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Abstract

Deceptive opinion spam detection has attracted significant attention from both business and re-
search communities. Existing approaches are based on manual discrete features, which can
capture linguistic and psychological cues. However, such features fail to encode the semantic
meaning of a document from the discourse perspective, which limits the performance. In this
paper, we empirically explore a neural network model to learn document-level representation for
detecting deceptive opinion spam. In particular, given a document, the model learns sentence
representations with a convolutional neural network, which are combined using a gated recurrent
neural network with attention mechanism to model discourse information and yield a documen-
t vector. Finally, the document representation is used directly as features to identify deceptive
opinion spam. Experimental results on three domains (Hotel, Restaurant, and Doctor) show that
our proposed method outperforms state-of-the-art methods.

1 Introduction

Online reviews on products and services are extensively used by consumers and businesses for conduct-
ing decisive purchase, making product design and altering marketing strategies. As a result, deceptive
opinion spam (e.g. deceptive reviews) arouses increasing attention (Streitfeld, 2012). Opinion spam is
a type of review with fictitious opinions, deliberately written to sound authentic (Jindal and Liu, 2008;
Ott et al., 2011). It can be difficult for human readers to distinguish them from truthful reviews. In a test
by Ott et al. (2011), the average accuracy of three human judges is only 57.33%. It can be expensive
to detect opinion spam manually over large user-generated texts. Hence, machine learning methods for
automatically detecting deceptive opinion spam can be useful.

The objective of the task is to identify whether a given document is a spam or not. The majority
of existing approaches follow the seminal work of Jindal and Liu (2008), employing classifiers with
supervised learning. Most studies focus on designing effective features to enhance the classification
performance. Typical features represent linguistic and psychological cues, but fail to effectively represent
a document from the viewpoint of global discourse structures. For example, Ott et al. (2011) and Li et
al. (2014) represent documents with Unigram, POS and LIWC (Linguistic Inquiry and Word Count)
(Newman et al., 2003) features. Although such features give the strong performance, their sparsity
makes it difficult to capture non-local semantic information over a sentence or discourse.

Recently, neural network models have been used to learn semantic representations for NLP tasks (Le
and Mikolov, 2014; Tang et al., 2015), achieving highly competitive results. Potential advantages of
using neural networks for spam detection are three-fold. First, neural models use dense hidden layers for
automatic feature combinations, which can capture complex global semantic information that is difficult
to express using traditional discrete manual features. This can be useful in addressing the limitation of
discrete models mentioned above. Second, neural networks take distributed word embeddings as inputs,
which can be trained from a large-scale raw text, thus alleviating the sparsity of annotated data to some
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Figure 1: Neural network model structure for deceptive opinion spam detection, red nodes represent
neural features, and blue nodes represent discrete features.

extent. Third, neural network models can be used to induce document representations from sentence
representations, leveraging sentence and discourse information.

In this paper, we empirically investigate the effectiveness of learning dense document representations
for opinion spam detection. In particular, we propose a three-stage neural network system, as shown in
Figure 1. In the first stage, a convolutional neural network is used to produce sentence representations
from word representations. Second, a bi-directional gated recurrent neural network with attention mech-
anism is used to construct a document representation from the sentence vectors. Finally, the document
representation is used as features to identify deceptive opinion spam. Such automatically induced dense
document representation is compared with traditional manually-designed features for the task.

We compare the proposed models on a standard benchmark (Li et al., 2014), which consists of data
from three domains (Hotel, Restaurant, and Doctor). Results on in-domain and cross-domain experi-
ments show that the dense neural features significantly outperforms the previous state-of-the-art meth-
ods, demonstrating the advantage of neural models in capturing semantic characteristics. In addition,
automatic neural features and manual discrete features are complementary sources of information, and a
combination leads to further improvements.

2 Related Work

2.1 Deceptive Opinion Spam Detection

Spam detection has been extensively investigated in the Web-page and E-mail domains (Gyöngyi et al.,
2004; Ntoulas et al., 2006), while research has recently been extended to the customer review domain
(Ott et al., 2011; Mukherjee et al., 2013; Li et al., 2014). Various types of indicator features have
been investigated. For examples, Jindal and Liu (2008) trained models using features based on the
review content, the reviewer, and the product itself. Yoo and Gretzel (2009) gathered 40 truthful and 42
deceptive hotel reviews and manually compared the linguistic differences between them.

