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Abstract

We introduce the methodology of explicit
model construction to bridge linguistic descrip-
tions and scene perception and demonstrate
that in Visual Question-Answering (VQA) us-
ing MC4VQA (Model Construction for Vi-
sual Question-Answering), a method developed
by us. Given a question about a scene, our
MC4VQA first recognizes objects utilizing pre-
trained deep learning systems. Then, it con-
structs an explicit 3-D layout by repeatedly re-
ducing the difference between the input scene
image and the image rendered from the cur-
rent 3-D spatial environment. This novel “itera-
tive rendering” process endows MC4VQA the
capability of acquiring spatial attributes with-
out training data. MC4VQA outperforms NS-
VQA (the SOTA system) by reaching 99.94%
accuracy on the benchmark CLEVR datasets,
and is more robust than NS-VQA on new test-
ing datasets. With newly created testing data,
NS-VQA’s performance dropped to 97.60%,
while MC4VQA still kept the 99.0% accu-
racy. This work sets a new SOTA performance
of VQA on the benchmark CLEVR datasets,
and shapes a new method that may solve the
out-of-distribution problem. The source code
and data sets are available for public access
https://github.com/writzx/mc4vqa/.

1 Introduction

The success of LLMs is witnessed by
its capability of human-like question-
answering (Biever, 2023), but, they remain
as black-box systems, data hungry, and do
not work well for out-of-distribution data in
real application (Goyal and Bengio, 2022).
Spatial semantics bridges spatial descriptions
and visual perception and is the first semantics
that human babies acquire. It is used as a
reference for the understanding of other se-
mantics (Regier, 1997; Bellmund et al., 2018).
It plays a fundamental role in computational
linguistics and cognitive modelling (Tversky,

2019). Visual question answering (VQA) is
a challenging task that involves answering
questions about an image in natural language
(Agrawal et al., 2016; Wu et al., 2016). For
example, given an image of a dice and the
question "What is the shape of the object?", a
VQA system should be able to generate the
answer “cube". VQA is a challenging task
because it requires the model to understand
both the visual and spatial content of the image
and the meaning of the question (Agrawal
et al., 2016; Zou and Xie, 2020). A VQA
system must be able to reason about spatial
relations, such as the distance between objects,
the relative positions of objects, and the
orientation of objects. The state-of-the-art
(SOTA) VQA system is Neural-Symbolic
VQA (NS-VQA) (Yi et al., 2019). NS-VQA
achieves a near-perfect accuracy of 99.8% on
the CLEVR dataset (Johnson et al., 2016),
which is a challenging dataset of images and
questions that test a VQA system’s ability to
reason about spatial relations.

NS-VQA combines deep representation learn-
ing for visual recognition and language under-
standing with symbolic program execution for
reasoning. NS-VQA generates executable pro-
grams as the meaning of the question, and apply
for the learned visual and spatial attributes to
produce the answer. NS-VQA learns spatial
attributes about an input image by supervised
deep learning. Therefore, it does not have an
explicit 3-D spatial layout of the input image.
This weakens the explainability and reliability,
makes the system data-hungry and performs
well only when training and testing data share
the same or very similar distribution (Goyal
and Bengio, 2022; Gigerenzer, 2022).

On the other hand, sufficient empirical experi-
ments in psychological research advocates the
model theory for spatial reasoning (Johnson-
Laird and Byrne, 1991; Knauff et al., 2003;
Goodwin and Johnson-Laird, 2005; Knauff,
2009, 2013), whose standard process is a se-
quence of model construction, model inspec-
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Figure 1: Overview of the MCIR process: (a) An input 2-D image; (i) Initializing a 3-D model of a scene with the
colors, shapes and materials of the objects detected in the 2-D input image; (b) Reconstruction of a 3-D spatial
layout of the input image; (ii) Perform perspective projection on the 3-D model to generate a 2-D image and realistic
2-D coordinates of the objects; (c) A projected 2-D image generated using the current 3-D spatial layout; (iii)
Compare the projected coordinates of the objects with the bounding boxes to calculate their distances from their
original 2D locations; (iv) Update the positions of the objects in 3-D layout to reduce the difference calculated in
(iii).

