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Abstract
The proportion of responses to a question and
its options, known as the response distribu-
tion, enables detailed analysis of human so-
ciety. Recent studies highlight the use of Large
Language Models (LLMs) for predicting re-
sponse distributions as a cost-effective survey
method. However, the reliability of these pre-
dictions remains unclear. LLMs often gener-
ate answers by blindly following instructions
rather than applying rational reasoning based
on pretraining-acquired knowledge. This study
investigates whether LLMs can rationally esti-
mate distributions when presented with expla-
nations of “artificially generated distributions”
that are against commonsense. Specifically, we
assess whether LLMs recognize counterintu-
itive explanations and adjust their predictions or
simply follow these inconsistent explanations.
Results indicate that smaller or less human-
optimized LLMs tend to follow explanations
uncritically, while larger or more optimized
models are better at resisting counterintuitive
explanations by leveraging their pretraining-
acquired knowledge. These findings shed light
on factors influencing distribution prediction
performance in LLMs and are crucial for de-
veloping reliable distribution predictions using
language models.

1 Introduction

The proportion of responses to a question and its
options, known as the response distribution, pro-
vides valuable insights into human society beyond
individual responses. Response distributions allow
detailed analysis of relative differences between op-
tions (see Figure 1). Traditionally, they have been
collected through labor-intensive and costly meth-
ods like surveys and interviews. Recent advances
in Large Language Models (LLMs), however, offer
new approaches for estimating response tendencies
from textual data.

LLMs have demonstrated the ability to partially
replicate human collective tendencies by analyzing

What Comes to Mind 
for Holidays?

Regarding the 
President’s Policy?

Do You Want This 
Product?

Agree Disagree Drama Movie Anime

Want Neutral

Figure 1: Example of response distribution. Analyzing
both the ratios of each choice and the number of minor-
ity responses yields valuable insights.

output probabilities or aggregating multiple out-
puts (Santurkar et al., 2023; Paruchuri et al., 2024;
Hayashi et al., 2025). Providing appropriate input
information has further improved the accuracy of
these predictions (Durmus et al., 2024; Santurkar
et al., 2023; Meister et al., 2024). These methods
show promise as cost-effective and scalable alter-
natives to traditional techniques.

However, LLMs are unlikely to acquire sys-
tematic ratio-related knowledge during pretraining,
e.g., the expected proportions of responses to a
question such as “What food do you associate with
Christmas?”1. This raises concerns about whether
their ratio predictions reflect meaningful under-
standing or mere prompt-following (Kavumba
et al., 2022). Additionally, measuring true response
distributions is challenging (Baan et al., 2022),
complicating validation and emphasizing the need
for objective evaluation standards. If LLM predic-
tions lack rationality or reproducibility, their use in
social decision-making could pose risks.

In this study, we propose a framework to eval-
uate the reliability of LLMs’ distribution predic-
tion. Specifically, we introduce counterintuitive
pseudo-distributions by altering existing survey

1This questionnaire is taken from Yahoo! News Polls:
https://news.yahoo.co.jp/polls/48833.
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data and examine whether LLMs adjust their pre-
dictions or simply follow inconsistent explanations.
Our findings indicate that smaller or less human-
optimized models tend to follow inconsistent expla-
nations uncritically, whereas larger or preference-
optimized models are better at resisting counter-
intuitive distributions by leveraging pretraining-
acquired knowledge. These results provide insights
into factors influencing distribution prediction per-
formance and highlight the variability in trustwor-
thiness across different models, contributing to the
development of more reliable distribution predic-
tions using LLMs.

2 Background and Related Work

2.1 Predicting Distributions by LLMs

Previous studies have explored LLMs’ distribution
prediction performance in contexts like annotation
disagreements, survey data across countries, real-
world probabilities, and preference predictions (Nie
et al., 2020; Santurkar et al., 2023; Ohagi et al.,
2024; Paruchuri et al., 2024; Meister et al., 2024).
Common approaches involve using output proba-
bilities for response options or aggregating multi-
ple outputs to approximate distributions (Santurkar
et al., 2023; Jiang et al., 2024; Zhou et al., 2022).
Some studies report better reasoning performance
when LLMs directly generate distributions in tex-
tual form (Meister et al., 2024; Suzuki et al., 2024).