Ott et al. (2011) created a benchmark dataset by employing Turkers to write fake reviews. Their data
were adopted by a line of subsequent work (Ott et al., 2012; Feng et al., 2012; Feng and Hirst, 2013).
For example, Feng et al. (2012) looked into syntactic features from Context Free Grammar (CFG)
parse trees to improve the performance. Feng and Hirst (2013) built profiles of hotels from collections of

141



reviews, measuring the compatibility of customer reviews to the hotel profile, and using it as a feature for
opinion spam detection. Recently, Li et al. (2014) created a wider-coverage benchmark, which comprises
of data from three domains (Hotel, Restaurant, and Doctor), and explored generalized approaches for
identifying online deceptive opinion spam. We adopt this dataset for our experiments due to its larger
size and coverage.

Existing methods use traditional discrete features, which can be sparse and fail to effectively encode
the semantic information from the overall discourse. In this paper, we propose to learn document-level
neural representation for better detecting deceptive opinion spam. To our knowledge, we are the first to
investigate deep learning for deceptive opinion spam detection.

There has been work that exploits features outside the review content itself. In addition to Jindal
and Liu (2008), Mukherjee et al. (2013) explored the features from customer’s behavior to identify
deception. Based on some truthful reviews and a lot of unlabeled reviews, Ren et al. (2014) proposed
a semi-supervised learning method, and built an accurate classifier to identify deceptive reviews. Kim
et al. (2015) introduced a frame-based semantic feature based on FrameNet. Experimental results show
that semantic frame features can improve the classification accuracy. We focus on the review content in
this paper, but their features can be used to extend our model.

2.2 Neural Network Models for Representation Learning

Neural network models have been exploited to learn dense feature representation for a variety of NLP
tasks (Collobert et al., 2011; Kalchbrenner et al., 2014; Ren et al., 2016b). Distributed word repre-
sentations (Mikolov et al., 2013) have been used as the basic building block by most models for NLP.
Numerous methods have been proposed to learn representations of phrases and larger text segments from
distributed word representations. For example, Le and Mikolov (2014) introduced paragraph vector to
learn document representations, extending to word embedding methods of Mikolov et al. (2013). Socher
et al. (2013) introduced a family of recursive neural networks to represent sentence-level semantic com-
position. Follow-up research includes recursive neural network with global feed backward mechanisms
(Paulus et al., 2014), deep recursive layers (Irsoy and Cardie, 2014), and adaptive composition functions
(Dong et al., 2014).

Convolutional neural networks have been widely used for semantic composition (Kalchbrenner et al.,
2014; Johnson and Zhang, 2014), automatically capturing n-gram information. Sequential models such
as recurrent neural network or long short-term memory (LSTM) (Li et al., 2015a; Tang et al., 2015)
have also been used for recurrent semantic composition. The attention mechanism was first proposed in
machine translation (Bahdanau et al., 2014). Further uses of the attention mechanism include parsing
(Vinyals et al., 2014), natural language question answering (Sukhbaatar et al., 2015; Kumar et al., 2015;
Hermann et al., 2015), and image question answering (Yang et al., 2015). We explore CNN and recur-
rent neural networks with attention mechanism to learn document representation for detecting deceptive
opinion spam, comparing their effect with bag-of-word and paragraph vector baselines.

3 Approach

The proposed neural network model learns real-valued dense vector representations for documents of
variable lengths, which is used as the feature to classify each document. Shown in Figure 1, it con-
sists of two main components, The first produces distributed vector sentence representations from word
representations, and the second gives dense vector document representations from the sentence vectors.

