
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 223–231,
Beijing, August 2010

Constraining robust constructions for broad-coverage parsing with
precision grammars

Bart Cramer† and Yi Zhang†‡

Department of Computational Linguistics & Phonetics, Saarland University†

LT-Lab, German Research Center for Artificial Intelligence (DFKI)‡

{bcramer,yzhang}@coli.uni-saarland.de

Abstract

This paper addresses two problems that
commonly arise in parsing with precision-
oriented, rule-based models of grammar:
lack of speed and lack of robustness. First,
we show how we can reduce parsing times
by restricting the number of tasks the
parser will carry out, based on a gener-
ative model of rule applications. Sec-
ond, we show that a combination of search
space restriction and radically overgen-
erating robustness rules lead to a more
robust parser, with only a small penalty
in precision. Applying both the robust-
ness rules and a fragment fallback strat-
egy showed better recall than just giving
fragment analyses, with equal precision.
Results are reported on a medium-sized
HPSG grammar for German. 1

1 Introduction

In the field of natural language processing, it
is common wisdom that handwritten, rule-based
models generally perform poorly on complex
problems, mainly due to the knowledge acquisi-
tion bottleneck: it is hard for the human modeller
to conceive of all possible scenarios the model
has to cope with. In parsing, many approaches
have relied on hand-written grammars, and their
fragility is one of their largest weaknesses. Such
models can fail due to insufficiency of lexical en-
tries or grammatical constructions, but also due

1The research reported on in this paper has been carried
out with financial support from the Deutsche Forschungs-
gemeinschaft and the German Excellence Cluster of Multi-
modal Computing & Interaction.

to creative or ungrammatical input. In any case,
the parser should always return a reasonable out-
put. A very simple technique is partial or fragment
parsing (Kiefer et al., 1999; Riezler et al., 2001;
Zhang et al., 2007a): if there is no item in the chart
that both spans the complete sentence and fulfills
the root condition, several chunks that do conform
to a root condition are combined by minimising a
certain cost function (for instance to favour larger
chunks, or more probable chunks).

A second problem with deep parsers is their rel-
atively low efficiency. For online applications, it is
impermissible to wait for longer than a minute be-
fore the system responds. Apart from studies that
were aimed at increasing the efficiency of deep
parsers by using smarter algorithms (e.g. using
left-corner relations (Van Noord, 1997)), several
studies in recent years have suggested that search
space restriction can offer a beneficial balance be-
tween speed and accuracy as well. Techniques
that have been proposed are, among others, su-
pertagging (Clark and Curran, 2007), CFG filter-
ing (Matsuzaki et al., 2007) and beam threshold-
ing (Ninomiya et al., 2005).

A potential disadvantage of the latter technique
is that the unifications have taken place by the
time the value of the resulting chart item is in-
vestigated. One strategy that tries to prevent ex-
ecution of unlikely tasks altogether is presented
by van Noord (2009). In this method, the parser
learns from an unannotated corpus which parse
steps contributed to the solution as preferred by
the disambiguation model (as opposed to a cer-
tain gold standard). Hence, this approach is self-
learning.

Another study that is close to our approach

223



to search space restriction is c-structure pruning
(Cahill et al., 2008). The authors show that a
large, hand-written, unification-based parser (the
XLE LFG parser for English) can perform reason-
ably faster (18%) without losing accuracy, by not
allowing the parser to unify if the resulting item
will have a span that does not conform to a CFG
tree that was generated from the sentence before-
hand by a PCFG parser. Much better results (67%
speed-up) are obtained by pruning chart items lo-
cally, based on their relative probabilities (Cahill
et al., 2008). This is the approach that is closest to
the one we present in this paper.

