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Abstract
Mixture-of-Experts (MoE) models have shown
remarkable capability in instruction tuning,
especially when the number of tasks scales.
However, previous methods simply merge all
training tasks (e.g. creative writing, coding,
and mathematics) and apply fixed sampling
weights, without considering the importance
of different tasks as the model training state
changes. In this way, the most helpful data
cannot be effectively distinguished, leading to
suboptimal model performance. To reduce the
potential redundancies of datasets, we make the
first attempt and propose a novel dynamic data
mixture for MoE instruction tuning. Specif-
ically, inspired by MoE’s token routing pref-
erence, we build dataset-level representations
and then capture the subtle differences among
datasets. Finally, we propose to dynamically
adjust the sampling weight of datasets by their
inter-redundancies, thus maximizing global
performance under a limited training budget.
The experimental results on two MoE mod-
els demonstrate the effectiveness of our ap-
proach on both downstream knowledge & rea-
soning tasks and open-ended queries. Code and
models are available at https://github.
com/Spico197/MoE-SFT .

1 Introduction

Instruction tuning is a pivotal step for Large Lan-
guage Model (LLM) alignment (OpenAI, 2022;
Anthropic, 2023). To promote the alignment abil-
ity, LLMs are typically fine-tuned on a collection
of instruction datasets with multiple tasks (Zhou
et al., 2023; Mukherjee et al., 2023; Ouyang et al.,
2022; Lu et al., 2024b). However, dense models
may be constrained by their fixed model capaci-
ties when the number of tasks grows in instruction
tuning (Chung et al., 2022). Instead, Mixture-of-
Experts (MoE) naturally incorporates multiple ex-
perts, which expands the model capacity (Shazeer
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Figure 1: Our proposed dynamic data sampling method
for instruction tuning. As the training progresses, the
model can dynamically adjust the proportion of data
sampling. For comparison, previous works concatenate
datasets directly and apply fixed sampling weights.

et al., 2017; Lepikhin et al., 2020), and assigns
relevant tokens to specific experts (Fedus et al.,
2022b).

To perform instruction tuning, multiple datasets
are usually combined in practice (MosaicML,
2023). In such a complex scenario, datasets from
diverse domains may exhibit redundancies, which
requires a prudent design in the dataset selection
and combination (Cao et al., 2023; Xie et al.,
2023). Recently, MoE models have demonstrated
appealing quality on divergent tasks and reach sig-
nificantly better performance than dense models,
attributed to their excellent task scaling proper-
ties (Chen et al., 2024a; Shen et al., 2023a). How-
ever, how to decide appropriate sampling weights
according to models’ internal preferences is still
under-explored.

Most previous studies (Shen et al., 2023a;
OpenBMB, 2024; Wang et al., 2023) directly con-
catenate multiple instruction datasets for super-
vised fine-tuning (SFT) without considering the
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sampling weights and task redundancies. Jha
et al. (2023) and Chen et al. (2024b) take sam-
pling weights as a hyper-parameter and find the
best combination by handcraft search, which is
laborious and costly to enumerate all the combi-
nations. Thus, it is vital to automatically adjust
the sampling weights during the training process
with the lowest cost and maximize the alignment
abilities. Besides, due to the sparsely-activated
structure design of MoE, experts are specialized
for certain domains (Zoph et al., 2022; Fedus et al.,
2022a), and fine-tuning specific experts would
bring performance improvements on corresponding
tasks (Wang et al., 2024). Based on these facts, it is
crucial to conduct balanced expert training for im-
provements on a broad range of downstream tasks.
However, datasets may contain domain overlaps
(redundancies), which may result in imbalanced
token routing even when the sampling weights are
uniformly distributed.

To this end, as illustrated in Figure 1, we intend
to feed MoE models with the datasets they need
instead of providing the datasets we have. If one
dataset is different from the others for the MoE
model, there may be fewer redundancies and the
sampling weight should be increased in the next
round of training. However, it is difficult to build
such a meticulous dataset-level difference as the
model is constantly changing. Inspired by the in-
trinsic properties of MoE models, we formulate the
dataset-level representations resorting to special-
ized experts and token routing preferences (Zoph
et al., 2022). Specifically, we count the number
of tokens routed to every expert for each dataset,
which refers to the gate load. Afterward, we ap-
ply the gate loads as dataset representations and
compute L2 distances among them. Since the dis-
tances are obtained from token routing preferences,
they could represent the model’s internal state. Fi-
nally, we propose a dynamic algorithm to update
the sampling weights according to previous sam-
pling weights and current distances.