Structurally, the composition of words in forming sentences is similar to the composition of sentences
in forming documents, both tracking sequences of inputs with long range dependencies. Both CNN and
RNN are typically used for representing sequences in NLP, giving state-of-the-art accuracies in various
tasks. For example, for modeling sentences, CNN gives the best results for sentiment analysis (Johnson
and Zhang, 2014; Ren et al., 2016a), while LSTM gives the best results for question answering (Wang
and Nyberg, 2015). For modeling discourse structures, LSTM has been used more frequently (Li et al.,
2015b; Tang et al., 2015). We experimented with both CNN and RNN for both sentence and document
modeling, finding that the best development accuracies are obtained when CNN is used for sentence
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modeling and RNN is used for document modeling. Therefore, we choose this structure in Figure 1.
Note, however, that our main goal is to empirically study the effectiveness of neural features in contrast
to manual discrete features, rather than find a most accurate neural model variation for this task.

3.1 Sentence Model
We represent words using embeddings (Bengio et al., 2003), which are low-dimensional dense real-
valued vectors. For each word w, we use a look-up matrix E to obtain its embedding e(w) ∈ RD, where
E ∈ RD×V is a model parameter, D is the word vector dimension size and V is the vocabulary size. E
can be randomly initialized from a uniform distribution (Socher et al., 2013), or pre-trained from a large
raw corpus (Mikolov et al., 2013).

As shown in the bottom of Figure 1, a convolutional neural network (CNN) (Kim, 2014; Kalchbren-
ner et al., 2014; Johnson and Zhang, 2014) is used to learn dense representations of a sentence. We
use three convolutional filters to capture the local semantics of n-grams of various granularities. For-
mally, denote a sentence consisting of n words as {w1, w2, .., wi, ..wn}. Each word wi is mapped to
the embedding representation e(wi) ∈ RD. A convolutional filter is a list of linear layers with shared
parameters. Let D1, D2, D3 be the width of the three convolutional filters, respectively. We set D1 = 1,
D2 = 2 and D3 = 3 for representing unigrams, bigrams and trigrams, respectively. Taking D2 for
example, W2 and b2 are the shared parameters of linear layers for this filter. The input of a linear
layer is the concatenation of word embeddings in a fixed-length window size D2, which is denoted as
I2,i = [e(wi); e(wi+1); ...; e(wi+D2−1)] ∈ RD×D2 . The output of a linear layer is calculated as

H2,i = W2 · I2,i + b2, (1)

where W2 ∈ Rloc×D×D2 , loc is the output size of the linear layer. We use an average pooling layer to
merge the varying number of outputs {H2,1, H2,2, ..,H2,n} from the convolution layer into a vector with
fixed dimensions.

H2 =
1
n

n∑
i=1

H2,i (2)

To incorporate nonlinearity, a activation function tanh is used to obtain the output O2 of this filter.

O2 = tanh(H2) (3)

Similarly, we obtain theO1 andO3 for the other two convolutional filters with width 1 and 3, respectively.
The outputs of three filters are lastly averaged to generate sentence representation.

3.2 Document Model
Given a document with m sentences, we use the sentence vectors s1, s2, .., sm obtained by the CNN
model as inputs, and learn document composition with a gated recurrent neural network (GRNN). Stan-
dard recurrent neural networks (RNN) map sentence vectors of variable lengths to a fixed-length vector,
by starting with an initial vector, and recurrently transforming the current sentence vector st together
with the previous state vector ht−1 into a new state vector ht. The transition function is typically a linear
layer followed by a non-linear activation function such as tanh

ht = tanh(Wr · [ht−1; st] + br), (4)

where Wr ∈ Rlh×(lh+loc), br ∈ Rlh , lh and loc are dimensions of state vectors and sentence vectors,
respectively. Unfortunately, the standard RNN suffers the problem of vanishing gradients (Bengio et al.,
1994; Hochreiter and Schmidhuber, 1997). This makes it difficult to model long-distance correlation in a
sequence. We explore a gated recurrent neural network (GRNN) to address this, which is similar in spirit
to LSTM (Cho et al., 2014; Chung et al., 2015), but empirically runs faster. Specifically, the transition
function of the GRNN used in the work is calculated as follows

it = sigmoid(Wi · [ht−1; st] + bi) (5)

143



ft = sigmoid(Wf · [ht−1; st] + bf ) (6)

gt = tanh(Wr · [ht−1; st] + br) (7)

ht = tanh(it � gt + ft � ht−1) (8)

where� stands for element-wise multiplication, it and ft represent the reset gate and update gate, respec-
tively. Wi, Wf , bi, bf adaptively select and remove history state vectors and input vectors for semantic
composition.