tion, and model variation (Johnson-Laird and
Byrne, 1991). The preferred mental model the-
ory argues that people construct a preferred
and simplified model in mind, in a determinis-
tic manner, while ignoring other possible mod-
els (Ragni and Knauff, 2013; Knauff, 2013) –
The construction of the first model shall not be
a stochastic process that produces one model
this time and another the next time (Ragni and
Knauff, 2013, p.563-564), the next model will
be revised following the principle of minimal
changes from the current one (Harman, 1986;
Gärdenfors, 1988; Gädenfors, 1990; Knauff
et al., 2013), and generated by a local trans-
formation of the current model.

Inspired from the model theory, here, we move
one step ahead of NS-VQA, by replacing its
supervised learning component of spatial at-
tribute with a 3-D spatial reconstruction com-
ponent, and developed the process of “Model
Construction by Iteration Render” (MCIR). As
illustrated in Figure 1, the MCIR process first
initialises a 3-D spatial layout for all recognised
objects, Figure 1(i), followed by the loop of
Render-and-Update, Figure 1(ii,iv). The Ren-
der operation projects a 3-D layout into a 2-D
image, Figure 1(c); the Update operation is car-
ried out to reduce the difference between the

original input image and the current rendered
image. The result of the Comparison operation
is always greater than or equal to zero.

We compare MC4VQA with NS-VQA in two
experiments. The first experiment is performed
using the original CLEVR dataset. MC4VQA
achieved an accuracy of 99.94%. This outper-
forms all state-of-the-art methods, including
NS-VQA. The aim of the second experiment
is to examine whether traditional supervised
learning endows neural-networks the ability to
acquire 3-D spatial attributes from 2D images.
We developed a new testing dataset, which con-
tains 4000 images, generated by the CLEVR
image generator from four different camera per-
spectives. Each scene is generated using a ran-
domly selected camera configuration. NS-VQA
had an overall accuracy of 98.39%. In con-
trast, our proposed method maintained another
near-perfect accuracy at 99.8%. The success of
MC4VQA not only demonstrates the power of
the method of model construction and inspec-
tion for the acquisition of spatial knowledge
(advocated in the psychological literature), but
also shows the limitation of supervised deep
learning – lacking the ability of generalisation
of training patterns (Goyal and Bengio, 2022).
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The contributions of MC4VQA are listed as
follows: (1) it is the first VQA system that ex-
plicitly reconstructs 3-D spatial layout to bridge
spatial linguistic descriptions and visual percep-
tion; (2) MC4VQA can be further developed
by integrating more features of mental model
theory in psychology, or used in psychological
experiments; (3) Source code and new datasets
are publicly accessible. The rest of the paper
is structured as follows: Section 2 reviews a
number of related works; Section 3 formalises
the task of VQA by explicitly re-constructing
3-D spatial layout; Section 4 presents the detail
of MC4VQA; Section 5 reports experiment re-
sults of MC4VQA, which grealy outperforms
the SOTA performance, and demonstrates the
power of the model construction method in new
testing data; Section 5 concludes the paper, and
lists a number of future research topics.

2 Related Work

A convergent opinion from linguistics, neu-
roscience, and psychology is that the spatial
domain is the first domain that human babies
understand, and is the reference domain for
the understanding of other domains (Lakoff
and Johnson, 1980; Regier, 1997; Grady, 1997;
Tversky, 2019). The next generation of lan-
guage system shall be a brain- and AI-inspired
understanding system that explicitly represents
situations (McClelland et al., 2020). Our work
focuses on the NS-VQA model, and promises
a novel method to explicitly represent scene
images by constructing 3-D geometric spatial
models. NS-VQA uses an older object de-
tection model based on Detectron (Girshick
et al., 2018) and Mask R-CNN (He et al., 2018).
Since then, newer models with improved ac-
curacy and speed have been released, such
as YOLO (Redmon et al., 2016; Jocher et al.,
2023), which produces impressive results and
can be used for real-time video processing.

