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ABSTRACT
Extractive multi-document summarization is mostly treated as a sentence ranking problem.
Existing graph-based ranking methods for key-sentence extraction usually attempt to compute
a global importance score for each sentence under a single relation. Motivated by the fact that
both documents and sentences can be presented by a mixture of semantic topics detected by
Latent Dirichlet Allocation (LDA), we propose SentTopic-MultiRank, a novel ranking model for
multi-document summarization. It assumes various topics to be heterogeneous relations, then
treats sentence connections in multiple topics as a heterogeneous network, where sentences
and topics/relations are effectively linked together. Next, the iterative algorithm of MultiRank
is carried out to determine the importance of sentences and topics simultaneously. Experimen-
tal results demonstrate the effectiveness of our model in promoting the performance of both
generic and query-biased multi-document summarization tasks.

KEYWORDS: Multi-document summarization, Topic decomposition, Heterogeneous network.
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1 Introduction

Multi-document summarization (MDS), having been intensively studied in past decades, is
the process of automatically creating a compressed version of a given document collection
that provides useful information for a user. It could be mainly classified into two categories:
generic MDS and query-focused MDS. The goal of generic MDS is to produce a summary of
multiple documents about the same but unspecified topic, while query-focused task requires
the generated summary could not only convey the main content of target corpus, but also bias
to the information needs of a specific query/topic. Commonly, both of them are treated as a
sentence ranking problem.

In most existing summarization systems, sentence ranking was conducted under a single rela-
tion assumption. Taking for instance the famous LexPageRank proposed in (Erkan and Radev,
2004). In that model, a sentence connectivity matrix was constructed based on cosine similar-
ity. Then PageRank (Page et al., 1999) algorithm was directly applied to the cosine similarity
graph to find the most prestigious sentences in a document. Another compelling example is
(Wan et al., 2007), where a weighted network was formed on the sentences by using stan-
dard cosine similarity, then authors utilized manifold-ranking algorithm (Zhou et al., 2004) to
spread ranking scores from a query to remaining sentences. Apparently, both above literatures
were based on the assumption that all sentences existed under a unified relation.

Inspired by some work involving topic decomposition as well as multi-relational data where
objects have interactions with others based on different relations, we attempt to map sentence
relatedness within multiple topics to heterogeneous relations in this work. More specifically,
we assume each topic as a single relation type, and construct an intra-topic sentence network
for each relation type. There are many Information Retrieval and Data Mining tasks addressing
multi-relational data. For instance, scholars cite other scholars in various conferences, and
based on different academic fields, publications cite other publications on the basis of content
analysis such as authorship, title, abstract and keywords, web pages link to each other via
different anchor texts (Kolda and Bader, 2006). Such a complicated link structure can provide
a way of incorporating multiple relations among objects into the derivation of object prestige
or popularity. In Figure 1(a), we show an example of multi-relational sentence representation
based on our SentTopic-MultiRank model. There are five sentences and K relations among
them (K denotes the topic number in LDA, and we only provide three topics z1, z2 and zK as
an illustration). We can also represent such multi-relational objects in a tensor shape which
is a multi-dimensional array. In the Figure 1(b), a three-way array is provided, where each
two-dimensional plane represents an adjacency matrix for one type of relation. The network
can be depicted as a tensor of size 5× 5× K where (i, j, k) entry is nonzero if the i th sentence
is related to the j th sentence under kth relation.

Then, how to determine the importance of those sentences and relations/topics? (Ng et al.,
2011) proposed a general framework named MultiRank to deal with multi-relational data or
the corresponding tensor representation for co-ranking purpose. According to that proposal,
the MultiRank value of a sentence relies on the number and MultiRank values of all sentences
that have multiple relations to this sentence, as well as the MultiRank values of those mutual
relations. A sentence, connected via high MultiRank relations by sentences with high Multi-
Ranks, receives a high MultiRank itself. Similarly, the MultiRank of a relation is dependent
on which sentences to be linked and their MultiRank scores. A relation, connecting sentences
with high MultiRanks, receives a high MultiRank itself. Similar to PageRank, MultiRank’s idea
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(a) An example of
multi-relational sen-
tences in a graph
representation

(b) The corresponding tensor represen-
tation

(c) The tensor representation with
prior

Figure 1: Illustration of SentTopic-MultiRank

is to imagine infinite random surfers in a multi-relational network, and derive a stationary
probability distribution of objects and relations as evaluation scores for objects and relations,
respectively. We integrate topic decomposition via LDA with MultiRank to produce a novel
framework named SentTopic-MultiRank specifically for multi-document summarization.