In this paper, we introduce a method that ad-
dresses robustness and efficiency concurrently.
The search space is restricted by setting a maxi-
mum on the number of tasks per chart cell. Be-
cause tasks are carried out according to a prior-
ity model based on the generative probabilities of
the rule applications, it is unlikely that good read-
ings are dropped. More robustness is achieved by
adding radically overgenerating rules to the gram-
mar, which could cover all sentences, given an dis-
proportionate amount of time and memory. By
strongly restricting the search space, however, the
computation requirements remains within bounds.
Because the robustness rules are strongly dispre-
ferred by both the priority model and the dis-
ambiguation model, all sentences that would be
covered by the ‘restricted’ grammar remain high-
precision, but sentences that are not covered will
get an additional push from the robustness rules.

1.1 An HPSG grammar for German

The grammar we use (Cramer and Zhang, 2009)
is the combination of a hand-written, constraint-
based grammar in the framework of HPSG and an
open word class lexicon extracted from the Tiger
treebank (Brants et al., 2002) in a deep lexical ac-
quisition step. One of the aims of this grammar
is to be precision-oriented: it tries to give detailed
analyses of the German language, and reject un-
grammatical sentences as much as possible. How-
ever, this precision comes at the cost of lower cov-
erage, as we will see later in this paper.

Along with the grammar, a treebank has been
developed by re-parsing the Tiger treebank, and
including those sentences for which the grammar

was able to reproduce the original Tiger depen-
dencies. The treebank’s size is just over 25k sen-
tences (only selected from the first 45k sentences,
so they don’t overlap with either the development
or test set), and contains the correct HPSG deriva-
tion trees. These (projective) derivation trees will
function as the training set for the statistical mod-
els we develop in this study.

2 Restriction of the search space

2.1 The PET parser

The parser we employ, the PET parser (Callmeier,
2000), is an agenda-driven, bottom-up,
unification-based parser. In order to reduce com-
putational demands, state-of-the-art techniques
such as subsumption-based packing (Oepen
and Carroll, 2000) and the quasi-destructive
unification operator (Tomabechi, 1991) have been
implemented.

A central component in the parser is the agenda,
implemented as a priority queue of parsing tasks
(unifications). Tasks are popped from the agenda,
until no task is left, after which all passive items
spanning the complete sentence are compared
with the root conditions as specified by the gram-
mar writer. The best parse is extracted from the
parse forest by a Maximum Entropy parse disam-
biguation model (Toutanova et al., 2002), using
selective unpacking (Zhang et al., 2007b).

Two different types of items are identified: pas-
sive items and active items. Passive items are
‘normal’ chart items, in the sense that they can
freely combine with other items. Active items
still need to combine with a passive item to be
complete. Hence, the parser knows two types of
tasks as well (see figure 1): rule+passive and ac-
tive+passive.

Each time a task succeeds, the following hap-
pens:

• For each inserted passive item, add
(rule+passive) tasks that combine the
passive item with each of the rules, and add
(active+passive) tasks that combine with
each of the neighbouring active items.

• For each inserted active item, add (ac-
tive+passive) tasks that combine the remain-

224



unary binary
rule+passive

binary
active+passive

R
+ P ⇒

R

P

R
+ P ⇒

R

P

R

P1

+ P2 ⇒
R

P1 P2

Figure 1: Depicted are the different types of tasks in the PET parser. Not shown are the features
structures imposed by the rules and the chart items.

ing gaps in the active item with existing
neighbouring passive items in the chart.

2.2 Defining priorities

The priorities of the parsing tasks are calculated
based on a generative PCFG model extracted from
the treebank by maximum likelihood estimation,
smoothed by Lidstone smoothing. Each passive
chart item receives a score based on its generative
probability, calculated as the product of all applied
rule probabilities. For active parsing items, we set
the score to be the upper bound of this generative
probability, if the item succeeds later in combin-
ing with other passive edge(s) to build a complete
subtree. This is done by simply assuming the un-
determined subtree in the active item receiving a
generative score of 1.

The priorities that are assigned to both types of
tasks are not yet conditioned on the probability
of the topmost rule application. Hence, they are
computed using the following simple formula:

Pr = p(R) · p(P )

where Pr is the task’s priority, p(R) the prior
probability of the rule category R; and p(P ) is
the highest possible generative probability of the
resulting passive item P .