YOLO YOLO (You Only Look Once) is
a powerful object detection model which is
known for its speed and accuracy (Redmon
et al., 2016). The current version of YOLO
(v8) (Jocher et al., 2023) is the state-of-the-
art object detection model that utilizes Cross
Stage Partial (CSP) (Wang et al., 2019) ar-
chitecture, which was introduced in YOLOv4
(Bochkovskiy et al., 2020). Our MC4VQA uses
YOLOv8 as its object detection model. YOLO
offers several pretrained models, of which we
chose “YOLOv8x-seg" which has great seg-
mentation accuracy.

Question Parsing and Execution Several
papers have used program search and neural
networks to recover programs from domain spe-
cific language (Neelakantan et al., 2016; Balog
et al., 2017), including semantic parsing meth-
ods (Berant et al., 2013; Liang et al., 2011)to
map sentences to logical forms from a knowl-
edge base. Prior knowledge of semantics of
the program and execution context is important
to correctly parse an arbitrary set of question
tokens following the semantics. So, the model
needs the learn based on a set of input questions
and answer pairs. NS-VQA’s question parser
follows the work done by (Andreas et al., 2016;
Rothe et al., 2017; Goldman et al., 2019). The
parser implementation uses a Bi-LSTM parser
to generate programs from sentences similar to
CLEVR-IEP (Johnson et al., 2017). The exe-
cution engine is slightly different from IEP, in
the sense that it uses symbolic reasoning based
on object positions generated by its attribute
network.

Neural-symbolic approach to VQA NS-
VQA stands for “Neural-symbolic Visual Ques-
tion Answering" (Yi et al., 2019). Traditional
neural-network approaches often do not have
competitive performance on challenging rea-
soning tasks on CLEVR dataset (Johnson et al.,
2016). In contrast, NS-VQA achieves a near-
perfect accuracy on the CLEVR dataset, by
learning a symbolic program from the question,
and executing the program on an implicit spa-
tial model learned by supervised deep learning,
ResNet34 (He et al., 2015). It remains unclear
whether NS-VQA’s ResNet34 really learns the
way to acquire 3D spatial relations from 2D im-
ages. The symbolic program may only match
similar pairwise relationships in the training
scene images. Furthermore, supervised mod-
els for generating 3D scene representations are
prone to bias due to the invariant camera con-
figuration used by the CLEVR training images.

3 Motivation of VQA through
Model Construction and Inspection

Ever since Tolman’s rats experiments (Tolman,
1948) in the 1940s, sufficient evidence has been
collected to show that animals and humans
can construct comprehensive spatial models
in mind of their environments through sensori-
motor interaction (Spelke and Lee, 2012) and
that this spatial model in mind structures our
language (Lakoff and Johnson, 1980; Tversky
and Lee, 1999; Tversky, 2019). This moti-
vates us to move one step ahead of NS-VQA
by replacing its supervised ResNet34 compo-
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nent with a novel component that explicitly
constructs 3D spatial layout, thus MC4VQA
(Model Construction for VQA). This allows
the symbolic program execution engine to more
accurately identify objects and their spatial rela-
tionships in the scene. As being unsupervised,
our method may improve the overall general-
ization of the scene construction, allowing to
function on unknown camera configurations.

4 Formalising the task

In this section, we define the task of VQA
through model construction and inspection.
The input of MC4VQA consists of an image I
and a question Q asking the content of this im-
age, whose content can be described as a set of
objects IO1 . . . IOn and a set of 2D locations
LOi of IOi , line 1 in Algorithm 1. The process
of model construction P will construct a 3D
spatial layout S for I . S consists of a set of 3D
objects Oi with their size and their 3D location
information.

Let S0 be an initial 3D layout, line 2 in Al-
gorithm 1, the construction process P will
update Si to Si+1, with the following proce-
dure: P will trigger an inspection function I
to take a photo of Si, so called “rendering”, let
I(Si) = I(i). Then, a function M will measure
the difference between I(i) and the original im-
age I. Finally, a function g will apply a set
of geometric operations on objects in Si. This
transforms Si into Si+1, so that a photo of Si+1

will be more similar to the original image, that
is, M(I(i+1), I) < M(I(i), I). The construc-
tion process will stop, if M(I(i+1), I) is less
than a predefined threshold value ε. The final
3D layout Sn will be inspected to answer the
question Q (Algorithm 1).