We experiment on two MoE models with a com-
bination of four representative instruction datasets.
Model performances are evaluated on eight evalua-
tion datasets across knowledge testing, reasoning,
and open-ended question answering tasks. The re-
sults demonstrate the effectiveness of our dynamic
method. To help understand the internal mech-
anism of our method, we also provide thorough
analyses of expert specialization and different data

combinations. Our main contributions are summa-
rized as follows:

• To our best knowledge, this is the first work to
systematically study different sampling meth-
ods for MoE models in instruction tuning. In-
spired by the inherent attributes of MoE, we
introduce a novel dynamic data mixture for
combining different instruction datasets.

• To capture the differences among datasets con-
sidering the model’s training state, we propose
to utilize the routing preferences of MoE mod-
els to formulate dataset-level representations.

• We conduct extensive experiments on two
MoE models and validate the effectiveness
of our method on a wide range of downstream
tasks and open-ended questions.

2 Preliminaries of Mixture-of-Experts

In a typical MoE structure, the layer is composed of
N expert networks {E1, E2, . . . , EN} and a gating
network G. Different from common networks, the
MoE manifests itself in the design of computational
strategy, characterized by inherent sparsity. Given
an input token x, the gating network computes a
vector of routing scores G(x) ∈ RN , denoting the
importance of each expert network to process the
given input. The MoE layer then selectively aggre-
gates the outputs from the top-K experts, which is
represented as:

y =
∑

i∈IK
G(x)i · Ei(x), (1)

where IK is the set of indices with the highest
K ≤ N scores in G(x), denoted as:

IK =
{
i1, . . . , iK | G(x)i1 ≥ · · · ≥ G(x)iN

}
.
(2)

To maintain a balanced computational load among
experts, an auxiliary balance loss is typically in-
corporated during the training process. Given the
input datasetDi, a common practice (Shazeer et al.,
2017) is to apply a constraint on the routing scores
G(x) for each token x ∈ Di, which is defined as:

Lbali = CV(Gi)2 +CV(Oi)
2, (3)

where CV(·) is the function calculating the co-
efficient of variation from a given vector, mea-
suring the degree of imbalance upon activation.
The CV score would be high if tokens dispatched
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to experts are off-balance. The aggregation of
these two terms ensures a balanced dispatching
among experts. The importance score vector
Gi ∈ RN corresponds to the summation of rout-
ing scores

∑
x∈Di

G(x). The gate load vector
Oi =

∑
x∈Di

BinCount
(
I(x)K

)
,Oi ∈ RN is the

count of tokens routed to each expert across the
entire inputs Di. For all the datasets D, we could
obtain the gate loads O ∈ R|D|×N , where |D| de-
notes the number of datasets.

3 Methodology

In this section, we introduce our dynamic sampling
strategy, which automatically adjusts the sampling
weights of different instruction datasets. After ev-
ery m steps of model training, we obtain the gate
loadsO as dataset-level representations, then calcu-
late the differences across datasets with O and up-
date sampling weights accordingly. The dynamic
sampling algorithm is presented in Alg 1.

3.1 Dataset Differences via Gate Load

As introduced in § 2, the gate load Oi ∈ RN is
a vector where each element represents the num-
ber of tokens routed to that specific expert. Since
experts in MoE models are well specialized, the to-
ken routing distribution can demonstrate the dataset
properties, which is also confirmed in Li and Zhou
(2024). As discussed in Zhu et al. (2024) and Jiang
et al. (2024), deeper layers have better special-
izations. Therefore, we calculate the differences
among instruction datasets via gate loads in the last
layer for each model.

For each datasetDi, we record the routing tokens
and calculate the corresponding gate load Oi. To
alleviate the bias, we discard all padding tokens
which may overwhelm the differences across gate
loads. To align the scale of gate loads of different
datasets, we normalize Oi and obtain the final gate
load vector Ôi = Oi/

∑O.