2.3 Restriction strategies

It is a natural thought to allocate more computa-
tional resources to longer sentences, and this is
exactly what happens in the restriction strategies
we develop in this study. We define a cap on
the number of tasks for a certain cell/span (i, j),

which means that the number of cells is quadrati-
cally related to the number of words in a sentence:
ncells = n(n+ 1)/2.

We define three task restriction strategies: all,
success, and passive. In all, the cap is defined
for all tasks, whether the unification is success-
ful or not. Success only counts tasks that are suc-
cessful (i.e. lead to either an active or a passive
item), and passive only counts tasks that lead to a
passive item. In all strategies, morphological and
lexical tasks are not counted, and hence not re-
stricted. Unary phrasal rules (such as empty-det)
are counted, though.

The implementation uses only one priority
queue. Each time a task is popped from the
agenda, it is checked whether the limit for this
span has been reached or not. If so, the task is
discarded; otherwise, it is executed.

2.4 Methodology

All our experiments are based on the Tiger tree-
bank (Brants et al., 2002). The grammar’s lex-
icon is based on the first 45k sentences in the
treebank, and so are the MaxEnt disambiguation
model (Toutanova et al., 2002) and the genera-
tive model we developed for this study. The de-
velopment set (s45001-s47500) was used to fine-
tune the methods, but all final results presented in
this paper are with respect to the test set (s47501-
s50000). The maximum time for building up the
packed parse forest is 60 seconds, after which un-
packing is started. Unpacking the first reading
usually has negligible computation costs, and is
not reported on. Along with the best reading’s
derivation, the dependencies are output, and com-

225



Strategy exhaustive all success passive
Cap size 3000 200 100
Time (s) 7.20 1.04 0.92 1.06
Coverage 59.4% 60.5% 60.0% 59.0%
Exact 17.6% 17.6% 17.4% 17.4%
Recall 37.6% 39.5% 38.9% 38.0%
Precision 80.7% 80.3% 80.1% 80.4%
F-score 51.3% 52.9% 52.4% 51.6%

Table 1: A more detailed look into some data points from figure 2. ‘Coverage’ and ‘Exact’ are sentential
percentages, showing how many sentences receive at least one or the exactly correct reading. Recall,
precision and f-score are on a per-dependency basis.

●

0 2 4 6 8

46
48

50
52

54

Time (s)

F
−

sc
or

e

● exhaustive
all
success
passive

Figure 2: This figure shows the tradeoff between
speed and f-score for the standard grammar, using
the restriction strategies with different cap sizes.

pared to the gold standard dependencies from the
Tiger treebank.

2.5 Results
The results of the experiments, with different cap
sizes, are summarized in table 1 and figure 2.
As expected, for all strategies it holds that longer
computation times lead to higher coverage num-
bers. The interesting thing is that the restriction of
the search space doesn’t affect the parses’ preci-
sion, indicating that the priorities work well: the
tasks leading to good solutions are indeed given
high priority scores.

A striking observation is that the coverage num-

bers go up by about 1%, with reductions in parse
times of more than 80%. This is due to the use of
the timeout, and the generic tendency of our defi-
nition of the priorities: because less rule applica-
tions lead to higher log probabilities, the agenda
will favour tasks with smaller span size. If the
agenda doesn’t apply too strong a restriction on
those tasks, the parser might not create any items
spanning the whole sentence after the full 60 sec-
onds, and hence produce no parse. This is miti-
gated by stronger restriction, leading to a quicker
path upwards in the chart.

No large differences of success are found be-
tween the different strategies. The intuition be-
hind the success and passive strategies was that
only more effort should be invested into a par-
ticular span if not enough chart items for that
span have been created. However, the time/quality
trade-offs are very similar for all strategies, as
shown in figure 22.