While these studies confirm that LLMs exhibit
some distribution prediction capabilities, the un-
derlying rationale behind specific ratio predictions
and the extent to which pretraining or preference
learning influences these predictions remain un-
clear. Moreover, several studies have found that
simple uniform distribution baselines, such as as-
signing equal ratios to all options, can sometimes
outperform LLM-based predictions (Meister et al.,
2024; Suzuki et al., 2024). This raises concerns
about whether LLMs genuinely possess predictive
capabilities or merely capture broad tendencies
while generating numerically arbitrary estimates.
Some studies suggest that LLMs can at least esti-
mate majority opinions, even for questions where
a definitive correct answer does not exist (Talmor
et al., 2019; Nie et al., 2020; Sakai et al., 2024b).

2.2 Reasoning Abilities in LLMs

Many studies evaluate the reasoning capabilities of
LLMs (Wei et al., 2022; Chowdhery et al., 2022),
but numerous tasks can be solved by relying on

The reason behind 
high proportion is…

Phase1 Phase2

Ranking

Magnitude

Explanation 
Generation

A is the 1st  highest…

A is Very high…

Actual Reversed
Actual Reversed

Pseudo-Distribution

Counterintuitive!

Distribution
Prediction

Figure 2: Overview of the proposed method. The actual
distribution and a distribution with altered proportions
are prepared, and explanations are generated for each.
The score difference when estimating the distribution
based on these explanations can be interpreted as the
extent to which LLMs adjust based on commonsense
knowledge.

word relationships or salient terms from the pre-
training corpus, complicating the assessment of
intrinsic reasoning abilities (Manning, 2006; Hos-
seini et al., 2021; Kung and Peng, 2023; Han et al.,
2024). To overcome this, methods like reversing
logical relationships or substituting nouns with fic-
titious names have been proposed to test reasoning
independently of memorized knowledge or sym-
bolic manipulation (Wu et al., 2024; Sakai et al.,
2024a). However, in distribution prediction, re-
sponse ratio interrelations are crucial (Suzuki et al.,
2024), and simple substitutions risk altering the
problem’s intent. For example, while “I don’t know”
and “No response” appear similar, their motiva-
tions differ: “I don’t know” indicates a lack of
understanding, whereas “No response” signifies an
intentional decision not to answer. Conflating them
may result in misinterpreting the distributions.

3 Proposed Method

Our evaluation involves inputting explanations of
the actual distribution along with the question, ei-
ther to support or potentially distract the prediction,
in order to better capture the model’s true predic-
tion ability. As shown in Figure 2, we design a two-
phase experimental framework to evaluate whether
LLMs can make rational distribution predictions
based on knowledge acquired during pretraining.

Phase 1: Do LLMs Predict Distributions Based
on Provided Explanations? This phase inves-
tigates whether LLMs can accurately predict re-
sponse ratios from qualitative explanations. Fig-
ure 3 provides an overview of the explanation gen-
eration process. First, LLMs generate explanatory
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Usage Example

Question Which team do you think will win the World Series, the Dodgers or the Yankees?
Options Dodgers, Yankees, Not sure

Actual Distribution {“Dodgers”: 0.81, “Yankees”: 0.14, “Not sure”: 0.05}
Reversed Distribution {“Dodgers”: 0.05, “Yankees”: 0.14, “Not sure”: 0.81}

Ranking The percentage for “Dodgers” is the first highest, “Yankees” is the second highest, and “Not sure” is the third highest.
Magnitude The percentage for “Dodgers” is very high, the percentage for “Yankees” is low, and the percentage for “Not sure” is low.

Ranking Explanation This distribution of responses is shaped by factors such as fan support, past team performance, and recent results.
The high level of support for the “Dodgers” is likely due to their popularity, strong performance, or strong backing from local fans.
The “Yankees,” being a traditional powerhouse team with a large fan base, receive the second highest level of support.
Those who chose “Not sure” likely reflect uncertainty about the outcome of the games or a lack of in-depth knowledge about baseball.

Table 1: An example of a question with its options and original proportions along with an altered set of proportions.
Also shown are (a) Ranking and (b) Magnitude information for this question, along with a sample explanation based
on (a) Ranking. This explanation was generated by the Qwen 2.5 (Qwen et al., 2024) model with 32B parameters.
The original inputs were in Japanese, but are translated into English here.

