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Abstract 

Since 1995, a few statistical parsing 
algorithms have demonstrated a 
breakthrough in parsing accuracy, as 
measured against the UPenn TREEBANK 
as a gold standard. In this paper we report 
adapting a lexicalized, probabilistic 
context-free parser to information 
extraction and evaluate this new technique 
on MUC-7 template elements and template 
relations. 

1 Introduction 

Since 1995, a few statistical parsing 
algorithms (Magerman, 1995; Collins, 1996 
and 1997; Charniak, 1997; Rathnaparki, 1997) 
demonstrated a breakthrough in parsing 
accuracy, as measured against the University 
of Pennsylvania TREEBANK as a gold 
standard. Yet, relatively few have embedded 
one of these algorithms in a task. Chiba, 
(1999) was able to use such a parsing 
algorithm to reduce perplexity with the long 
term goal of improved speech recognition. 

In this paper, we report adapting a lexicalized, 
probabilistic context-free parser with head 
rules (LPCFG-HR) to information extraction. 
The technique was benchmarked in the 
Seventh Message Understanding Conference 
(MUC-7) in 1998. 

Several technical challenges confronted us and 
were solved: 

• How could the limited semantic 
interpretation required in information 
extraction be integrated into the statistical 
learning algorithm? We were able to integrate 
both syntactic and semantic information into 

the parsing process, thus avoiding potential 
errors of syntax first followed by semantics. 

• Would TREEBANKing of the variety of 
news sources in MUC-7 be required? Or 
could the University of Pennsylvania's 
TREEBANK on Wall Street Journal 
adequately train the algorithm for New York 
Times newswire, which includes dozens of 
newspapers? Manually creating source- 
specific training data for syntax was not 
required. Instead, our parsing algorithm, 
trained on the UPenn TREEBANK, was run 
on the New York Times source to create 
unsupervised syntactic training which was 
constrained to be consistent with semantic 
annotation. 

* Would semantic annotation require 
computational linguists? We were able to 
specify relatively simple guidelines that 
students with no training in computational 
linguistics could annotate. 

2 Information Extraction Tasks 

We evaluated the new approach to information 
extraction on two of the tasks of the Seventh 
Message Understanding Conference (MUC-7) 
and reported in (Marsh, 1998). The Template 
Element (TE) task identifies organizations, 
persons, locations, and some artifacts (rocket 
and airplane-related artifacts). For each 
organization in an article, one must identify all 
of its names as used in the article, its type 
(corporation, government, or other), and any 
significant description of it. For each person, 
one must find all of the person's names within 
the document, his/her type (civilian or 
military), and any significant descriptions 
(e.g., titles). For each location, one must also 
give its type (city, province, county, body of 
water, etc.). For the following example, the 
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template element i n  Figure I was to be 
generated: "...according to the report by 
Edwin Dorn, under secretary of defense for 
personnel and readiness . . . .  Dorn's conclusion 
that Washington..." 

<ENTITY-9601020516-13> := 
ENT_NAME: "Edwin Dorn" 

"Dorn" 
ENT_TYPE: PERSON 
ENT_DESCRIPTOR: "under secretary of  

defense for personnel and readiness" 
ENT_CATEGORY: PER_CIV 

Figure 1: An example of the information to be 
extracted for TE. 

The Template Relations (TR) task involves 
identifying instances of three relations in the 
text: 

• the products made by each company 

• the employees of each organization, 

• the (headquarters) location of each 
organization. 

TR builds on TE in that TR reports binary 
relations between elements of TE. For the 
following example, the template relation in 
Figure 2 was to be generated: "Donald M. 
Goldstein, a historian at the University of 
Pittsburgh who helped write..." 