For generic multi-document summarization, we directly make use of MultiRank algorithm to
determine the ranking scores of sentences and topics/relations. While in query-oriented MDS,
query bias must be considered. We creatively integrate LDA with generation probability be-
tween sentences to design query-oriented prior distributions for sentences and topics, respec-
tively. Motivated by topic-sensitive PageRank (Haveliwala, 2003), as well as HAR (Xutao et al.,
2012) which modified MultiRank based on HITS (Kleinberg, 1999) principle for query search,
we embed acquired prior distributions into the SentTopic-MultiRank iterative process so that
the final ranking results are more desirable for the query statement. Figure 1(c) gives an ex-
ample for tensor representation of SentTopic-MultiRank with prior knowledge. We apply our
approach to generic and query-biased multi-document summarization on standard datasets,
experimental results show its good performance in generating high-quality summaries.

The rest of this paper is organized as follows: Section 2 introduces related work. Details of
constructing and applying SentTopic-MultiRank model in multi-document summarization task
are presented in Section 3. Section 4 gives the process of selecting sentences to generate
summary. Finally, experiments and results are showed in Section 5.

2 Related work

In this section, we firstly introduce some representative work about multi-document summa-
rization. Then, some literatures, relevant to topic decomposition, are also presented.

The centroid-based method (Radev et al., 2004) is one of the most popular extractive summa-
rization methods. MEAD is an implementation of the centroid-based method that scores sen-
tences based on features such as cluster centroids, position and TF-IDF. NeATS (Lin and Hovy,
2002) used sentence position, term frequency, topic signature and term clustering to select
important content, and used MMR (Goldstein et al., 1999) to remove redundancy. Recently,
graph-based methods have been proposed to rank sentences. LexPageRank (Erkan and Radev,
2004) and (Mihalcea and Tarau, 2005) are two such systems using algorithms similar to PageR-
ank and HITS (Kleinberg, 1999) to compute sentence importance. With respect to query-
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focused summarization, in (Saggion et al., 2003), a simple query-based scorer by computing
the similarity value between each sentence and the query was incorporated into a generic sum-
marizer to produce the query-based summary. (Erkan, 2006) came up with biased LexRank by
incorporating prior knowledge into random walk for query summarization task. (Wan et al.,
2007) exploited manifold-ranking process proposed in (Zhou et al., 2004) to implement the
propagation of ranking scores from the query to remaining sentences, based on a weighted
sentence connection network. The spread process was repeated until a global stable state was
achieved, and all sentences obtained their final ranking scores. Recently, unsupervised deep
learning was first investigated in (Liu et al., 2012) to deal with query summarization.

Furthermore, supervised learning approaches have also been successfully applied in document
summarization, where the training data is available or easy to build. The most straightforward
way is to regard the sentence extraction task as a binary classification problem. (Kupiec et al.,
1995) developed a trainable summarization system which adopted various features and used
a Bayesian classifier to learn the feature weights. The system performed better than other
systems using only a single feature. (Zhou and Hovy, 2003) applied a HMM-based model
and (Shen et al., 2007) proposed a conditional random field based framework. (Ouyang et al.,
2007) designed methods for constructing training data based on human summaries and train-
ing sentence scoring models based on support vector regression (SVR). (Shen and Li, 2011)
introduced a cost sensitive loss to improve ranking SVM, a type of learning-to-rank method,
for extractive query-focused multi-document summarization.

Especially, we are mainly inspired by following pioneering work. In recent years, two algo-
rithms were proposed to rank web pages by incorporating topic information within PageRank
(Haveliwala, 2003; Nie et al., 2006). The method in (Haveliwala, 2003) decomposed PageR-
ank into various topics, setting the preference values using some conditional probabilities.
(Nie et al., 2006) proposed a more complicated ranking framework, where topical PageRanks
were performed together. The rationale of (Nie et al., 2006) was, when surfing following a
graph link from vertex wi to w j , the ranking score on topic z of wi would have a higher proba-
bility to pass to the same topic of w j and have a lower probability to pass to a different topic of
w j . When the inter-topic jump probability was 0, this method was identical to the approach in
(Haveliwala, 2003). (Liu et al., 2010) explicitly defined a new graph-based framework, Topi-
cal PageRank, for the task of keyphrase extraction. It first ranked all key-phrases within each
latent topic based on a topic-specific phrase graph, then re-ranked them by integrating corpus-
topic distribution with intra-topic phrase ranking. Additionally, ToPageRank, a model similar
with that of (Liu et al., 2010), was proposed in (Pei et al., 2012) specifically for summarization
task. Indeed, a similarity between these literatures with our current idea lies in that we all con-
sider to decompose entire corpus into multiple topics. Whereas, we do not aim to break up the
whole into parts simply. In their work, there was usually no relation exerted to link each part,
so the operation in each part was conducted independently and those objects would not inter-
act with various kinds of relations. Hence, in essence, they still coped with ranking problem
under a single relation presupposition, except that having narrowed the scope from a corpus
to an individual topic. Differently, in SentTopic-MultiRank, not only are sentences linked with
each other by weighted edges, all intra-topic sentence networks are also connected together,
though they are considered to be under different relation types, so that we are able to identify
the importance of sentences and topics/relations simultaneously. Further, we make full use of
sentence-sentence relatedness, sentence-topic interaction and inter-topic impacts to improve
the overall ranking performance.
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3 SentTopic-MultiRank model