{ A: 0.7, B: 0.25, C:0.05  } The reason behind the distribution is…

(b) Ranking

(c) Magnitude

Explanation 
Generation

A is the 1st  highest , B is 2nd, C is 3rd

A is high, B is Moderate, C is Low

The reason A is the 1st  highest…

The reason behind high proportion is…

(b') Ranking Explanation

(c') Magnitude Explanation

(a') Gold Explanation(a) Gold

Figure 3: Overview of explanation generation. From
(a) actual survey, (b) Ranking and (c) Magnitude are
automatically derived. Then, based on (a, b, c), LLMs
generate corresponding explanations (a’, b’, c’).

descriptions of the target distributions based on
three types of input information: (a) Gold (actual
numerical distributions), (b) Ranking (order rela-
tionships, such as “1st,” “2nd,” or “3rd”), and (c)
Magnitude (relative proportion sizes, such as “Very
High,” “High,” or “Low”). The explanations gener-
ated from these respective inputs are referred to as
(a’) GoldExp, (b’) RankingExp, and (c’) Magnitude-
Exp. Next, these explanations are provided as input
to the LLMs, which then generate reconstructed
distributions. Finally, we compare the predicted
distributions with the actual ones. An example
question and its corresponding explanation used in
this phase are shown in Table 1.

Note that evaluating LLMs solely based on the
reconstructed distributions from their explanations
(a’, b’, c’) may introduce biases unrelated to distri-
bution prediction capability, as the results could be
affected by the models’ explanation abilities. To
address this, we also measure distribution predic-
tion performance independent of explanation abil-
ity by predicting (a) directly from (b, c). Therefore,
LLMs predict the distribution from five types of
explanations (b, c, a’, b’, c’). Appendix A provides
the prompts and detailed descriptions.

Phase 2: Do LLMs Adjust for Counterintuitive
Explanations? In the second phase, we evalu-
ated the ability of LLMs to recognize inconsis-
tencies and adjust ratios by introducing pseudo-
distributions that are commonsensically implau-
sible. This experiment used the following two
types of pseudo-distribution settings: (i) Swapped:
The proportions of the first and second highest val-
ues are swapped. (ii) Reversed: The highest and
lowest proportions are exchanged. These pseudo-
distributions differ from actual distributions and are
against commonsense expectations, with Reversed
setting being considered greater inconsistent.

As in Phase 1, LLMs generate explanations from
these pseudo-distributions and predict response dis-
tributions. If accuracy remains unchanged, the
model is likely following explanations without eval-
uating plausibility. A decline in accuracy would
suggest the model detects inconsistencies and ad-
justs predictions using commonsense reasoning.

4 Experimental Setup

Dataset We utilized the “Yahoo! News Polls”2

provided by LY Corporation to create evaluation
response distributions. This dataset comprises sur-
vey results related to articles published on Yahoo!
News, covering the period from January 2020 to
December 2024 in Japanese. We extracted ques-
tions with three options, resulting in a total of 714
items for analysis. Focusing on Japanese data al-
lows us to reduce the ambiguity in predictions
caused by cultural differences compared to con-
ventional English datasets. Furthermore, since this
data is based on freely cast votes on the internet, it
is considered highly compatible with LLMs, which
are primarily pretrained on internet data.

2https://news.yahoo.co.jp/polls
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Figure 4: Score improvements across conditions compared to predictions without explanations. Improvements are
visualized as positive values (upward).

LLMs We used ten high-performing open-source
models, including Qwen 2.5 (Qwen et al., 2024)
with 14B, 32B, and 72B parameters, as well as
code-generation versions (Hui et al., 2024) with
14B and 32B parameters (all Instruct versions).
These models were chosen to examine the effects
of parameter size and code-learning on reasoning
performance. To evaluate the impact of preference
learning, we also included OLMo-2 (OLMo et al.,
2024) in its SFT, DPO, and Instruct versions, where
human preference alignment is progressively incor-
porated from supervised finetuning (SFT) to di-
rect preference optimization (DPO) (Rafailov et al.,
2023) and further to Reinforcement Learning with
Verifiable Rewards (Instruct) (OLMo et al., 2024).
Since the evaluation datasets are in Japanese, we
employed llm-jp-3-13b-instruct (LLM-jp et al.,
2024), which was pretrained in Japanese, and
Llama-3.1-70B-Japanese-Instruct-2407 (Ishigami,
2024), a continuously trained Llama 3.1 (Dubey
et al., 2024) on Japanese data. We used the 8-bit
quantization inferences (Dettmers et al., 2022). We
employed greedy decoding in inference.