<EMPLOYEE_OF-9601020516-5> := 
PERSON: <ENTITY-9601020516-18> 

ORGANIZATION: <ENTITY- 
9601020516-9> 

<ENTITY-9601020516-9> := 
ENT_NAME: "University of Pittsburgh" 
ENT_TYPE: ORGANIZATION 
ENT_CATEGORY: ORG_CO 

<ENTITY-9601020516-18> := 
ENT_NAME: "Donald M. Goldstein" 
ENT_TYPE: PERSON 
ENT_DESCRIPTOR: "a historian at the 
University of Pittsburgh" 

Figure 2: An example of information to be 
extracted for TR 

3 Integrated Sentential Processing 

Almost all approaches to information 
extraction - even at the sentence level - are 
based on the divide-and-conquer strategy of 
reducing a complex problem to a set of simpler 
ones. Currently, the prevailing architecture for 
dividing sentential processing is a four-stage 
pipeline consisting of: 

1. part-of-speech tagging 

2. name finding 

3. syntactic analysis, often limited to noun 
and verb group chunking 

4. semantic interpretation, usually based on 
pattern matching 

Since we were interested in exploiting recent 
advances in parsing, replacing the syntactic 
analysis stage of the standard pipeline with a 
modem statistical parser was an obvious 
possibility. However, pipelined architectures 
suffer from a serious disadvantage: errors 
accumulate as they propagate through the 
pipeline. For example, an error made during 
part-of-speech-tagging may cause a future 
error in syntactic analysis, which may in turn 
cause a semantic interpretation failure. There 
is no opportunity for a later stage, such as 
parsing, to influence or correct an earlier stage 
such as part-of-speech tagging. 

An integrated model can limit the propagation 
of errors by making all decisions jointly. For 
this reason, we focused on designing an 
integrated model in which tagging, name- 
finding, parsing, and semantic interpretation 
decisions all have the opportunity to mutually 
influence each other. 

A second consideration influenced our 
decision toward an integrated model. We were 
already using a generative statistical model for 
part-of-speech tagging (Weischedel et al. 

1993), and more recently, had begun using a 
generative statistical model for name finding 
(Bikel et  al. 1997). Finally, our newly 
constructed parser, like that of (Collins 1997), 
was based on a generative statistical model. 
Thus, each component of what would be the 
first three stages of our pipeline was based on 
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the same general class of statistical model. 
Although each model differed in its detailed 
probability structure, we believed that the 
essential elements of all three models could be 
generalized in a single probability model. 

If the single generalized model could then be 
extended to semantic anal);sis, all necessary 
sentence level processing would be contained 
in that model. Because generative statistical 
models had already proven successful for each 
of the first three stages, we were optimistic 
that some of their properties - especially their 
ability to learn from large amounts of data, and 
their robustness when presented with 
unexpected inputs - would also benefit 
semantic analysis. 

4 Representing Syntax and Semantics 
Jointly 

Our integrated model represents syntax and 
semantics jointly using augmented parse trees. 
In these trees, the standard TREEBANK 
structures are augmented to convey semantic 
information, that is, entities and relations. An 
example of an augmented parse tree is shown 
in Figure 3. The five key facts in this example 
are: 

• "Nance" is the name of  a person. 

• "A paid consultant to ABC News" 
describes a person. 

t "ABC News" is the name of an 
organization. 

• The person described as "a paid consultant 
to ABC News" is employed by ABC News. 

• The person named "Nance" and the person 
described as "a paid consultant to ABC News" 
are the same person. 

Here, each "reportable" name or description is 
identified by a "-r" suffix attached to its 
semantic label. For example, "per-r" identifies 
"Nance" as a named person, and "per-desc-r" 
identifies "a paid consultant to ABC News" as 
a person description. Other labels indicate 
relations among entities. For example, the co- 

reference relation between "Nance" and "a 
paid consultant to ABC News" is indicated by 
"per-desc-of." In this case, because the 
argument does not connect directly to the 
relation, the intervening nodes are labeled with 
semantics "-ptr" to indicate the connection. 
Further details are discussed in the section 
Tree Augmentation. 

5 Creating the Training Data 

To train our integrated model, we required a 
large corpus of augmented parse trees. Since it 
was known that the MUC-7 evaluation data 
would be drawn from a variety of newswire 
sources, and that the articles would focus on 
rocket launches, it was important that our 
training corpus be drawn from similar sources 
and that it cover similar events. Thus, we did 
not consider simply adding semantic labels to 
the existing Penn TREEBANK, which is 
drawn from a single source - the Wall Street 
Journal - and is impoverished in articles about 
rocket launches. 

Instead, we applied an information retrieval 
system to select a large number of articles 
from the desired sources, yielding a corpus 
rich in the desired types of events. The 
retrieved articles would then be annotated with 
augmented tree structures to serve as a training 
corpus. 