3.1 Topic decomposition of corpus via Latent Dirichlet Allocation (LDA)

In our work, topic model LDA (Blei et al., 2003) is utilized to represent document collection
with a mixture of semantic topics. In LDA, it is assumed that observed words in each document
are generated by a document-specific mixture of corpus-wide latent topics. We define our
corpus of length W with the flat word vector w = w1, · · · , wW . At corpus position i, the
element di in d= d1, · · · , dW designates the document containing observed word wi . Similarly,
the vector z = z1, · · · , zW defines the hidden topic assignments of each observed word. The
number of latent topics is fixed to some K , and each topic z = 1, · · · , K is associated with a
topic-word multinomial ϕz over the W -word vocabulary. Each ϕ multinomial is generated by
a conjugate Dirichlet prior with parameter β . Each document j = 1, · · · , D is associated with
a multinomial θ j over K topics, which is also generated by a conjugate Dirichlet prior with
parameter α. The full generative model is then given by

P(w,z,ϕ,θ |α,β ,d)∝ 
K∏

z=1

p(ϕz |β)
!


D∏
j=1

p(θ j |α)


 

W∏
i=1

ϕzi
(wi)θdi

(zi)

!

where ϕzi
(wi) is the wi-th element in vector ϕzi

, and θdi
(zi) is the zi-th element in vector θdi

.
Given an observed corpus (w,d) and model hyperparameters (α,β), the typical modeling goal
is to infer the latent variables (z,ϕ,θ).

While exact LDA inference is intractable, a variety of approximate schemes have been devel-
oped. In this work, we use GibbsLDA++1, a C/C++ implementation of LDA using Gibbs Sam-
pling, to detect latent topics. This sampling approach iteratively re-samples a new value for
each latent topic assignment zi , conditioned on the current values of all other z values. After
a fixed number of iterations, we estimate the topic-word multinomials ϕ and the document-
topic mixture weights θ from the final z sample, using the means of their posteriors given by

ϕz(w)∝ nzw + β
θ j(z)∝ n jz +α

where nzw is the number of times word w is assigned to topic z, and n jz is the number of times
topic z is used in document j, with both counts being taken with respect to the final sample z.
The topic-word multinomials ϕz for each topic z are our learned topics; each document-topic
multinomial θ j represents the prevalence of topics within document j.

In experiments, we set α = 1 and β = 0.01. There are already some literatures to study their
impacts on LDA performance. Since we pay main attentions to SentTopic-MultiRank model,
the influences of LDA hyperparameters α and β are not investigated any more.

3.2 Construction of SentTopic-MultiRank graph

In Section 3.1, we have detected various relation types/topics. The thing left to do in con-
structing SentTopic-MultiRank is to produce a sentence graph under each relation. Naturally,
the sentence similarity should be relation-specific. To capture the similarities of two sentences

1GibbsLDA++: http://gibbslda.sourceforge.net
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(e.g., x and y) on various latent topics, we represent each sentence as a probability distribu-
tion at each topic z (1≤ z ≤ K). Hence, we sample sparse unigram distributions from each ϕz
using the words in x and y . Their probability distributions given topic-word distribution are
denoted as P x

z = p(wx |z,ϕz) with the word set wx = (w1, · · · , w|x |) in x , and P y
z = p(wy |z,ϕz)

with the word set wy = (w1, · · · , w|y|) in y .

The probability distributions per topic are constructed with only the words in x and y ,
and the probabilities of remaining words in vocabulary W are set to 0. The W dimen-
sional word probabilities are the expected posteriors obtained from LDA model. Hence,
px

z = (ϕz(w1), · · · ,ϕz(w|x |), 0, 0, · · · ) ∈ (0,1)W , p y
z = (ϕz(w1), · · · ,ϕz(w|y |), 0, 0, · · · ) ∈ (0, 1)W .