Evaluation Methods To measure the similarity
between the LLM predictions and the gold distri-
butions, we adopted the Total Variation Distance
(TVD). TVD is defined as the sum of the absolute
differences between the gold (or pseudo-gold, in
our experiments) values and the model’s predicted
values for each option. A lower TVD indicates
closer alignment between the LLM predictions and

the correct distribution. After minor output adjust-
ments3, over 90% of the data were analyzable as
JSON-formatted response distributions. For cases
where the valid response rate fell below 90%, re-
sults were recorded as reference values4. Finally,
the average TVD, excluding missing values, was
calculated.

5 Experimental Results

Phase 1: Do LLMs Predict Distributions Based
on Explanations? Figure 4 shows the improve-
ment in scores when models were provided with
explanations generated based on these attributes,
compared to when no explanation was given. All
models showed improved scores across all condi-
tions, reinforcing previous findings that providing
appropriate contextual information enhances pre-
diction performance.

For Ranking, which does not directly provide
numerical hints, the condition RankingExp where
the model supplements relevant background infor-
mation, led to further score improvements in many
models. In contrast, for Magnitude, which pro-
vides direct numerical hints, the condition Magni-
tudeExp, where an explanation accompanies the
magnitude information, resulted in lower scores.
This decline is likely due to the omission of ex-
planations for minority options in some questions,

3This included converting full-width symbols to half-width
and normalizing distributions to 1.0 if their sum equaled 100%.

4Details on valid rates are provided in Appendix C.
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Swapped Reversed

Figure 5: Changes in scores from the first phase of distribution prediction. Larger declines in scores indicate that
the model, while considering the provided counterintuitive explanations, made commonsense-based adjustments to
correct inconsistencies.

reducing the amount of provided information.
For GoldExp, where explanations were gener-

ated based on the actual response distributions,
exhibited a similar level of improvement to Mag-
nitudeExp. This suggests that even approximate
magnitude-based explanations can enhance predic-
tive accuracy to a degree comparable to using ac-
tual numerical values.

Phase 2: Do LLMs Adjust for Counterintuitive
Explanations? Figure 5 shows the differences in
average scores between the first and second phases,
categorized by settings and conditions.

A large drop in scores was observed under Re-
versed condition, which introduces greater incon-
sistency compared to Swapped. This suggests that
many models recognized contradictions between
the pseudo-distributions and commonsense expec-
tations. Notably, even in conditions where all mod-
els received the same Ranking and Magnitude in-
formation, Reversed condition resulted in a greater
score decline than Swapped. This implies that
LLMs leverage pretraining-acquired knowledge to
some extent when making predictions.

However, the degree of adjustment varied across
models. For example, in OLMo-2, adjustment
capabilities improved progressively from SFT to
DPO. This trend suggests that DPO, which is de-
signed to align model outputs with human prefer-

ences (Rafailov et al., 2023), enhances response
distribution prediction performance. Similarly in
Qwen 2.5, while smaller models tended to fol-
low counterintuitive explanations, larger models
demonstrated more accurate predictions. This pat-
tern was also observed in Japanese-trained mod-
els, where Llama-3.1-70B-Japanese showed su-
perior adjustment capabilities. These findings
indicate that model size, as well as pretraining
and fine-tuning strategies, contribute to improving
commonsense-based numerical adjustments.

6 Analysis

6.1 Naturalness as Causal Modeling

We re-tokenized the generated text and calculated
its perplexity as a continuation of the input prompt5.
A higher perplexity value indicates that the output
is less natural for the model, allowing for a quan-
titative evaluation of deviations from pretraining
expectations. The results are shown in Table 2.

For OLMo-2, there is little change in perplex-
ity between Actual and Reversed conditions. In
contrast, models larger than Qwen 2.5-14B exhibit
increased perplexity in the Ranking setting when
shifting from Actual to Reversed. This suggests that

5Due to tokenizer effects, the token sequence during re-
tokenization may not always match the original generated
sequence.
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Ranking Magnitude