Initially, we tried to annotate the training 
corpus by hand marking, for each sentence, the 
entire augmented tree. It soon became 
painfully obvious that this task could not be 
performed in the available time. Our 
annotation staff found syntactic analysis 
particularly complex and slow going. By 
necessity, we adopted the strategy of hand 
marking only the semantics. 

Figure 4 shows an example of the semantic 
annotation, which was the only type of manual 
annotation we performed. 

To produce a corpus of augmented parse trees, 
we used the following multi-step training 
procedure which exploited the Penn 
TREEBANK 
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S 

per/np vp 

per-r/np 

I 
per/nnp 

I 
Nance , who is also a paid consultant to 

/ ~~-~1~p \ 
/ / /  \ 

/ / I / o r g ~  \ 

, wp vbz rb det vbn per-desc/nn to org'/nnporg/nnp , vbd 

I I I I I I I I I I I I 
A B e  News , said ... 

Figure 3: An example of an augmented parse tree. 

1. The model (see Section 7) was first trained 
on purely syntactic parse trees from the 
TREEBANK, producing a model capable 
of broad-coverage syntactic parsing. 

parses that were consistent with the 
semantic annotation. A parse was 
considered consistent if no syntactic 
constituents crossed an annotated entity or 
description boundary. 

2. Next, for each sentence in the semantically 
annotated corpus: 

a. The model was applied to parse the 
sentence, constrained to produce only 

b. The resulting parse tree was then 
augmented to reflect semantic structure in 
addition to syntactic structure. 

/ 
F.°rso°l 

Nance 

coreference ~ employee  .ation  
person-descriptor -. 

Iorganiza t ion  1 

, who is also a paid consultant to ABC News said ... 

Figure 4: An example of semantic annotation. 

229 



Applying this procedure yielded a new version 
of the semantically annotated corpus, now 
annotated with complete augmented trees like 
that in Figure 3. 

6 Tree Augmentation 

In this section, we describe the algorithm that 
was used to automatically produce augmented 
trees, starting with a) human-generated 
semantic annotations and b) machine- 
generated syntactic parse trees. For each 
sentence, combining these two sources 
involved five steps. These steps are given 
below: 

Tree Augmentation Algorithm 

. Nodes are inserted into the parse tree to 
distinguish names and descriptors that are 
not bracketed in the parse. For example, 
the parser produces a single noun phrase 
with no internal structure for "Lt. Cmdr. 
David Edwin Lewis". Additional nodes 
must be inserted to distinguish the 
description, "Lt. Cmdr.," and the name, 
"David Edwin Lewis." 

. Semantic labels are attached to all nodes 
that correspond to names or descriptors. 
These labels reflect the entity type, such as 
person, organization, or location, as well 
as whether the node is a proper name or a 
descriptor. 

. For relations between entities, where one 
entity is not a syntactic modifier of the 
other, the lowermost parse node that spans 
both entities is identified. A semantic tag 
is then added to that node denoting the 
relationship. For example, in the sentence 
"Mary Fackler Schiavo is the inspector 
general of the U.S. Department of 
Transportation," a co-reference semantic 
label is added to the S node spanning the 
name, "Mary Fackler Schiavo," and the 
descriptor, "the inspector general of the 
U.S. Department of Transportation." 

. Nodes are inserted into the parse tree to 
distinguish the arguments to each relation. 
In cases where there is a relation between 
two entities, and one of the entities is a 

syntactic modifier of the other, the inserted 
node serves to indicate the relation as well 
as the argument. For example, in the 
phrase "Lt. Cmdr. David Edwin Lewis," a 
node is inserted to indicate that "Lt. 
Cmdr." is a descriptor for "David Edwin 
Lewis." 

. Whenever a relation involves an entity that 
is not a direct descendant of that relation 
in the parse tree, semantic pointer labels 
are attached to all of the intermediate 
nodes. These labels serve to form a 
continuous chain between the relation and 
its argument. 

7 Model Structure 

In our statistical model, trees are generated 
according to a process similar to that described 
in (Collins 1996, 1997). The detailed 
probability structure differs, however, in that it 
was designed to jointly perform part-of-speech 
tagging, name finding, syntactic parsing, and 
relation finding in a single process. 