Given a topic z, the similarity between px
z and p y

z is measured via transformed radius (TR). We
first measure the divergence at each topic using TR based on Kullback-Liebler (K L) divergence:

TR(px
z , p y

z ) = K L(px
z ||

px
z + p y

z

2
) + K L(p y

z ||
px

z + p y
z

2
) (1)

where K L(m||n) =∑i mi log mi

ni
. Then TR is transformed into similarity (Manning et al., 1999):

Sim(px
z , p y

z ) = 10−TR(px
z ,p y

z ) (2)

Here, we adopt TR rather than the commonly used K L for the reason that with TR there is no
problem with infinite values since

px
z +p y

z

2
̸= 0 if either px

z ̸= 0 or p y
z ̸= 0, and it is also symmetric,

i.e., TR(x , y) = TR(y, x). With the gotten sentence similarities under various topics, we could
construct graphs like Figures 1(a) and 1(b) to demonstrate our SentTopic-MultiRank model.

3.3 Sentence ranking using MultiRank algorithm

There are many Data Mining and Machine Learning issues in multi-relational data where ob-
jects interact with others under different relations. The work in (Ng et al., 2011) proposed
a framework, MultiRank, to determine the importance of both objects and relations simul-
taneously based on a probability distribution computed from multi-relational data. In our
multi-relational sentence network, we apply MultiRank algorithm to derive the importance of
sentences and topics. As we analyze sentences under multiple relations and also consider inter-
action between relations based on sentences, we make use of rectangular tensors to represent
them as Figure 1(b). First, we introduce the MultiRank iterative algorithm.

Let R be the real field. We call A = (as1,s2,z1
) where as1,s2,z1

∈ R, for si = 1, · · · , n, i = 1,2 and
z1 = 1, · · · , K , a real (2,1)th order (n× K)-dimensional rectangular tensor. In this setting, we
refer (s1, s2) to the indices for sentences/objects and z1 to be the index for topic/relation. For
instance, five sentences (n= 5) and three relations (K = 3) are demonstrated in Figure 1.

First, two transition probability tensors O = (os1,s2,z1
) and R = (rs1,s2,z1

) are constructed with
respect to sentences and topics by normalizing the entries ofA as follows:

os1,s2,z1
=

as1,s2,z1

m∑
i=1

ai,s2,z1

, s1 = 1,2, · · · , n

rs1,s2,z1
=

as1,s2,z1

K∑
j=1

as1,s2, j

, z1 = 1,2, · · · , K
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Then we derive the following probabilities:

Prob[X t = s1] =
n∑

s2=1

K∑
z1=1

os1,s2,z1
× Prob[X t−1 = s2, Yt = z1] (3)

Prob[Yt = z1] =
n∑

s1=1

n∑
s2=1

rs1,s2,z1
× Prob[X t = s1, X t−1 = s2] (4)

where Prod[X t−1 = s2, Yt = z1] is the joint probability distribution of X t−1 and Yt , and
Prod[X t = s1, X t−1 = s2] is the joint probability distribution of X t and X t−1. Suppose our
desired equilibrium/stationary distributions of sentences and relations, i.e., the SentTopic-
MultiRank values of sentences and relations, are given by

x̄= [ x̄1, x̄2, · · · , x̄n]
T and ȳ= [ ȳ1, ȳ2, · · · , ȳK]

T

respectively, with

x̄s1
= lim

t→∞Prod[X t = s1] and ȳz1
= lim

t→∞Prod[Yt = z1]

for 1≤ s1 ≤ n and 1≤ z1 ≤ K .

As (3) and (4) are coupled together and they involve two joint probability distributions, a
product form of individual probability distributions is employed to replace the joint probability
distributions in (3) and (4) by assumption:

Prob[X t−1 = s2, Yt = z1] = Prob[X t−1 = s2]Prod[Yt = z1]
Prob[X t = s1, X t−1 = s2] = Prob[X t = s1]Prod[X t−1 = s2]

Hence, using the above assumptions and considering t goes to infinity, (3) and (4) becomes

x̄s1
=

n∑
s2=1

K∑
z1=1

os1,s2,z1
x̄s2

ȳz1
, s1 = 1,2, · · ·n (5)

ȳz1
=

n∑
s1=1

n∑
s2=1

rs1,s2,z1
x̄s1

x̄s2
, z1 = 1,2, · · ·K (6)