Model Actual Swapped Reversed Actual Swapped Reversed

OLMo-2-1124-13B-SFT 1.14 ± 0.06 1.12 ± 0.05 1.10 ± 0.05 1.13 ± 0.06 1.12 ± 0.06 1.14 ± 0.07
OLMo-2-1124-13B-DPO 1.28 ± 0.07 1.26 ± 0.07 1.25 ± 0.07 1.28 ± 0.07 1.28 ± 0.07 1.28 ± 0.07
OLMo-2-1124-13B-Instruct 1.04 ± 0.04 1.04 ± 0.03 1.04 ± 0.03 1.05 ± 0.04 1.05 ± 0.04 1.06 ± 0.05
Qwen2.5-14B-Instruct 1.47 ± 0.10 1.46 ± 0.09 1.46 ± 0.11 1.41 ± 0.11 1.37 ± 0.11 1.42 ± 0.10
Qwen2.5-32B-Instruct 1.12 ± 0.12 1.12 ± 0.10 1.32 ± 0.12 1.10 ± 0.09 1.12 ± 0.11 1.17 ± 0.14
Qwen2.5-72B-Instruct 1.07 ± 0.06 1.08 ± 0.06 1.13 ± 0.10 1.05 ± 0.04 1.06 ± 0.05 1.07 ± 0.06
Qwen2.5-Coder-14B-Instruct 1.08 ± 0.02 1.10 ± 0.03 1.09 ± 0.03 1.08 ± 0.03 1.07 ± 0.03 1.08 ± 0.03
Qwen2.5-Coder-32B-Instruct 1.32 ± 0.11 1.31 ± 0.09 1.35 ± 0.09 1.27 ± 0.13 1.26 ± 0.12 1.25 ± 0.13
llm-jp-3-13b-instruct 4.70 ± 1.19 4.69 ± 1.10 4.81 ± 1.11 4.96 ± 1.21 4.77 ± 1.11 4.90 ± 1.20
Llama-3.1-70B-Japanese-Instruct-2407 1.13 ± 0.09 1.16 ± 0.10 1.16 ± 0.10 1.11 ± 0.08 1.09 ± 0.08 1.12 ± 0.09

Table 2: Perplexities for cases with ranking or magnitude information under various settings. A higher perplexity
value indicates that the output is less natural for the model.

Figure 6: Average proportions predicted for ranked op-
tions when ranking information is provided.

while OLMo-2 and similarly sized models, such as
Qwen 2.5-14B, do not necessarily treat counterin-
tuitive predictions as unnatural at the internal rep-
resentation level, larger models are more capable
of doing so. Additionally, even for large models,
the high standard deviation suggests that model
behavior varies largely across different questions.
These results suggest the usefulness of leveraging
log probabilities of response options or sampling-
based methods for distribution prediction, particu-
larly when employing large-scale models.

6.2 Ranking Explanations and Predictions
Figure 6 shows the average proportions assigned by
Qwen 2.5-72B to each ranked option when ranking
information is available. Given probability distri-
bution properties, the highest proportion does not
fall below the dotted blue line indicating 0.33, and
the lowest does not exceed 0.33 in the absence of
ties. Consequently, models like Qwen 2.5-72B,
which adjust values within a rational range, may
be underestimated. In contrast, some cases high-
light the risk of overestimating models that appear
aligned with commonsense reasoning while violat-

ing probability constraints, as shown in Figure 7 in
Appendix D.

Moreover, if the dataset lacks high-proportion
options, score differences may be artificially low,
leading to inaccurate model assessments. While
our framework effectively distinguishes between
instruction-following and commonsense-based pre-
dictions, it has limitations in evaluating probability
rationality. Ensuring a balanced dataset mitigates
these issues. Notably, previous studies have fo-
cused on refining distance metrics but overlooked
dataset composition, highlighting the need for im-
provements in evaluation reliability.

7 Conclusion

This study examined whether language models pre-
dict response distributions based on rational reason-
ing with commonsense knowledge or merely fol-
low instructions. By altering survey data ratios, we
analyzed model predictions under inconsistent con-
ditions. The experimental results showed that in the
highly inconsistent Reversed condition, larger mod-
els and those fine-tuned with preference learning
tended to correct inconsistencies using common-
sense knowledge. Smaller models either showed lit-
tle change or adapted to the inconsistencies. These
findings evaluate aspects of prediction capability
that conventional studies cannot measure and offer
insights into selecting reliable models for distribu-
tion prediction. The proposed method is adaptable
across languages and dataset types. Therefore, fu-
ture work should include experiments in multilin-
gual settings, including English, to investigate the
influence of cultural factors. Additionally, measur-
ing and mitigating biases using statistically reliable
data, such as government-conducted surveys, is an
important direction for future research.
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Limitations