5 MC4VQA

MC4VQA has four components: an object
detector (YOLOv8), a 3D model constructor
(MCIR), a question parser (Bi-LSTM encoder),
and a program executor.

Object Detection The YOLOv8 object de-
tector is trained on the same 4000 CLEVR im-
ages used by NS-VQA. The input image is first
passed to the object detector to generate object
proposals. The object proposals are composed
of the predicted object masks and the object
bounding boxes, along with their class names.
Object proposals with a score of less than 0.9
are discarded. The predicted class names are
composed of the discrete attributes of the ob-
jects, e.g., the object size, colour, material, and

Algorithm 1: VQA by 3D model construc-
tion and inspection
Input: an image I;
Input: a question Q about the content of I;
Output: an answer A to Q;

1 recognise 3D objects O1 . . . On in I;
2 Initialise 3D spatial layout Sc by placing all

Oi at the same location;
3 I(c) ← I(Sc);
4 while I(c) not similar with I do
5 update 3D locations and postures of

objects Oi in Sc, to increase the
similarity to I; . reduce the value
M(Ic)−M(I)

6 I(c) ← I(Sc); . I(c) is a photo of Sc
7 A ← answer Q by inspecting 3D layout Sc;
8 return A

shape. These attributes are used to construct
the 3D scene and to answer the questions.

3D Model Construction The object pro-
posals generated by the object detector are
passed to MCIR, which processes the bounding
boxes of the objects to compute more realistic
box midpoints. The bounding boxes from the
object detector do not take into account occlu-
sion behind other objects, so it is important to
correct them before generating the 3D scene.

After the approximately realistic midpoints are
generated, they are passed to MCIR, which
generates the 3D spatial model. This model
is then passed to the question executor as the
scene representation of the input image.

Question Parsing and Program Execu-
tion The question parser and the program
executor used by MC4VQA are both directly
taken from the NS-VQA implementation with-
out any changes. The output format of MCIR
is compatible with the input format of the pro-
gram executor, so they integrate well with each
other. The reconstructed 3-D representation is
used to generate the answers.

6 Experiments

A series of experiments are conducted to com-
pare the methods of model construction and of
supervised learning for VQA.

Experiment I MC4VQA is implemented
by replacing NS-VQA’s supervised learning
model with a model of 3D scene construction
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YOLOv8

size color material shape
1 large green metal cube
2 large cyan rubber cylinder
3 small blue metal cylinder
4 small red rubber sphere
5 small gray metal sphere

xbmin
ybmin

xbmax ybmax

1 185.42 127.68 298.77 250.71
2 149.13 78.64 217.59 164.19
3 401.49 120.74 440.61 164.00
4 276.95 102.17 306.27 131.52
5 95.10 147.13 131.34 182.92

Render
Object

Update
Position

Compare
Distance

xS yS zS
1 1.80 −1.50 0.70
2 −1.15 −0.65 0.70
3 2.45 2.95 0.35
4 −0.30 1.90 0.35
5 −0.95 −2.45 0.35

How many spheres that are behind the

cube are small?

Program
Generation

Program Execution

(i) Answer: 2

Program

(a) input image

(b) object classes (properties)

(c) bounding boxes (d) image coordinates (px)

(e) question

(f) MCIR

(g) reconstructed 3d model(h) object positions

Figure 2: Overview of NS-VQA Extended with Iterative Rendering

to acquire spatial attributes, and share the same
object detection model and the same model of
question parsing and program execution.

We used three camera configurations to test
the performance of MC4VQA as follows: (1)
C1 was a random configuration to serve as a
baseline; (2) C2 was chosen to simulate the
camera direction that a human would likely
choose when looking at the CLEVR images;
(3) C3 was calculated based on the average of
the first ten camera directions specified in the
CLEVR scenes to represent a manually fine-
tuned camera configuration.