After obtaining the gate loads, we calculate the
L2 distance δij of each dataset pair Di and Dj . As
shown in Line 7 of Alg. 1, we further calculate
the averaged distance of one dataset Di to all the
datasets. Overall, we obtain ∆ ∈ R|D|, a vector
that denotes the averaged distance of each dataset.
We further adjust the sampling weights based on
the distance vector.

Algorithm 1 DYNAMICSAMPLING

Input: evaluation interval m, total training steps n,
sampling weights of last round wt−1 ∈ R|D|,
normalized gate loads Ô ∈ R|D|×N , update
step size η, smoothing value c, the number of
datasets |D|.

Output: updated sampling weights wt.
1: for k ← 1 to n do
2: One-step model training with wt−1

3: if k%m = 0 then
4: // L2 distances across datasets.
5: δij ← ||Ôi − Ôj ||, δ ∈ R|D|×|D|

6: // Average distance for each dataset.
7: ∆i ←

(∑
j δij

)/
|D|, ∆ ∈ R|D|

8: // Update sampling weights.
9: α← softmax (logwt−1 + η∆)

10: w′
t ← (1− c)α+ c

/
|D|

11: // Normalize sampling weights.
12: wt ← w′

t

/∑
w′

t

13: return wt

14: end if
15: end for

3.2 Dynamic Data Sampling

Based on our hypothesis, if one dataset Di is differ-
ent to the others, the sampling weight of Di should
be increased since it may contain less redundancies
with other datasets.

As presented in Line 9 from Alg. 1, we calculate
the updated sampling weights by adding η∆ to the
logarithmic weights of the last time step logwt−1,
where η is the update step size that could be re-
garded as a term similar to the learning rate. We
follow Xie et al. (2023) to add c/|D| to smooth and
re-normalize the values as shown in Line 10-12 in
Alg. 1, where c is a hyper-parameter.

Based on the above strategy, we update the sam-
pling weights every m steps in the training phase.
Following Xia et al. (2023) and Xie et al. (2023),
the initial sampling weights w0 is uniformly dis-
tributed to alleviate potential biases. In the pro-
posed dynamic sampling algorithm, η takes the
similar functionality with m. Both of them control
the speed of convergence. m controls the speed
in a coarse manner while η provides a more fine-
grained control.
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4 Experiments

4.1 Instruction Tuning Datasets

We use the following four types of instruction
datasets for supervised fine-tuning. In each dataset,
we sample 20K instances for training, and 1K
instances for gate load evaluation in the sam-
pling weight adjustment. (1) ShareGPT.* Multi-
turn dialogues with ChatGPT, containing a wide
range of open-ended instructions. (2) OpenOrca.†
Flan (Longpre et al., 2023) instructions with re-
sponses generated by GPT-4 & GPT-3.5 (Lian et al.,
2023), containing multiple task-oriented instruc-
tions. (3) Math-Instruct.‡ A collection of math
instructions with step-by-step solutions (Yue et al.,
2023). (4) Code Instructions.§ LLM-generated
responses with multiple languages to solve code
problems.

4.2 Evaluation Datasets

We comprehensively evaluate the ability of
models from both Knowledge & Reasoning
(K&R) and Open-Ended instruction following as-
pects. For K&R, we evaluate the models on
MMLU (Hendrycks et al., 2021), BigBench-Hard
(BBH) (Suzgun et al., 2022), GSM8K (Cobbe et al.,
2021), MBPP (Austin et al., 2021), and Question
Answering (QA) tasks. Here, QA consists of ARC-
e, ARC-c (Clark et al., 2018), and BoolQ (Clark
et al., 2019). Besides, we also report the open-
ended instruction following results on MT-Bench.
For more details about evaluation datasets, please
refer to Appendix A.5.