For each constituent, the head is generated 
first, followed by the modifiers, which are 
generated from the head outward. Head 
words, along with their part-of-speech tags and 
features, are generated for each modifier as 
soon as the modifier is created. Word features 
are introduced primarily to help with unknown 
words, as in (Weischedel et al. 1993). 

We illustrate the generation process by 
walking through a few of the steps of the parse 
shown in Figure 3. At each step in the 
process, a choice is made from a statistical 
distribution, with the probability of each 
possible selection dependent on particular 
features of previously generated elements. We 
pick up the derivation just after the topmost S 
and its head word, said, have been produced. 
The next steps are to generate in order: 

1. A head constituent for the S, in this case a 
VP. 

2. Pre-modifier constituents for the S. In this 
case, there is only one: a PER/NP. 

3. A head part-of-speech tag for the PER/NP, 
in this case PER/NNP. 
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4. A head word for the PER/NP, in this case 
nance. 

5. Word features for the head word of the 
PER/NP, in this case capitalized. 

6. A head constituent for the PER/NP, in this 
case a PER-R/NP. 

7. Pre-modifier constituents for the PER/NP. 
In this case, there are none. 

. Post-modifier constituents for the 
PER/NP. First a comma, then an SBAR 
structure, and then a second comma are 
each generated in turn. 

This generation process is continued until the 
entire tree has been produced. 

We now briefly summarize the probability 
structure of the model. The categories for 
head constituents, ch, are predicted based 
solely on the category of the parent node, cp: 

e(c h Icp), e.g. P(vpls ) 

Modifier constituent categories, Cm, are 
predicted based on their parent node, cp, the 
head constituent of their parent node, Chp, the 
previously generated modifier, Cm-1, and the 
head word of their parent, wp. Separate 
probabilities are maintained for left (pre) and 
right (post) modifiers: 

PL (Cm I Cp,Chp,Cm_l,Wp), e.g. 
PL ( per I np I s, vp, null, said) 

PR(c~ I Ce,Ch~,Cm-l, Wp), e.g. 
PR(null [ s, vp, null, said) 

Part-of-speech tags, tin, for modifiers are 
predicted based on the modifier, Cm, the part- 
of-speech tag of the head word, th, and the 
head word itself, wh: 

P(t m ICm,th,wh), e.g. 
P(per / nnp [ per /np, vbd, said) 

Head words, win, for modifiers are predicted 
based on the modifier, cm, the part-of-speech 
tag of the modifier word , t,,, the part-of- 
speech tag of the head word,  th, and the head 
word itself, Wh: 

P(W m ICm, tmth ,Wh) ,  e.g. 

P(nance I per / np, per / nnp, vbd, said) 

Finally, word features, fro, for modifiers are 
predicted based on the modifier, cm, the part- 
of-speech tag of the modifier word , tin, the 
part-of-speech tag of the head word , th, the 
head word itself, Wh, and whether or not the 
modifier head word, w,,, is known or unknown. 

P(fm [Cm,tm,th,Wh,known(Wm)), e.g. 
P( cap I per I np, per / nnp, vbd, said, true) 

The probability of a complete tree is the 
product of the probabilities of generating each 
element in the tree. If we generalize the tree 
components (constituent labels, words, tags, 
etc.) and treat them all as simply elements, e, 
and treat all the conditioning factors as the 
history, h, we can write: 

P(tree) = H e(e I h) 
e~tree 

8 Training the Model  

Maximum likelihood estimates for the model 
probabilities can be obtained by observing 
frequencies in the training corpus. However, 
because these estimates are too sparse to be 
relied upon, we use interpolated estimates 
consisting of mixtures of successively lower- 
order estimates (as in Placeway et al. 1993). 