YOLO for object proposals We trained a
YOLOv8 object detector on the same 4000
CLEVR images. These are the same images
used to train the object proposal model of NS-
VQA in (Yi et al., 2019). Object proposals with
a score of less than 0.9 were discarded. A pre-
dicted class name consists of discrete attributes

of the object, such as the size, the colour, the
material, and the shape. These attributes are
used to construct the 3D scene and to answer
the questions using the program executor. The
training of the YOLOv8 model was run on re-
sized image size of 480x480 for 100 epochs
with a learning rate of 0.01.

Equipped with this YOLO model, NS-VQA (Yi
et al., 2019) improves its overall accuracy from
99.8% to 99.93%, as listed in Table 1.

VQA through 3-D Model Construction
MC4VQA uses YOLO object proposals to ini-
tialise a 3-D layout, then repeatedly optimizes
this layout by reducing the difference between
the objects in the input image and the objects
in the 3-D scene generated by the rendering
engine. Then, MC4VQA uses NS-VQA’s
question parser to generate programs and apply
them to the 3D layout to generate answers,
whose correctness is validated by the ground
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Methods Count Exist Compare
Number

Compare
Attribute

Query
Attribute Overall

Humans 86.7 96.6 86.5 95.0 96.0 92.6
MDETR (Kamath et al., 2021) 99.3 99.9 99.4 99.9 99.9 99.7
NMN (Andreas et al., 2017) 52.5 72.7 79.3 79.0 78.0 72.1
N2NMN (Hu et al., 2017) 68.5 85.7 84.9 90.0 88.7 83.7
IEP (Johnson et al., 2017) 92.7 97.1 98.7 98.1 98.9 96.9
TbD (Mascharka et al., 2018) 97.6 99.4 99.2 99.5 99.6 99.1
RN (Santoro et al., 2017) 90.1 93.6 97.8 97.1 97.9 95.5
FiLM (Perez et al., 2017) 94.5 93.8 99.2 99.2 99.0 97.6
NS-CL (Mao et al., 2019) 98.2 99.0 98.8 99.3 99.1 98.9
MAC (Hudson and Manning, 2018) 97.2 99.4 99.5 99.3 99.5 98.9
OCCAM (Wang et al., 2021) 98.1 99.8 99.0 99.9 99.9 99.4
NS-VQA (Yi et al., 2019) 99.7 99.9 99.9 99.8 99.8 99.8
NS-VQA (YOLOv8) 99.87 99.96 99.93 99.93 99.95 99.93
MC4VQA [C1] 99.89 99.97 99.94 99.91 99.92 99.92
MC4VQA [C2] 99.92 99.98 99.93 99.94 99.95 99.94
MC4VQA [C3] 99.92 99.97 99.93 99.97 99.94 99.94

Table 1: NS-VQA outforms state-of-the-art methods on the CLEVR dataset. With introduction of the YOLO model
the accuracy is improved. Integrating with iterative render further improves the accuracy to a near perfect 99.94%.
Our model depends on the camera configuration of the system. C1 is a random configuration to serve as a baseline.
C2 is chosen to simulate the camera direction that a human would likely choose when looking at the CLEVR images.
C3 is calculated based on the average of the first ten camera directions specified in the CLEVR scenes to represent a
manually fine-tuned camera configuration.

Methods Count Exist
Compare
Number

Compare
Attribute

Query
Attribute

Overall

NS-VQA 97.86 99.03 99.22 98.53 98.21 98.39
MC4VQA 99.52 99.85 99.97 99.90 99.88 99.80

Table 2: NS-VQA (YOLOv8) with attribute net performs slightly worse at 98.39% than MC4VQA (YOLOv8) with
MCIR, which still maintains near perfect accuracy at 99.80%

truth in the validation set. The performance is
measured in terms of the accuracy.

Results and Analysis Experiment results show
that MC4VQA reaches 99.94% overall accu-
racy on the benchmark CLEVR dataset without
training data. This outperforms the SOTA NS-
VQA (Yi et al., 2019) and the NS-VQAv8 (NS-
VQA with YOLO model). Experiments also
show that MC4VQA reaches the performance
of NS-VQAv8 in each evaluation task, at least
from one camera configuration. We conclude
that MC4VQA successfully acquired spatial at-
tributes by utilising the method of 3D model
construction without training data.