Under the tensor operation for (5) and (6), we solve the following tensor (multivariate poly-
nomial) equations:

O x̄ȳ= x̄ and R x̄2 = ȳ (7)

with

n∑
s1=1

x̄s1
= 1 and

K∑
z1=1

ȳz1
= 1 (8)

to obtain the SentTopic-MultiRank values of sentences and relations. An efficient iterative
algorithm to solve the tensor equations in (7) is summarized as Algorithm 1. With respect to
theoretical analysis of this algorithm, please refer to (Ng et al., 2011) for details.
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Algorithm 1: The MultiRank Algorithm
Input: Two tensors O and R , two initial probability distributions x0

and y0 (
∑n

s1=1[x0]s1
= 1 and

∑K
z1=1[y0]z1

= 1) and the tolerance ε
Output: Two stationary probability distributions x̄ and ȳ
Procedure:

1. Set t = 1;
2. Compute xt=O xt−1yt−1;
3. Compute yt=Rx2

t ;
4. If ∥ xt − xt−1 ∥+∥ yt − yt−1 ∥<ε, then stop, otherwise set t =

t + 1 and goto Step 2.

In Algorithm 1, the setting of initial probability distributions does not influence the finally
generated stationary probability distributions. We simply set uniform distribution for those
sentences while with regard to topics, we set their initial distribution using the topic distribu-
tion of the entire corpus. Obviously, above algorithm has nothing to do with any query, so it
does not apply to biased summarization task, which is further discussed in subsequent section.

3.4 Prior configuration in query-focused multi-document summarization

Query summarization requires that generated summary could not only express the salient con-
tent of target document collection, but also bias to the information needs of query. Then,
how to exert the query information to the MultiRank process? Motivated by the idea of topic-
sensitive PageRank (Haveliwala, 2003) and random walk with restart (Tong et al., 2008), we
consider this issue by assigning desired limiting probability distributions towards sentences
and topics, respectively. More specifically, we modify the tensor equations in (7) as follows:

(1−µ)O x̄ȳ+µo= x̄ (9)

(1− ν)R x̄2 + νr= ȳ (10)

with Equation 8, where o and r are two devised prior probability distributions for sentences and
topics/relations, respectively. Here, (

∑n
i=1[o]i = 1 and

∑K
j=1[r] j = 1), and 0 ≤ µ,ν < 1, are

two parameters for controlling the influence degree of two prior probability distributions. In
experiments, we set µ= 0.5 and ν = 0.9 simply as (Xutao et al., 2012) indicated. Accordingly,
the new iterative algorithm could be presented as Algorithm 2.

Noting that (Xutao et al., 2012) has ever provided a similar solution framework for their pro-
posed HAR model, a modified version of MultiRank on the basis of HITS’s principle, to cope
with query search. Nonetheless, for one thing, our Algorithm 2 is designed specifically for Mul-
tiRank; for another, we further explicitly give the expressions of o and r for our summarization
application in following sections.

3.4.1 Sentence prior

We try to normalize the relatedness of sentences towards the query description as those sen-
tences’ prior distribution. The most commonly used method of computing sentence relatedness
is cosine measure. Nevertheless, we opt for an approach that is similar with what adopted by
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Algorithm 2: The MultiRank Algorithm Integrated with Prior
Input: Two tensors O and R , two initial probability distributions
x0 and y0 (

∑n
s1=1[x0]s1

= 1 and
∑K

z1=1[y0]z1
= 1), two prior distri-

butions of sentences and topics o and r, two weighting parameters
0≤ µ,ν < 1 and the tolerance ε
Output: Two stationary probability distributions x̄ and ȳ
Procedure:

1. Set t = 1;
2. Compute xt=(1-µ)O xt−1yt−1+µo;
3. Compute yt=(1-ν)Rx2

t+νr;
4. If ∥ xt − xt−1 ∥+∥ yt − yt−1 ∥<ε, then stop, otherwise set t =

t + 1 and goto Step 2.

(Kurland and Lee, 2010) as well as (Erkan, 2006). They all defined the sentence relatedness
(e.g., u and v) as the generation probability of u given v or of v given u. Naturally, sentence-
word distribution, as an initial step, must be acquired. They assumed that the weight of a
word in certain sentence mainly depends on the word’s occurrence frequency in that specific
sentence. Given a sentence s, a straightforward way of computing the weights of words con-
tained in s is to normalize their term frequency (TF):

PT F (w|s) = cs(w)/|s| (11)

where cs(w) is times of word w occurring in s, and |s| is the total number of words in s.