This study relies on internet-based survey data,
which could contain biases. However, as inter-
net data is widely used for pretraining language
models and aligns with their commonsense knowl-
edge, it serves as a meaningful baseline for eval-
uating pseudo-distribution consistency with com-
monsense reasoning. Ensuring statistical accuracy
for practical applications remains a challenge, and
model predictions may vary over time. While this
study does not explicitly address temporal changes,
Yahoo! News Polls is publicly accessible, allow-
ing future research to refine statistical accuracy
and analyze time-dependent trends. However, lim-
ited variations in the prompt templates used in
our experiments could affect the experimental out-
comes (Sakai et al., 2024c). Investigating such
variability in outputs is also left for future work.
In addition, we do not take into account factors
of confidence during prediction when evaluating
performance such as Ozaki et al. (2024). This per-
spective may yield more insights into our findings.

Ethical Considerations

Rather than reinforcing biases, this study aims to
identify and examine them. By analyzing how bi-
ases manifest in model predictions, we contribute
to a deeper understanding of their impact and sup-
port the development of fairer, more robust evalua-
tion methods. Finally, Yahoo! News Polls, which
was used in this study, is licensed for research use,
so there are no license issues.
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A Prompt Details

The templates used in our experiments are shown in Table 3. Additionally, explanations of proportions
were mechanically replaced based on the rules provided in Table 4.

In the first phase, LLMs were instructed to generate explanatory descriptions of survey results, excluding
specific numerical values or ratios, while considering the survey periods. In the second phase, these
generated descriptions were used as prompts, and LLMs were tasked with predicting response distributions
in JSON format (Meister et al., 2024; Suzuki et al., 2024). If the explanations contained numerical values
or ratios, they were replaced with “—” using regular expressions before being provided to the model. To
ensure correct output formatting, JSON-format examples were also included in the prompt.

Usage Scenario Template

Explanation Generation
(Translated)

Please explain why the response distribution for the following question turned out this way, without including any specific numbers or percentages.
Keep your explanation concise and within 300 characters.
Survey period: October 21, 2024 – October 31, 2024
Question: Which team do you think will win the World Series, the Dodgers or the Yankees?
Options: "Dodgers", "Yankees", "Not sure"
Response Distribution: The percentage for “Dodgers” is the first highest, “Yankees” is the second highest, and “Not sure” is the third highest.
Explanation:

Explanation Generation

以下の質問の回答分布について、「なぜこのような分布になったのか」を、
**具体的な数値や割合を含めないで**説明してください。
説明は300文字以内で簡潔に記述してください。
実施期間: 2024-10-21〜2024-10-31
質問:ドジャースとヤンキース、どちらがワールドシリーズを制覇すると思いますか？
選択肢: "ドジャース", "ヤンキース", "わからない"
回答分布: 「ドジャース」の割合は1番目に高く、「ヤンキース」は2番目、「わからない」は3番目に高いです。
説明:

Distribution Prediction
(Translated)

Please predict the response distribution for the following question and options, based on the explanation provided.
Your answer should be in JSON format, and the sum of the proportions for all choices must equal 1.0.
Survey period: October 21, 2024 – October 31, 2024
Question: Which team do you think will win the World Series, the Dodgers or the Yankees?
Options: "Dodgers", "Yankees", "Not sure"
Explanation:
This distribution of responses is shaped by factors such as fan support, past team performance, and recent results.
The high level of support for the “Dodgers” is likely due to their popularity, strong performance, or strong backing from local fans.
The “Yankees,” being a traditional powerhouse team with a large fan base, receive the second highest level of support.
Those who chose “Not sure” likely reflect uncertainty about the outcome of the games or a lack of in-depth knowledge about baseball.
Example output format: {"Dodgers": –, "Yankees": –, "Not sure": –}
Response distribution:

Explanation Generation

以下のアンケートの質問と選択肢について、説明を参考に回答分布を予測してください。
回答はJSON形式で記述し、各選択肢の比率の合計が1.0になるよう調整してください。
実施期間: 2024-10-21〜2024-10-31
質問:ドジャースとヤンキース、どちらがワールドシリーズを制覇すると思いますか？
選択肢: "ドジャース", "ヤンキース", "わからない"
説明: この回答分布は、ファンの支持やチームの過去のパフォーマンス、最近の成績などの要因によって形成されています。
「ドジャース」への支持が高いのは、彼らの人気や優れたパフォーマンス、あるいは地元ファンからの強い支持があるからでしょう。
「ヤンキース」も伝統のある強豪チームであり、多くのファンや支持者がいるため、2番目の支持を得ています。
「わからない」を選んだ人々は、試合の結果に対する不確実性や、野球の専門知識が不足していることを示しています。
回答分布の出力例: {"ドジャース": –, "ヤンキース": –, "わからない": –}
回答分布:

Table 3: Details of the prompts used in the experiment. All inputs were provided in Japanese. For reference, English
translations of the prompts are also included.