The strategies we have reported on have one
thing in common: their counters are with respect
to one particular span, and therefore, they have
a very local scope. We have tried other strate-
gies that would give the algorithm more flexibil-
ity by defining the caps on more global scale, for
instance per span length or for the entire chart.
However, this degraded the performance severely,
because the parser was not able to divide its atten-
tion properly.

2One might be tempted to consider the all strategy as
the best one. However, the time/f-score tradeoff curves look
slightly different on the development set.

226



3 Increasing robustness

For hand-written deep parsers, efficiency and cov-
erage are often competing factors: allowing more
items to be created might be beneficial for recall,
but the parser will also be too slow. However, be-
cause the search space can be restricted so rigidly,
we can make the grammar more permissive to ac-
cept more sentences, hopefully without a heavy
efficiency penalty. One way to do this is to re-
move constraints from the grammar rules. How-
ever, that would infringe on the precision-oriented
nature of the grammar. Instead, we will keep the
normal grammar rules as they are, and create a
small number of additional, super-accepting ro-
bustness rules. The intuition is that when the re-
stricted part of the grammar can find a solution,
that solution will indeed be found, and preferred
by the statistical models. On the other hand, when
the sentence is extragrammatical, the robustness
rules may be able to overcome the barriers.

Let’s consider the following example, assuming
that the grammar only lists ‘to run’ as an intransi-
tive verb:

‘John ran the marathon yesterday’

A fragment approach would come up with the
following solution:

John ran the marathon yesterday

subj-h

‘John’ will correctly be identified as the subject
of ‘ran’, but that is all. No dependencies are estab-
lished between ‘the marathon‘ and ‘ran’, or ‘yes-
terday’ and ‘ran’. The former is hard to establish,
because of the missing lexical item. However, the
latter should be doable: the lexicon knows that
‘yesterday’ is an adverb that modifies verbs. If
we could create a robustness rule that would ab-
sorb the object (‘the marathon’) without assigning
a dependency, it would at least be able to identify
the modifier dependency between ‘ran’ and ‘yes-
terday’.

John

ran the marathon

yesterdaym-robust

h-adjunct

subj-h

In other words, a fragment analysis solely com-
bines items at the top level, whereas a robust
parser would ideally be able to overcome barri-
ers in both the lower and the higher regions of the
chart, meaning that the damage can be localised
and thus minimised. The robustness rules we pro-
pose are intended to achieve that.

How does this idea interact with the restriction
mechanism explained in the previous section? Ro-
bustness rules get an inhibitively large, constant
penalty in both the priority model and the dis-
ambiguation model. That means that at first the
parser will try to build the parse forest with the re-
stricted set of rules, because tasks involving sub-
trees with only rules from the standard grammar
will always have a higher priority than tasks us-
ing an item with a robustness rule application in
its subtree. When this is finished, the robustness
rules try to fill the gaps. Especially in the suc-
cess and passive strategies, tasks with robustness
rules are discarded if already enough chart items
are found for a particular span, meaning that the
parser automatically focusses on those parts of the
chart that haven’t been filled before.

3.1 Defining robustness rules

Defining robustness rules is a sort of grammar
engineering, and it took a bit of experimentation
to find rules that worked well. One of the fac-
tors was the interaction between the subsumption-
based packing and the robustness rules. When the
chart is built up, items that are subsumed by an ex-
isting item are marked as ‘frozen’, and the latter
(more general) item functions as the representa-
tive node in the remainder of the parsing process.
When unpacking the best solution, the best deriva-
tion tree is extracted from the packed forest, which

227



might include a frozen node. Because this frozen
node has more constraints than its representative,
this derivation tree is not guaranteed to be free of
unification failures, and hence, before outputting,
this is checked by replaying all the unifications in
the derivation tree. This procedure is repeated un-
til a sound derivation has been found.

So what happens when the representative nodes
are very general? Many nodes will be packed,
and hence the chart will remain compact. How-
ever, the unpacking process will become prob-
lematic, because many of the proposed derivation
trees during unpacking will be incorrect, leading
to excessive computation times (in the order of
minutes).