However, in our perspectives, it should not be neglected that different words have different
degrees of information and instructions, no matter for a document or a sentence. For example,
three sentences s1 = (A, C), s2 = (A : 0.9, B : 0.1) and s3 = (D, B), where A, B, C and D denote 4
discriminative words, and 0.9, 0.1 mean the weights of A and B in the second sentence s2. Now,
if we are asked to distinguish which one of s1 and s3 has more similarity with s2, apparently we
should choose s1. Even though the occurrence frequencies of A and B are the same in sentence
s2 (i.e., their generation probabilities are equal according to Equation 11), they actually have
different importance towards s2. As a result, s1 is supposed to be more similar with s2 because
it has content s2 more concerns.

With model LDA, we propose to derive the weight of word w with respect to sentence s where
w occurs as follows:

P ′(w|s) = P(w|C)∑
w′∈s P(w′|C) (12)

where C means the entire corpus, and P(w|C) could be easily acquired by combining corpus-
topic distribution and topic-word distribution which are both basic outputs of LDA. To account
for the unseen words for s, we smooth the above equation like this:

P(w|s) = (1−λ)P ′(w|s) +λP(w|C) (13)

λ is a trade-off parameter and is set to 0.7 in experiments. Consequently, we can talk about
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the generation probability of sentence u given another sentence v as:

gen(u|v) = P(u|v) 1
|u| = [

∏
w∈u

P(w|v)] 1
|u| (14)

We use the length of u (i.e., |u|) to conduct normalization so as to avoid the tendency that
longer sentences get smaller generation probabilities. Moreover, we use a normalized genera-
tion probability to indicate the initial bias of sentences towards the query q, i.e.,

[o]s1
=

gen(q|s1)∑
s gen(q|s) 1≤ s1 ≤ n (15)

We mark cosine measure as cosine − based, mark Equation 11 based generation probability
method as T F − based, and label our proposed generation probability approach based on
Equation 12 as weight − based. In the experimental part, they will be compared with each
other to investigate their performance in constructing sentence prior.

3.4.2 Topic prior

When it turns to prior distribution of topics, we must first get the topic distribution of query
description, i.e., the conditional probability P(z1|q), so

[r]z1
= P(z1|q) =

1

|q|
∑
w∈q

P(z1|w) 1≤ z1 ≤ K (16)

where |q| means the word number in q, and P(z|w) is derived via Bayesian rule in LDA.

In experiments, we also set the two initial probability distributions in Algorithm 2 to equal with
their corresponding initial distribution in Algorithm 1. Illustration of SentTopic-MultiRank
with prior beliefs o and r is given as Figure 1(c).

4 Summary generation
After ranking process, sentences usually have close values if they own similar content. Con-
sequently, we perform the modified MMR algorithm, proposed in (Wan et al., 2007), during
sentence selection to control the information redundancy of generated summary. The principle
of MMR algorithm is to reduce the ranking scores of remaining sentences if they are detected to
have a degree of similarities with those sentences having been selected to construct a summary.
The algorithm goes as follows:

1. Initiate two sets A=;, B={si |i=1,2, · · · , n}, and each sentence’s initial value is set to its
SentTopic-MultiRank score obtained in above section, i.e., value(si)= x̄ i .

2. Sort the sentences in B by their current values in descending order.
3. Suppose si is the highest ranked sentence, i.e., the first sentence in B. Move sentence si

from B to A and update the values of the remaining sentence(s) in B as follows:
For each sentence s j in B:

value(s j) = value(s j)−ω · S̃i j · value(si) (17)

where ω is set to 5 in our experiments, S̃ is the normalized sentence similarity matrix.
4. Go to step 2 and iterate until |B|=0.

After the final scores are obtained for all sentences, several sentences with highest ranking
scores are chosen to produce a summary until length limit is reached.
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5 Experiments

5.1 Data sets and evaluation metrics

We validate our algorithm framework in both generic and query-biased multi-document sum-
marization. For generic task, we conduct experiments on the data sets DUC20022 and
DUC20043 in which generic multi-document summarization has been one of the fundamen-
tal tasks (i.e., task 2 in DUC2002 and task 2 in DUC2004). For query-related task, experiments
are based on the main tasks of DUC20054 and DUC20065. Each task has a gold standard data
set consisting of document sets and reference summaries. Table 1 gives a short summary of
above data sets. Documents are pre-processed by segmenting sentences and splitting words.
Stop words are removed and the remaining words are stemmed using Porter stemmer6.

