have lower error rates than those starting and/or ending in the middle of a line (m).
The results displayed in Table 5 support this hypothesis. The highest accuracy rates are observed for the
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Start-end Corr. 1 err. > 1 err. Acc.
b-m 463 673 149 36.03
b-d 1185 495 72 67.64
b-d2 4034 1044 65 78.44
m-m 27 37 34 27.55
m-d 146 202 68 35.10
m-d2 368 461 39 42.40

Table 5: Sentence based evaluation of the output of the best RNN from Table 3, stratified by start and
end positions of sentences. b: Sentence starts at the b(eginning) of a text line, m: in the m(iddle); d/d2:
sentence ends at a dan. d. a/double dan. d. a

configurations b-d and b-d2, while accuracy rates for *-m-* configurations are clearly lower. Although
these cases constitute only a minority of the training data, and their accuracy rates may rise when more
labeled data are available, the presence of the (double) dan. d. a feature (page 4) is certainly most relevant
for the observed differences in the accuracy levels.

Columns 3ff. of Table 4 provides another view of the same data, which have been stratified with regard
to length classes of sentences. As could be hypothesized from Table 5, the highest accuracy is observed
for length class 3, which contains, among others, all sentences that extend over two lines between two
double dan. d. as (subset of configuration b-d2). A closer inspection of class 5 (sentences containing at
least 30 words) shows, that most of the correct instances of this class have between 30 and 50 words,
although the model also marks two very long sentences correctly. MBH 1.19.3-15, a description of the
ocean, is a right-branching construction typical for poetic style (kāvya). The initial phrase dadr. śāte tadā
tatra samudram (“Then, both of them saw the ocean there”) is expanded by several lines of accusative
constructions that depend on the head word samudram. Apart from congruent adjectives and appositions,
the expansions also contain subordinate participle clauses. This means that the whole sentence can not be
reduced to an easily memorizable pattern in the form verb-adverb*-acc*, and demonstrates that stacked
LSTM units are in principle able to capture such long-range syntactic dependencies.

A considerable number of errors is produced by short sentences that start or end in the middle of a text
line (*-m-* configurations), and for which only one boundary is detected correctly (configurations 0-1-1
and 1-0-1 with length class 1 in Table 4). One of the syntactical patterns that produce most of the errors
in this class consists of sequences of words in nom. sg. lacking a copula as observed in MBH 1.147.11:

ātmā
self:NSGM

putrah. •
son:NSGM

sakhā
friend:NSGM

bhāryā•
wife:NSGF

“[The] son [is the] self. [The] wife [is a] friend.”

Another problematic pattern is formed by sequences of the form verb-sg acc-sg* (MBH 6.41.64):

anumānaye
ask:PR1.SG

tvām. •
you:ASG

yotsyāmi . . .
fight:FUT1.SG

“I ask you [for permission]. I will fight . . . ”

As soon as more training data are available, a Viterbi search over decoded sentence patterns or an addi-
tional CRF layer (Huang et al., 2015) may help to reduce the number of such errors.

6 Conclusion

Although the proposed deep bidirectional LSTM model clearly outperforms the metrical and CRF base-
lines, its accuracy is currently not high enough for performing a reliable unsupervised annotation of SBs.
As the evaluation of short sentences has shown, many of the problematic cases cannot be solved on the
morpho-syntactic level, but require comprehensive lexical and word semantic information. This finding
suggests that a larger amount of training data, including more tokenized texts and more annotated SBs,
may improve the performance. In this context, the LSTM model will be used for pre-annotating SBs.
Another line of future research will concentrate on the representation of input features. Recent studies
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such as Labeau et al. (2015), but also Hellwig (2015b) for Sanskrit have demonstrated that the process-
ing of morphologically rich languages may benefit from using sub-word units, skipping lexicalization
altogether, or integrating it into a “deeper level” of the network architecture. Given the complexity of
Sanskrit phonetics and the richness of its vocabulary, such an approach may prove useful, as soon as
more SB annotations are available.
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