To better capture discourse relations, we apply the GRNN structure over sentence representation vec-
tors in the left-to-right and right-to-left directions, respectively, resulting in a forward state sequence
h1, h2, .., hn and a backward state sequence h

′
n, h

′
n−1, .., h

′
1, respectively. For each sentence vector n-

ode si, a combination of hi and h
′
i is used as its bi-directional state vector. Here, if all bi-directional

state vectors are treated equally, the noisy or irrelevant part may degrade the classification performance.
Meanwhile, Vrij et al. (2009) and Ott et al. (2011) find that different topics have different importance
in deceptive opinion detection. For example, spatial information can usually be a strong indicator of
non-spam for hotel reviews. So we introduce a simple attention mechanism to consider the importance of
different state vectors. Specifically, for each sentence si in one document d, which contains the sentences
vectors s1, s2, .., sm, we integrate the weights into bi-directional state vector hi and h

′
i. Specifically, we

use the context vector to measure the importance of the sentences. This yields

ui = tanh(Ws(hi ⊕ h′i) + bs), (9)

βi =
exp(ui

Tus)∑
i exp(ui

Tus)
(10)

The document vector d is represented as

d =
∑

i

βi(hi ⊕ h′i), (11)

where
∑m

i=1 βi = 1, and ⊕ is the vector concatenation function. The context vector us has been used
in previous memory networks (Kumar et al., 2015; Sukhbaatar et al., 2015), and it can been randomly
initialized and jointly learned during the training process.

3.3 The Classification Model
We use the document representation as features for identifying deceptive opinion spam. Specifically, a
linear layer is added to transform the document vector into a real-valued vector, whose length is class
number C. A softmax function is added to convert real vector to conditional probability for document
classification.

Our training objective is to minimize the cross-entropy loss over a set of training examples (xi, yi)|Ni=1,
plus a l2-regularization term,

L(θ) = −
N∑

i=1

log
e~o(yi)

e~o(0) + e~o(1)
+
λ

2
‖ θ ‖2, (12)

where θ is the set of model parameters.
We use online AdaGrad to minimize the training objective. At step t, the parameters are updated by:

θt,i = θt−1,i − α√∑t
t′=1 g

2
t′,i

gt,i, (13)

where α is the initial learning rate, and gt,i is the gradient of the ith dimension at step t.
We initialize all the matrix and vector parameters with uniform samples in

(−√
6/(r + c),−√

6/(r + c)), where r and c are the numbers of rows and columns of the ma-
trixes, respectively. We learn word embeddings of 100-dimensions using the CBOW model of Mikolov
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Domain Turker Employee Customer
Hotel 800 280 800

Restaurant 200 120 400
Doctor 200 32 200

Table 1: Statistics dataset.

Method Accuracy (%) Macro-F1 (%)
Average 73.0 73.9

CNN 75.9 77.4
RNN 63.2 64.8

GRNN 80.1 80.7
Bi-directional GRNN 83.6 83.4

Bi-directional GRNN (Attention) 84.1 83.9
Le and Mikolov (2014) 76.1 77.6

Table 2: Development results.

et al. (2013) from a large-scale Amazon reviews corpus 1. During training, we use the average of
all the pre-trained embeddings vectors to initialize unknown words. We set the output length of the
convolutional filter as 50. The initial learning rate of Adagrad is set as 0.01.

4 Experiments

4.1 Experimental Setup
We use the dataset of Li et al. (2014), which consists of truthful and deceptive reviews in three domains,
namely Hotel, Restaurant and Doctor. For each domain, a set of Customer reviews are collected as
truthful reviews, and a set of deceptive reviews are collected from Turkers and Employees, respectively.
We follow Li et al. (2014) in designing the evaluation metrics. For the Hotel domain, we perform
both three-way (Customer/Employee/Turker) and two-way classification between Customer reviews and
Employee/Turker reviews. This is because deceptive reviews from Employee and Turker can reflect
different levels of domain knowledge. For the Restaurant and Doctor domains, we perform only two-
way Customer/Turker classification because Employee reviews are relatively too few. Table 1 shows
the statistics of the dataset. For each experiment, we measure both the per-instance accuracy and the
macro-F1 score across different classes.