Therefore, we chose to define robustness rules
such, that the resulting chart items will be equally
constrained as their daughters. They are all bi-
nary, and have one common ancestor in the type
hierarchy:



structure-robust

SYNSEM 1

ROBUST +

MN-DTR




sign

SYNSEM 1
[

LOCAL.CAT.HEAD verb
]

ROBUST -




RB-DTR




sign

SYNSEM
[

NONLOCAL no-nonlocal
]

ROBUST -







All rules have a main daughter and a robust
daughter. The co-indexation of the SYNSEM of
the main daughter and the SYNSEM of the rule
itself has the effect that the resulting chart item
will have the exact same syntactic properties as its
main daughter, whereas the robust daughter does
not contribute to the syntactic properties of the
mother node. The ROBUST feature is used to
prevent the application of two robust rules con-
secutively. Additional constraints (not shown)
make sure that morphological processing is fin-
ished, and that both parts are not involved in a
coordination. Robustness rules do not yield a de-
pendency triple (although they mght be guessed
accurately by a few heuristics).

We define two pairs of robustness rules, each
pair consisting of a rule with MN-DTR first and
RB-DTR second, and one rule in the other order:

+V The robust daughter is a verb, which is still
allowed to have valence, but cannot have any
features in NONLOCAL.

+NV The robust daughter is anything but a verb,
cannot have any non-empty valence list, and
cannot have any features in NONLOCAL.

3.2 Fragment parsing
As a baseline for comparison, we investigate the
existing partial parsing algorithms that pick frag-
mented analyses from the parse forest as a fall-
back strategy when there is no full parse available.
Kiefer et al. (1999) took a shortest-path approach
to find a sequence of fragment analysis that min-
imizes a heuristics-based cost function. Another
variation of the algorithm (Riezler et al., 2001)
is to pick fewest chunks that connect the entire
sentence. While these early approaches are based
on simple heuristics, more sophisticated parse se-
lection methods also use the statistical models to
rank the partial analyses. For example, Zhang et
al. (2007a) proposed several ways of integrating
discriminative parse ranking scores with the par-
tial parse selection algorithm.

In this experiment, we first use the shortest
path algorithm to find candidate chunks of par-
tial analysis. All phrasal constituents were given
equal weights, and preferred over input and lex-
ical edges. For each chunk (edges spanning the
same sub-string of the input sentence), the edge
with the highest generative probability is picked.
Consequently, the best partial reading (covering
that edge) is decoded by the selective unpacking
algorithm using the MaxEnt parse ranking model.
With each fragment, the partial semantic represen-
tations were extracted. Similar to the robustness
rules, no cross-fragment dependencies are recov-
ered in this approach. Due to the limited number
of chart items and the use of selective unpacking,
the computation times for the shortest-path algo-
rithm are marginal.

3.3 Results
The results of this experiment are listed in ta-
ble 2. For the robust versions of the grammar,
no exhaustive parsing results are reported, be-
cause they take too long to compute, as can be
expected. Coverage number are on a per-sentence

228



standard +V +NV +V+NV
exhaustive restricted restricted

time (s) 7.20 0.92 4.10 1.42 4.09
no fragment coverage 59.3% 60.0% 72.6% 69.9% 78.6%

recall 37.6% 38.9% 48.4% 47.0% 53.8%
precision 80.7% 80.1% 78.6% 78.2% 77.7%
f-score 51.3% 52.4% 59.9% 58.7% 63.6%

fragment coverage 94.3% 98.3% 98.5% 98.7% 98.5%
recall 50.4% 53.6% 59.5% 56.9% 61.3%
precision 75.4% 75.0% 75.0% 74.5% 74.7%
f-score 60.4% 62.5% 66.3% 64.5% 67.3%

Table 2: Results for experiments with different robustness rules, and with or without fragment fallback
strategy.

basis, whereas the other percentages are on a per-
dependency basis. Time denotes the average num-
ber of seconds it takes to build the parse forest. All
results under ‘restricted’ are carried out with the
success strategy, with a cap of 200 tasks (success-
200). ‘(No) fragment’ indicates whether a frag-
ment parse is returned when no results are ob-
tained after selective unpacking.