Ratio Range Descriptive Category

x ≥ 0.75 Very High (非常に高い)

0.5 ≤ x < 0.75 High (高い)

0.25 ≤ x < 0.5 Moderate (中程度)

x < 0.25 Low (低い)

Table 4: Correspondence between ratio ranges and descriptive categories (Japanese are provided in parentheses).

B Spearman’s Rank Correlation Coefficient

We calculated Spearman’s rank correlation coefficients for model rankings based on distribution pre-
diction scores without explanations and those with various types of added explanations (See Table 5).
The rankings with commonsense explanations showed significant positive correlations, whereas there
was little correlation with the rankings based on predictions from counterintuitive explanations. This
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Condition Explanation Correlation Coefficient p-value

Ranking 0.49 0.1497
Magnitude 0.15 0.6761

Actual Ranking/Explanation 0.94 0.0001
Magnitude/Explanation 0.81 0.0049
Gold/Explanation 0.70 0.0251

Ranking 0.65 0.0425
Explanation 0.18 0.6272

Swapped Ranking/Explanation 0.43 0.2145
Magnitude/Explanation 0.64 0.0479
Gold/Explanation 0.44 0.2004

Ranking -0.56 0.0897
Explanation -0.36 0.3104

Reversed Ranking/Explanation -0.16 0.6515
Magnitude/Explanation -0.03 0.9338
Gold/Explanation 0.28 0.4250

Table 5: Spearman’s Rank Correlation Coefficients and p-values Between Score Rankings.

suggests that instruction-following performance and commonsense-based ratio prediction capabilities
may independently influence model performance.

C Valid Response Rate

Table 6 shows the average Valid Response Rate across all conditions for each setting. The Valid Response
Rate represents the proportion of model outputs that could be parsed as response distributions in JSON
format. Asterisks (*) indicate cases where the Valid Response Rate did not exceed the threshold of
90%. Under the reversed setting/ranking condition for Llama-3.1-70B-Japanese-Instruct-2407, the valid
response rate fell to 89.5%, below the 90% threshold.

Model No Explanation Actual Swapped Reversed

OLMo-2-1124-13B-SFT 89.9* 95.8 97.1 97.8
OLMo-2-1124-13B-DPO 92.9 99.1 98.9 99.2
OLMo-2-1124-13B-Instruct 99.7 99.8 99.7 99.7
Qwen2.5-14B-Instruct 99.4 98.3 98.3 97.8
Qwen2.5-32B-Instruct 100.0 100.0 100.0 100.0
Qwen2.5-72B-Instruct 100.0 100.0 100.0 100.0
Qwen2.5-Coder-14B-Instruct 100.0 100.0 100.0 100.0
Qwen2.5-Coder-32B-Instruct 99.9 99.4 99.7 99.4
llm-jp-3-13b-instruct 100.0 99.9 99.9 99.9
Llama-3.1-70B-Japanese-Instruct-2407 95.5 95.3 95.5 93.7*

Table 6: Average Valid Response Rate (%) Across Settings

D Ranking Information and Actual Predicted Values

As in Section 6.2, we plotted the average values assigned to each option when ranking information
was provided for all models in Figure 7. Note that Llama-3.1-70B-Japanese-Instruct-2407 strongly
adheres to commonsense reasoning but produces predictions that conflict with the properties of probability
distributions.
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Figure 7: Average proportions predicted for ranked options when ranking information is provided, for all models in
our experiment.

E The distribution of proportions in the dataset

Figure 8 shows violin and box plots illustrating the distribution of proportions in the evaluation dataset.

Figure 8: Violin and box plots showing the distribution of proportions in the evaluation dataset. In the absence of
ties, the first rank falls within the range (0.33.., 1.0), the second rank within (0, 0.5), and the third rank within [0,
0.33..).
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