4.2 Development Experiments
To compare the effectiveness of various neural document models, we conduct a set of development
experiments using the mixed dataset of all three domains. Only Turker and Customer reviews are used,
and the total of 2600 reviews are split randomly into training/tuning/testing sets with a ratio of 80/10/10.
The tuning set is used for optimizing the hyper-parameters for each neural network structure.

We compare a set of methods for document modeling, which include a single averaging method,
tracking a document as a bag of sentences (Average), a CNN, a naive RNN, and our gated RNN in
single- and bi-directional method. In addition, we compare the bi-directional RNN without attention and
with attention being used.

Table 2 show the results. Without modeling discourse relations, the averaging method gives a baseline
accuracy of 73.0%. CNN gives better results by capturing relationships between local sentences. Though
modeling global sequential relations, RNN does not give better results compared with the averaging
baseline, and the main reason is vanishing gradients in its training. By using gates, the results of GRNN
is significantly better than both the baseline and the CNN document model. Both averaging and the bi-
directional extension further increased the accuracies. By introducing the attention mechanism into the
bi-directional GRNN, the best development result is 84.1%.

We also compare our methods with the paragraph vector model of Le and Mikolov (2014), which
builds a document representation without considering sentence vectors. It gives results comparable to

1http://snap.stanford.edu/data/web-Amazon.html
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Domain Setting Method Accuracy (%) Macro-F1 (%)

Hotel

Customer/Employee/Turker
Li et al. 66.4 67.3

Neural/Logistic 78.9/66.5 74.7/67.6
Integrated 81.3 77.4

Customer/Turker
Li et al. 81.8 82.6

Neural/Logistic 84.1/82.4 84.2/83.5
Integrated 86.1 86.0

Customer/Employee
Li et al. 79.9 80.9

Neural/Logistic 84.8/79.4 82.4/80.6
Integrated 87.2 84.7

Employee/Turker
Li et al. 76.2 78.0

Neural/Logistic 91.1/76.2 87.9/78.5
Integrated 92.8 90.4

Restaurant Customer/Turker
Li et al. 81.7 82.2

Neural/Logistic 84.8/82.5 85.0/82.7
Integrated 87.1 87.0

Doctor Customer/Turker
Li et al. 74.5 73.5

Neural/Logistic 75.3/74.4 73.4/72.9
Integrated 76.3 74.5

Table 3: In-domain results.

the CNN model, but much lower compared with the GRNN models, which leverage non-local discourse
structures.

4.3 In-Domain Results

We choose the best neural model, namely the bi-directional GRNN (Attention), according to the devel-
opment test results. A set of in-domain test are conducted according to Li et al. (2014)’s settings, in
order to compare the neural model with the state-of-the-art discrete model with SVM. In particular, all
results are reported by using ten-fold cross-validation. As mentioned in the introduction, Li et al. (2014)
use hand-crafted features that contain the word, POS and other linguistic clues.

The results are shown in Table 3, in the Li et al. rows and the left items of the Neural/Logistic rows,
respectively. For the Hotel domain, the neural model outperforms the discrete model of Li et al. (2014)
on both three-way Customer/Employee/Turker classification and two-way classification tasks. While Li
et al. (2014)’s method gives about around 80% accuracies on Customer/Turker and Customer/Employee
classifications, which distinguish truthful and deceptive reviews. The accuracies drop to below 66.4%
when all the three classes are involved. In contrast, our method gives an accuracy of 78.9% for the
three-way task, demonstrating the power of the neural model in distinguishing deceptive reviews from
different types of authors. The contrast on the two-way Employee/Turker classification task is consistent.
This shows the power of the neural model in capturing subtle semantic features, which are difficult to
express using manual indicator features.

The results on the Restaurant domain is similar to those on the Hotel domain, where the neural model
significantly outperforms the discrete model. However, the neural model gives similar results compared
with the discrete model on the Doctor domain. One possible reason is that number of reviews in this
dataset is relatively lower, which leads to relatively lower accuracies by both models. The other reason is
a relatively high OOV rate, and 7.02% of the test words in the Doctor domain are out of the embedding
dictionary (in contrast to 3.25% in the Hotel domain and 3.43% in the Restaurant domain).