The robustness rules significantly increase the
sentential coverage, in the case of +V+NV almost
20 percent points. The gains of +V and +NV
are fairly additive: they seem to cover different
sets of extragrammatical sentences. In the most
permissive setting (+V+NV), dependency recall
goes up by 16 percent point, with only a 3 per-
cent point decrease of precision, showing that the
newly-covered sentences still receive fairly accu-
rate parses. Also, it can be seen that the +V pair of
rules is more effective than +NV to increase cov-
erage. The robust grammars are certainly slower
than the standard grammar, but still twice as fast
as the standard grammar in an exhaustive setting.

Coverage numbers are approximating 100%
when the fragment parsing fallback strategy is ap-
plied, in all settings. However, it is interesting
to see that the recall numbers are higher when
the robustness rules are more permissive, but that
no significant effect on the precision is observed.
This suggests that the lumps that are connected by
the fragment parsing mechanism are larger, due
to previous applications of the robustness rules.
From this, we conclude that the connections made
by the robustness rules are of relatively high qual-

ity.
We have also tried the all-3000 and passive-

100 settings (the same as listed in table 1). That
yielded very similar results, except on the gram-
mar with both +V and +NV enabled. With pas-
sive-100, there was a small decrease in cover-
age (76.0%), but this drop was much more pro-
nounced for all-3000: 72.0%. This suggests that,
if the pressure on the generative model is larger
due to heavier overgeneration, counting success-
ful tasks or passive items performs better than just
counting the number of executed tasks.

After manual inspection, we found out that the
kind of constructions the robustness rules created
were very diverse. Most of the rule applications
were not in the top of the tree, as was intended.
There also seemed to be a correlation between the
length of the robust daughter and the quality of the
parse. When the robust daughter of the rule was
large, the application of the robustness rule looked
like an emergency strategy, with a corresponding
quality of the parse. However, when the robust-
ness rule connects a verb to a relatively small con-
stituent (a particle or an NP, for example), the re-
sulting derivation tree was of reasonable quality,
keeping most of the other dependencies intact.

4 Discussion

Achieving broad coverage in deep parsing while
maintaining high precision is difficult. Until now,
most existing hand-written grammar-based pars-
ing systems rely on fragment analyses (or various
ways of putting fragments together to compose

229



partial readings), but we argued (with the exam-
ple in section 3) that such an approach delivers in-
ferior results when the tree falls apart at the very
bottom. The use of robust constructions offers a
way to keep the damage local, but can create an
intractable search space. The proposed pruning
strategies carefully control the bound of overgen-
eration, resulting in improvements on both pars-
ing efficiency and coverage, with a significantly
smaller degradation in f-score than a pure frag-
ment approach. The combination of grammar en-
gineering, statistical modelling and algorithmic
design in the parser brings the parser performance
to a new level.

Although the experiments were carried out on
a specific grammar framework, we consider the
techniques put forward in this paper to be applica-
ble to other linguistic frameworks. The robustness
rules are easy to construct (with the precautions
from section 3.1 in mind), and all modern deep
parsers have a treebank to their disposal, from
which the generative model can be learned.

There are still points that can be improved on.
Currently, there is no way to determine which of
the robust rule applications are more promising
than others, and the decision to try one before the
other is solely based on the the probabilities of the
passive items, and not on the generative model.
This can be inefficient: for instance, all robustness
rules presented in this paper (both +V and +NV)
requires the main daughter to be a verb. It would
be straightforward to learn from a small treebank
that trying to unify the main daughter of a robust-
ness rules (which should have a verbal head) with
a specifier-head rule application does not have a
high chance on succeeding.

Another possible improvement is to differenti-
ate between different robustness rules. We pre-
sented a two-tier system here, but the framework
lends itself naturally to more layers with differing
degrees of specificity, creating a smoother scale
from specific/prioritised to robust/non-prioritised.