Experiment results show that MC4VQA
reaches 99.94% accuracy on the benchmark
CLEVR dataset, without training data. This
outperforms the SOTA NS-VQA (Yi et al.,
2019) and the NS-VQAv8 (NS-VQA with
YOLO model). Experiments also show that
MC4VQA reaches the performance of NS-
VQA at least from one camera configuration
for rendering. We conclude that by utilising the
method of 3D model construction, MC4VQA
successfully acquired spatial attributes without

training data.

Experiment II In Experiment I, the testing
and training data are from benchmark CLEVR
dataset, sharing the same distribution. The sec-
ond experiment compares the performances of
the well-trained NS-VQA and MC4VQA on
new test datasets.

Design of the experiment We generated 4000
CLEVER images with four different cam-
era configuration, and 40000 questions, and
fed them to the well-trained NS-VQA with
YOLOv8 and MC4VQA.

Experiment Results show that the overall per-
formance of NS-VQA drops from 99.93%
to 98.39% and that the overall performance
of MC4VQA slightly drops from 99.94% to
99.80%, Table 2. This suggests our method is
more robust than NS-VQA.

Error Analysis We examined cases when NS-
VQA made mistakes. In Figure 3, NS-VQA
fails to locate the small gray cube accurately,
resulting in an incorrect answer. MC4VQA
overcomes this limitation by using corrected
bounding boxes and a 3D spatial model to cor-
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Algorithm 2: The simple MCIR Algorithm
Input: object proposals from YOLO
Data: omax- total number of objects
Data: jmax- maximum number of iterations

1 oi ← 1; /* oi: current object index */

2 while oi ≤ omax do
3 j ← 1;
4 O ← objects[oi];
5 C ← box-midpoints[oi];
6 S ← initialize(O);
7 I ← project(S); /* I ∼ (xI , yI): 2-D

image coordinates of O (current) */

8 d← |C − I|; /* d: pixel distance */

9 up ← 1; /* up: previously used update

value */

10 while d > dthreshold do
11 ui ← up; /* ui: index of update

value */

12 while j ≤ jmax do
/* U: set of available update

values */

/* umax: number of update

values */

13 u← U [ui mod umax];
14 Sc ← S + u; /* Sc: candidate

scene coordinate */

15 Ic ← project(Sc); /* Ic:

candidate image coordinate */

16 dc ← |C − Ic|; /* dc: new pixel

distance */

17 if dc < d then
18 S ← Sc; I ← Ic; d← dc;
19 up ← ui;
20 break

21 ui ← ui + 1

22 oi ← oi + 1

rectly identify the cube’s location. NS-VQA
made similar mistakes when there are objects
very close to together each other. We hypothe-
size that the performance of NS-VQA drops if
the questions are about closely situated objects.
We report Experiment III as follows.

Experiment III We create a new testing
dataset, in which some objects are very close
to each other, and evaluate the performances of
NS-VQA and MC4VQA.

Design of the experiment Two sets of CLEVR
images were created, 1000 images for each, as
follows.

(a) An input image, where
two gray cubes are very
closely located.

(b) Bounding boxes created
by YOLO object detection
model.

(c) 2D spatial attribute used
by NS-VQA

(d) 3D spatial layout used by
MC4VQA

Figure 3: (a) Given an input image and the question
“what number of objects are behind the small brown
metallic thing and in front of the yellow metta object?”
(b) YOLO successfully identifies all objects with bound-
ing boxes. In (c) NS-VQA uses 2D YOLO bounding
boxes. In this case, the small gray cube is not calculated
as being in front of the yellow cylinder. (d) MC4VQA
used its constructed 3-D spatial layout, instead of 2D
YOLO bounding boxes, and correctly calculated the
small gray cube being in front of the yellow cylinder.