4.3 Baselines

(1) w/o IT. The foundation model without instruc-
tion tuning. (2) DataSize. Static sampling base-
line. The sampling weights are determined by the
original data size. (3) Uniform. Static sampling
baseline. The model is fine-tuned with the uni-
formly distributed sampling weights (all datasets
have the same sampling probability). (4) Ran-
dom. A dynamic sampling baseline where sam-
pling weights are assigned with uniformly dis-

*https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_
unfiltered

†https://huggingface.co/datasets/
Open-Orca/OpenOrca

‡https://huggingface.co/datasets/
TIGER-Lab/MathInstruct

§https://huggingface.co/datasets/
iamtarun/code_instructions_120k_alpaca

tributed noise at each round. (5) Sequential. Train-
ing models on datasets sequentially at each round.
(6) RefLoss. We use Uniform to estimate the final
loss of each dataset as the reference loss, and re-
place the distance of datasets in Alg 1 (line 5) with
the loss differences between current loss and refer-
ence loss ∆i ← (Licurrent − Lireference). Therefore,
RefLoss consumes 2 times of training computation
than the proposed dynamic method.

4.4 Implementation Details
We test our method on two MoE models: MoLM
700M-4E (activating 4 experts with 700M parame-
ters) (Shen et al., 2023b) and LLaMA-MoE 3.5B-
2E (Zhu et al., 2024). We freeze the gate pa-
rameters and train models with 2K steps under a
global batch size of 128 and a max sequence length
of 2048. The optimizer is AdamW (Loshchilov
and Hutter, 2017) with a learning rate of 2e-5,
which is warmed up with 3% steps under cosine
scheduling. Models are trained with gradient check-
pointing (Griewank and Walther, 2000), ZeRO-
1 (Rajbhandari et al., 2019), and FlashAttention-
v2 (Dao, 2023). For our proposed dynamic method
in LLaMA-MoE, the evaluation interval m = 100,
η is 10.0 and c is 5e-2. In MoLM, m = 200 and c
is 8e-1. Experiments are conducted on 4×NVIDIA
A100 (80G) GPUs.

4.5 Main Results
The main results in Table 1 show that instruction
tuning is beneficial for models to enhance their
overall abilities on downstream knowledge & rea-
soning (K&R) tasks. The performance gain from
instruction tuning is lower in MoLM than LLaMA-
MoE, possibly due to the small model capacity. For
static sampling, the performances of DataSize are
lower than Uniform, both in K&R tasks and open-
ended MT-Bench. Besides, the averaged K&R
score in MoLM DataSize (21.37) is slightly lower
than the foundation model (21.41), eliminating the
advantage of MoE model’s capabilities.

For dynamic sampling, the performances of
Random are not stable since it is based on Uni-
form with random noises. It achieves better K&R
than Uniform in MoLM, while it is worse in
LLaMA-MoE. Sequential shows the worst MT-
Bench scores in both models, demonstrating a bad
instruction-following ability. RefLoss is a strong
baseline compared to Uniform and boosts the foun-
dation models’ performances across the K&R tasks
by 0.37 (MoLM) and 4.58 (LLaMA-MoE). How-
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Knowledge & Reasoning Open-EndedModel MMLU BBH GSM8K MBPP QA Average MT-Bench

MoLM 700M-4E
w/o IT 24.73 27.89 1.14 5.76 47.52 21.41 -
DataSize 26.62 23.94 2.50 10.15 43.65 21.37 2.59
Uniform 25.76 26.08 1.21 9.60 45.01 21.53 2.63
Random 25.95 25.94 1.59 9.49 45.76 21.75 2.30
Sequential 26.20 26.41 1.67 9.33 45.62 21.85 2.32
RefLoss 25.67 26.52 2.05 9.80 44.86 21.78 2.69
Dynamic 25.83 26.96 1.82 10.12 45.28 22.00 2.73

LLaMA-MoE 3.5B-2E
w/o IT 27.98 29.67 4.63 5.12 57.45 24.97 -
DataSize 31.44 29.46 1.67 11.84 59.96 26.87 4.81
Uniform 32.48 29.18 5.91 14.52 60.85 28.59 5.07
Random 33.39 29.43 2.73 15.80 61.17 28.50 5.00
Sequential 32.27 30.42 0.99 12.08 60.35 27.22 3.92
RefLoss 33.75 29.02 9.63 14.48 60.87 29.55 5.18
Dynamic 33.07 30.77 11.90 16.88 61.28 30.78 5.22