4.3.1 Analysis
In order to contrast the effect on discrete and neural features, we build a discrete model using logistic
regression with the same discrete feature as Li et al. (2014). The main advantage of using this model is
a direct comparison on features, because a logistic regression classifier is the same as the softmax output
layer of our neural network model in mathematic form. The only difference is that the logistic regression
method uses discrete features, while the neural model uses continuous features from the deep neural
network. The results of the logistic regression model are shown in the right items of the Neural/Logistic
rows in Table 3, which are slightly lower but comparable to Li et al. (2014)’s SVM results.
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(a) Hotel (Customer/Employee) (b) Hotel (Turker/Employee)

Figure 2: Output probability comparisons.

Figure 2 shows the output probabilities of the Customer and Turker classes by both the neural and
the logistic discrete models, respectively. Results on the Hotel (Customer/Employee) and Hotel (Turk-
er/Employee) datasets are shown in Figure 2(a) and 2(b), respectively. The x-axis shows the probability
by the neural model and the y-axis shows the probability by the discrete model. Taking Figure 2(a) for
example, true Customer reviews in the test set are shown in black, where false reviews by Employee are
shown in red. As a result, black dots on the top of the figure and red dots on the bottom show cases which
the discrete model predicted correctly, while black dots on the right and red dots on the left show cases
which the neural model predicted correctly.

As shown in the figure, most black dots are on the top-right of the figure and most red dots are on
the bottom-left, showing that both models are correct in most cases. However, the dots are relatively
more disperse in the x-axis, showing that the neural model is more confident in scoring the inputs. This
demonstrates the effectiveness of neural features. Observation in Figure 2(b) is similar. For the more
challenging task, the neural model shows large advantages.

Figure 2 also shows that the errors by using neural and discrete features can be complementary, which
suggests that integrating both types of features in a single model can further improve the results. We
make a feature integration by directly concatenating the discrete feature vector (the blue nodes in Figure
1) to the neural features vector before the softmax layer. The results of the combined model are shown in
the Integrated rows in Table 3. In all the test sets, the model gives significantly better results compared
with both the neural and logistic models2.

4.4 Cross-Domain Results

For the task of deceptive opinion spam detection, the sample numbers of the dataset are relatively small,
and the collection of labeled data is time-consuming and expensive. We investigate two important ques-
tions. First, it is interesting to know whether the relatively more richly annotated Hotel domain dataset
can be used to train effective deception detection models on the Restaurant or Doctor domain. Second,
we study the generalization ability of our neural model. We frame the problems as a domain adaptation
task, training a classifier on Hotel reviews, and evaluate the performance on the other domains. For
simplicity, we focus on two-way Customer/Turker classification.

The results are shown in Table 4. First, the classifiers trained on Hotel reviews apply well to the
Restaurant domain, which is reasonable due to the many shared properties among Restaurant and Hotel,
such as the environment and location. However, the performance on the Doctor domain is much worse,
largely due to the difference in vocabulary. Second, compared with the method of Li et al. (2014), our
neural model gives better performance. For the Doctor domain, both models trained on the Hotel domain
do not generalize well. Our neural model gives a higher F1 (66.3%) compared with the SVM classifier

2The p-value is below 10−3 using t-test
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Domain Method Accuracy (%) Macro-F1 (%)

Restaurant
Li et al. 78.5 77.8
Neural 81.9 81.0

Integrated 83.7 82.6

Doctor
Li et al. 55.0 61.7
Neural 56.1 66.3

Integrated 57.3 67.6

Table 4: Cross-domain results.

(61.7%), which shows some relative effectiveness of neural model. Similar to the in-domain results, the
integrated model outperforms both the discrete and neural models.

5 Conclusion

We investigated a gated recurrent neural network model with attention mechanism for deceptive opinion
spam detection. By capturing non-local discourse information over sentence vectors, the neural network
model outperforms a state-of-the-art discrete baseline, and also simple neural document models such as
paragraph vectors. Further experiments show that the accuracies can be improved by integrating discrete
and neural features.
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