DUC2002 DUC2004 DUC2005 DUC2006
Task Task2 Task2 the only task the only task

Number of documents 567 500 1593 1250
Number of clusters 59 50 50 50

Data source TREC TDT TREC TREC
Summary length 200 words 665 bytes 250 words 250 words

Table 1: Summary of data sets

We use the ROUGE (Lin, 2004) (version 1.5.5) toolkit7 for evaluation, which is officially
adopted by DUC for evaluating automatic generated summaries. Here we report the average
F -measure scores of ROUGE-1, ROUGE-2 and ROUGE-SU4, which base on Uni-gram match, Bi-
gram match, and unigram plus skip-bigram match with maximum skip distance of 4 between
the candidate summary and the reference summary, respectively.

5.2 System comparison

5.2.1 Generic multi-document summarization

As for generic multi-document summarization, we compare our proposed method SentTopic-
MultiRank with following algorithms. (1)Lead Baseline: The lead baseline takes the first sen-
tences one by one in the last document in a document set, where documents are assumed to
be ordered chronologically. (2)Random: The method selects sentences randomly for each doc-
ument collection. (3)DUC Best: The system with highest ROUGE scores among all the systems
submitted. (4)LexPageRank: The method first constructs a sentence connectivity graph based
on traditional cosine similarity and then conducts PageRank algorithm to determine global
importance scores of sentences (Erkan and Radev, 2004). (5)ToPageRank: The method, pro-
posed in (Pei et al., 2012), decomposes traditional PageRank into multiple PageRank via topic
decomposition for generic multi-document summarization.

Tables 2-3 show the experimental results. From those statistics, we observe that ToPageRank
is better than LexPageRank while our SentTopic-MultiRank outperforms all the competitors.

2http://www-nlpir.nist.gov/projects/duc/data/2002_data.html
3http://www-nlpir.nist.gov/projects/duc/data/2004_data.html
4http://www-nlpir.nist.gov/projects/duc/duc2005/tasks.html
5http://www-nlpir.nist.gov/projects/duc/duc2006/tasks.html
6http://tartarus.org/ martin/PorterStemmer/
7http://www.isi.edu/licensed-sw/see/rouge/

2987



Systems ROUGE-1 ROUGE-2 ROUGE-SU4
Lead 0.39860 0.16042 0.20315

Random 0.38469 0.11705 0.18007
LexPageRank 0.47473 0.22484 0.25850

DUC Best 0.49869 0.25229 0.28406
ToPageRank 0.49923 0.25735 0.29630

SentTopic-MultiRank 0.50491 0.26714 0.30731

Table 2: F-measure comparison on DUC2002
Systems ROUGE-1 ROUGE-2 ROUGE-SU4

Lead 0.33182 0.06348 0.10582
Random 0.31857 0.06269 0.11780

LexPageRank 0.37875 0.08354 0.12770
DUC Best 0.38279 0.09216 0.13349

ToPageRank 0.40251 0.09555 0.14027
SentTopic-MultiRank 0.41016 0.09917 0.14324

Table 3: F-measure comparison on DUC2004

It suggests that: (1) the decomposition and analysis of topic information indeed benefit the
improvement of summary quality, as ToPageRank and SentTopic-MultiRank systems perform.
It might result from the fact that not only does target corpus usually involve multiple topics,
but a user commonly wishes to obtain information from various aspects by reading a concise
text. Analyzing corpus on topic level could deeply and comprehensively identify user desired
content. (2)ToPageRank focuses on sentence interaction within a topic’s range while SentTopic-
MultiRank takes three kinds of relations (sentence-sentence, sentence-topic, topic-topic) into
consideration wholly. Hence, propagation of impacts among sentences and topics (noting that
topics are treated as relation types) is a bonus to determine the saliency score of sentences.

5.2.2 Query-biased multi-document summarization

To validate SentTopic-MultiRank in query-biased task, following systems are implemented as
baselines. (1)Random: The same baseline as that in above generic task. (2)Manifold: ranking
the sentences according to the manifold ranking scores. (3)Biased LexRank: A modified ver-
sion of traditional random walk with prior belief. It was presented in (Erkan, 2006) and the
sentence prior knowledge was denoted by sentence’s similarity to the query description. (4)top
three systems with the highest ROUGE scores that participated in the DUC2005 (S4, S15, S17)
and the DUC2006 (S12, S23, S24) for comparison, respectively. Tables 4 and 5 present the
performance of these systems on DUC2005 and DUC2006 data sets, respectively.