References
Brants, S., S. Dipper, S. Hansen, W. Lezius, and

G. Smith. 2002. The TIGER Treebank. In Pro-
ceedings of the Workshop on Treebanks and Lin-
guistic Theories, pages 24–41.

Cahill, A., J.T. Maxwell III, P. Meurer, C. Rohrer, and
V. Rosén. 2008. Speeding up LFG parsing using
c-structure pruning. In Proceedings of the Work-
shop on Grammar Engineering Across Frameworks,
pages 33–40. Association for Computational Lin-
guistics.

Callmeier, U. 2000. PET–a platform for experimen-
tation with efficient HPSG processing techniques.
Natural Language Engineering, 6(01):99–107.

Clark, S. and J.R. Curran. 2007. Wide-coverage ef-
ficient statistical parsing with CCG and log-linear
models. Computational Linguistics, 33(4):493–
552.

Cramer, B. and Y. Zhang. 2009. Construction of
a German HPSG grammar from a detailed tree-
bank. In Proceedings of the GEAF workshop ACL-
IJCNLP 2009, pages 37–45.

Kiefer, B., H.U. Krieger, J. Carroll, and R. Malouf.
1999. A bag of useful techniques for efficient and
robust parsing. In Proceedings of the 37th annual
meeting of the Association for Computational Lin-
guistics on Computational Linguistics, pages 473–
480. Association for Computational Linguistics.

Matsuzaki, T., Y. Miyao, and J. Tsujii. 2007. Ef-
ficient HPSG parsing with supertagging and CFG-
filtering. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI
2007), pages 1671–1676, Hyderabad, India.

Ninomiya, T., Y. Tsuruoka, Y. Miyao, and J. Tsujii.
2005. Efficacy of beam thresholding, unification
filtering and hybrid parsing in probabilistic HPSG
parsing. In Proceedings of the Ninth International
Workshop on Parsing Technology, pages 103–114.
Association for Computational Linguistics.

Oepen, S. and J. Carroll. 2000. Ambiguity packing in
constraint-based parsing: practical results. In Pro-
ceedings of the first conference on North American
chapter of the Association for Computational Lin-
guistics, pages 162–169. Morgan Kaufmann Pub-
lishers Inc. San Francisco, CA, USA.

Riezler, S., T.H. King, R.M. Kaplan, R. Crouch, J.T.
Maxwell III, and M. Johnson. 2001. Parsing
the Wall Street Journal using a Lexical-Functional
Grammar and discriminative estimation techniques.
In Proceedings of the 40th Annual Meeting on Asso-
ciation for Computational Linguistics, pages 271–
278.

Tomabechi, H. 1991. Quasi-destructive graph unifi-
cation. In Proceedings of the 29th annual meet-
ing on Association for Computational Linguistics,
pages 315–322. Association for Computational Lin-
guistics.

230



Toutanova, K., C.D. Manning, S. Shieber,
D. Flickinger, and S. Oepen. 2002. Parse
disambiguation for a rich HPSG grammar. In
Proceedings of the First Workshop on Treebanks
and Linguistic Theories, pages 253–263.

Van Noord, G. 1997. An efficient implementation of
the head-corner parser. Computational Linguistics,
23(3):425–456.

van Noord, G. 2009. Learning efficient parsing. In
Proceedings of the 12th Conference of the European
Chapter of the ACL (EACL 2009), pages 817–825,
Athens, Greece, March. Association for Computa-
tional Linguistics.

Zhang, Y., V. Kordoni, and E. Fitzgerald. 2007a. Par-
tial parse selection for robust deep processing. In
Proceedings of ACL 2007 Workshop on Deep Lin-
guistic Processing, pages 128–135, Prague, Czech.

Zhang, Y., S. Oepen, and J. Carroll. 2007b. Effi-
ciency in Unification-Based N-Best Parsing. In Pro-
ceedings of the Tenth International Conference on
Parsing Technologies, pages 48–59. Association for
Computational Linguistics.

231