• In one set, there are two objects being
very close to each other; (minimum dis-
tance between two objects is 0.1 units, as
opposed to CLEVR default of 0.4 units)

• In another set, at least two objects are
close, and all objects are less spread out in
the scene. (maximum coordinates along
the axes: 2.0 units, as opposed to CLEVR
default of 3.0 units)

These two testing datasets were fed to NS-VQA
and MC4VQA.

Results an analysis The performance of NS-
VQA continued to decrease to below 98.0%.
The performance of MC4VQA decreased
slightly, and still reached 99.0% in both testing
datasets, as listed in Tables 3 and 4, respectively.

Limitations of MC4VQA Our MCIR pro-
cess optimises a 3D layout through reducing the
difference between a rendered image and the
input image. It does not have other spatial con-
straints, such as extended 3D objects cannot be
partially overlapped. This limitation will cause
MC4VQA to construct incorrect 3D layout. For
example, Figure 4 illustrates a new testing im-
age whose camera configuration is very near
to the objects. This causes the effect of plac-
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Methods Count Exist
Compare
Number

Compare
Attribute

Query
Attribute

Overall

NS-VQA 96.54 98.48 98.97 99.47 97.44 97.90
MC4VQA 98.70 100.00 97.94 100.00 99.43 99.30

Table 3: NS-VQA vs MC4VQA when the objects are closer to each other.

Methods Count Exist
Compare
Number

Compare
Attribute

Query
Attribute

Overall

NS-VQA 95.67 99.24 96.91 98.94 97.73 97.60
MC4VQA 98.70 100.00 98.97 99.47 98.58 99.00

Table 4: NS-VQA vs MC4VQA when the objects are close and less spread out.

Figure 4: When objects are very close to each other in a
3D layout, they may be partially overlapped, as we see
there is a yellowish black at the edge of the top surface
of the yellow cylinder behind it.

ing large 3D objects in a relative small place.
Without explicit spatial constraints, nearby 3D
objects can be partially overlapped.

Another limitation of the MCIR system is using
single camera configuration. Under certain situ-
ations, it might not be possible to figure out the
precise location of an object in the 3D layout.
For example, Figure 5(a) illustrates an image,
in which a purple object is behind a big yellow
cylinder and a green cuboid, only a very small
part can be seen. Although this small part is
sufficient to recognise what object class and
what size it is, figuring out its precise location
will be hard. Tentative solutions can be to set
the bounding box as left (or right) as possible,
Figure 5(a), or let the centre of the bounding
box and the seen part be coincided, Figure 5(b).
Each tentative solution can cause MC4VQA to
give incorrect answers.

7 Conclusions and outlooks

Understanding surrounding environment is a
fundamental ability for the survival of animals
and humans, e.g., to escape from dangerous
predators. It is a challenging research task in
NLU and AI, and has various downstream ap-
plications, e.g., autonomous driving, service

(a) Left-most or right-most
bounding-boxes can be used
as tentative solutions.

(b) An alternative tentative so-
lution is to put the object to
the centre of the bounding
box.

Figure 5: A purple object is occluded by two big objects,
whose location is hard to figure.

robots. VQA with the benchmark CLEVR
dataset is a micro-world to explore this field, in
which images are about layouts of synthesised
geometric objects. Supervised neural networks
to learn spatial attributes are very successful,
with two conditions: (1) it needs a huge amount
of training data; (2) the testing data shall have
the same distribution as the training data. Both
conditions are either expensive or unrealistic
for real applications. We replace the method of
supervised learning with the method of model
construction to free the acquisition of spatial
attributes from the imprisonment of data and
go beyond the paradigm of supervised learning.

Our experiment results show that our new
method is very promising – it does not need
training data for acquiring spatial regions and
achieves higher accuracy in answering ques-
tions about out-of-distribution scenes.

In this work, we implemented MCIR using a
simple object-level loop to optimize object loca-
tions and used NS-VQA’s question parser and
executor with the CLEVR validation questions.
In the future, we will adopt a dual-camera con-
figuration to figure out the locations of 3D ob-
jects precisely and will use the constructed 3D
layout construction as the spatial semantics to
interpret linguistic descriptions.
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