Systems ROUGE-1 ROUGE-2 ROUGE-SU4
Random 0.30821 0.03976 0.10625

Biased LexRank 0.37324 0.07113 0.12805
Manifold 0.37497 0.07423 0.12907

S17 0.36933 0.07286 0.12937
S4 0.37584 0.07063 0.12868

S15 0.37656 0.07244 0.13248
SentTopic-MultiRank 0.38803 0.07994 0.13532

Table 4: F-measure comparison on DUC2005
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Systems ROUGE-1 ROUGE-2 ROUGE-SU4
Random 0.34821 0.05297 0.11908

Biased LexRank 0.36814 0.08074 0.12993
Manifold 0.38867 0.08308 0.13307

S23 0.40973 0.09785 0.16162
S12 0.41053 0.09633 0.16074
S24 0.41081 0.09957 0.15248

SentTopic-MultiRank 0.41567 0.10125 0.16431

Table 5: F-measure comparison on DUC2006

Apparently, our approach SentTopic-MultiRank has the optimal performance, especially out-
perform the two representative graph-based methods: Biased LexRank and Manifold. Noting
that both the sentence networks of Biased LexRank and Manifold are only based on sentence
similarity under a single relation type assumption, so the estimation of their sentence ranking
scores is limited compared with SentTopic-MultiRank which skillfully considers query-biased
information as well as the interactions between sentences and topics.

5.3 Influence of topic number K
LDA is a crucial tool in devising SentTopic-MultiRank and topic number K also denotes the
amount of different relation types. In order to investigate how the topic number K exerts influ-
ence to system performance, K is varied from 5 to 80. Figures 2(a)-2(b) show the influence of
K over ROUGE-1 with respect to generic and query-oriented multi-document summarization,
respectively. On the whole, the evaluation scores rise with the increase of K , and reach their re-
spective maximum, then gradually go down when K continues to become larger. Despite some
slight fluctuations, they don’t matter to the overall conclusion. We could draw the following
two meaningful conclusions. (1)It indicates that topic number indeed influences the algorithm
result. In fact, our system would be similar with LexPageRank if K = 1. (2)Interestingly, two
tasks do not reach their optimal situations at an approximate K value, more exactly, generic
task requires a relatively large K (K ≈ 40) while query-biased prefers small K (K ≈ 15) (here
our adoption of an approximation for K is because that we actually vary K every 5 from the
start value K = 5 in experiments). It may derive from the fact that a query description usually
involves few topics, whereas, when applying SentTopic-MultiRank to generic task, we could
image the whole corpus as a big query, which concerns about more topics.

(a) ROUGE-1 vs. K for generic multi-document
summarization

(b) ROUGE-1 vs. K for query-focused multi-
document summarization

Figure 2: Influence of K
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5.4 Comparison of three sentence prior methods

In Section 3.4.1, we named weight-based for our proposed sentence prior method. In order
to confirm its advantage in acquiring more favorable sentence prior distribution, we com-
pare it with two competitors: cosine-based and TF-based using query-biased summary qualities
on DUC2005 and DUC2006. Section 5.3 has indicated that when K is about 15 the quality
of query-oriented summary is optimal. For simplicity, we compare the three methods using
ROUGE-1 metric under the same condition K = 15. Figure 3 gives comparison results. For the
space limit, here we give up showing the comparison results on ROUGE-2 and ROUGE-SU4.

Figure 3: Comparison of three sentence prior methods, K = 15.

As Figure 3 shows, generation probability methods, including TF-based and weight-based, both
outperform cosine-based. In addition, system using weight-based method to generate sentence
prior indeed produces summaries with the highest quality. It not only suggests the effective-
ness of generation probability methods, but also points out that our method, considering term
weights instead of term frequencies to acquire generation probabilities of words given a sen-
tence, is more useful to derive sentence affinity.

Conclusion and perspectives

In this study, we exploit LDA to devise a novel model named SentTopic-MultiRank based on
MultiRank algorithm for multi-document summarization. Our intention is to map sentence
relatedness over various latent topics to heterogeneous network where multiple topics are
treated as various kinds of relations. We apply our approach to both generic and query-biased
multi-document summarization. In generic task, we use MultiRank algorithm to directly deter-
mine the importance of all sentences, while in query-sensitive task, some query-biased prior
beliefs are added to sentences and topics of the SentTopic-MultiRank network, so that some
top-ranked sentences are supposed to not only demonstrate the core content of target corpus,
but also bias to the information needs of a user’s query. Extensive experiments have been
performed to prove the effectiveness of our approach in improving the summary quality.

In future work, for one thing, we may apply our model to new summarization task, such
as updated summarization; for another, integrating manifold-ranking process with SentTopic-
MultiRank might be an interesting idea in some query-related applications.
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