For modifier constituents, 
components are: 
P'(cm I cp, chp, Cm_ l , w p) = 

21 P(c,, ICp,Chp,C,,_I,W,) 

+22 P(cm I%,chp,Cm_,) 

the mixture 

For part-of-speech tags, 
components are: 
P'(t m ICm,th,Wh)=21 P(t m Icm,wh) 

+'~2 e(tm I cm, th) 
+~3 P(t,, I C~,) 

the mixture 

For head words, the mixture components are: 
P'(w m I Cm,tm,th, wh) = JL 1 P(w m I Cm,tm, Wh) 

+22 P(wm Icm,tm,th) 

+23 P(w m I Cm,t,,) 

+~4 P(w,  It,,) 

Finally, for word features, the mixture 
components are: 
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P'(f,, [c,,,t~,t h, w h, known(w,,)) = 
21 P(f,, )c,,,t,,,wh,known(w,,)) 

+)[2 e(f . ,  [c~,t,,,th,kn°wn(w,,)) 
+A3 e(L ,  [c,,,t ,,known(w,,)) 

+As P(fm [t,,,known(w,,)) 

9 Searching the Model 

Given a sentence to be analyzed, the search 
program must find the most likely semantic 
and syntactic interpretation. More precisely, it 
must find the most likely augmented parse 
tree. Although mathematically the model 
predicts tree elements in a top-down fashion, 
we search the space bottom-up using a chart- 
based search. The search is kept tractable 
through a combination of CKY-style dynamic 
programming and pruning of low probability 
elements. 

9.1 Dynamic Programming 

Whenever two or more constituents are 
equivalent relative to all possible later parsing 
decisions, we apply dynamic programming, 
keeping only the most likely constituent in the 
chart. Two constituents are considered 
equivalent if: 

1. They have identical category labels. 

2. Their head constituents have identical 
labels. 

3. They have the same head word. 

4. Their leftmost modifiers have identical 
labels. 

. Their rightmost modifiers have identical 
labels. 

9.2 Prun ing  

Given multiple constituents that cover 
identical spans in the chart, only those 
constituents with probabilities within a 

threshold of the highest scoring constituent are 
maintained; all others are pruned. For 
purposes of pruning, and only for purposes of 
pruning, the prior probability of each 
constituent category is multiplied by the 
generative probability of that constituent 
(Goodman, 1997). We can think of this prior 
probability as an estimate of the probability of 
generating a subtree with the constituent 
category, starting at the topmost node. Thus, 
the scores used in pruning can be considered 
as the product of: 

. The probability of generating a constituent 
of the specified category, starting at the 
topmost node. 

. The probability of generating the structure 
beneath that constituent, having already 
generated a constituent of that category. 

Given a new sentence, the outcome of this 
search process is a tree structure that encodes 
both the syntactic and semantic structure of the 
sentence. The semantics - that is, the entities 
and relations - can then be directly extracted 
from these sentential trees. 

10 Experimental Results 

Our system for MUC-7 consisted of the 
sentential model described in this paper, 
coupled with a simple probability model for 
cross-sentence merging. The evaluation 
results are summarized in Table 1. 

In both Template Entity (TE) and Template 
Relation (TR), our system finished in second 
place among all entrants. Nearly all of the 
work was done by the sentential model; 
disabling the cross-sentence model entirely 
reduced our overall F-Score by only 2 points. 

Task Recall Precision 
Entities (TE) 83% 84% 
Relations (TR) 64% 81% 

Table 1:MUC-7 scores. 

F-Score 
83.49% 
71.23% 
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Task Score 
Part-of-Speech Tagging 95.99 (% correct)  
Parsing (sentences < 40 words) 85.06 (F-Score) 
Name Finding 92.28 (F-Score) 

Table 2: Component task performance. 

While our focus throughout the project was on 
TE and TR, we became curious about how 
well the model did at part-of-speech tagging, 
syntactic parsing, and at name finding. We 
evaluated part-of-speech tagging and parsing 
accuracy on the Wall Street Journal using a 
now standard procedure (see Collins 97), and 
evaluated name finding accuracy on the MUC- 
7 named entity test. The results are 
summarized in Table 2. 

While performance did not quite match the 
best previously reported results for any of 
these three tasks, we were pleased to observe 
that the scores were at or near state-of-the-art 
levels for all cases. 

11 Conclusions 

We have demonstrated, at least for one 
problem, that a lexicalized, probabilistic 
context-free parser with head rules (LPCFG- 
HR) can be used effectively for information 
extraction. A single model proved capable of 
performing all necessary sentential processing, 
both syntactic and semantic. We were able to 
use the Penn TREEBANK to estimate the 
syntactic parameters; no additional syntactic 
training was required. The semantic training 
corpus was produced by students according to 
a simple set of guidelines. This simple 
semantic annotation was the only source of 
task knowledge used to configure the model. 
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