Table 1: Main results. Best and the second best results are denoted in bold and underlined, respectively.
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Figure 2: Averaged knowledge & reasoning results vs.
the CV coefficient of final load distances. Smaller CV
values represent more balanced token routing. Each
data point denotes a model of LLaMA-MoE 3.5B-2E
presented in Table 1.

ever, it brings additional training compute due to
the reference loss estimation. Our Dynamic shows
great potential and surpasses RefLoss without the
additional training cost, which leads to a better and
faster convergence. Overall, Dynamic outperforms
other baselines in the averaged K&R and the MT-
Bench results, validating the effectiveness.

4.6 Analysis
4.6.1 Correlation between Performance and

Balancing
Q: How does balanced training affect the MoE’s
instruction tuning? To find the correlation be-

tween dataset-level load balance and the overall
downstream task performance, we analyze the final
CV(load)2 of the training datasets.

As shown in Figure 2, there is a strong correla-
tion between the final load balance and the model’s
final performance (Pearson coefficient = -0.762).
This indicates a balanced training would lead to
better overall downstream task performance, and
our proposed Dynamic method could reach a better
dataset-level load balance.

Q: What if the data sampling weights are initial-
ized with perfect balancing? If the performance
improvement only comes from the dataset-level
load balancing, the best multi-dataset instruction
tuning for MoE would become an optimization
problem as shown in Equation 4. To solve this
problem, we perform stochastic gradient descent
(SGD) to estimate the optimal sampling weights
(listed in Table 8 in the appendix).

The results on LLaMA-MoE 3.5B show that
such a set of balanced sampling weights only
brings an averaged K&R performance of 28.35,
with higher final CV(load)2 values than Dynamic.
This demonstrates that the training process is not
static and the model’s internal preferences are
changing. To this end, dynamic sampling weight
adjustment is crucial for obtaining better sampling
weights since it utilizes the latest model’s internal
preferences. Comparing the final sampling weights,
we find Dynamic is less likely to overfit on specific
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datasets since the sampling weights are constrained
to a smaller range.

min
w

CV
i∈|D|


∑

j∈|D|
||Ôi − Ôj ||




2

(4)

4.6.2 Data Combinations

Q: How do datasets contribute to the final perfor-
mance? We conduct experiments on subsets of the
training datasets and present the results in Figure 3.
Since math and code tasks have strong correlations
with the instruction tuning dataset types, we report
the GSM8K (math) and MBPP (code) results here.

As shown in the figure, Math-Instruct and Code
Instructions are very task-related, and models
trained solely on these datasets could reach the best
GSM8K and MBPP performances, respectively.
Although the single ShareGPT or OpenOrca is less
powerful, it shows great performance when they
are combined with Math-Instruct or Code Instruc-
tion datasets. Dynamic is more balanced than the
Uniform baseline, where Dynamic strengthens the
MBPP performance on math-related combination
(S+O+M), and improves the GSM8K performance
on code-related combination (S+O+C). When all
four types of datasets are combined for instruc-
tion tuning, Dynamic improves both GSM8K and
MBPP performances.

4.6.3 Expert Specialization

Q: Does such a gate-load-based dynamic data
sampling strategy hurt expert specialization? Our
method’s optimization objective is to reduce the
gate loads’ differences across datasets. Although
we freeze the gate parameters during training, the
activation states may still affect the expert special-
ization property. We report the gate load differ-
ences and CV(Oi)

2 for each dataset to measure
the expert specialization variations.

As shown in Figure 4 (abde), we find instruc-
tion tuning indeed affects the expert specialization.
However, it is not determined by our gate-load-
based distance calculation and dynamic sampling
adjustment. Instead, it is due to the auxiliary bal-
ance loss as demonstrated in Figure 4 (cf). If we
remove the balance loss during training, it would
lead to more specialized experts, but the perfor-
mance would be lower according to Table 3.

4.6.4 Other Sampling Weights
Q: What if we use the final sampling weights ob-
tained from the proposed Dynamic to train the
model again?

As presented in Table 2, FinalStatic is better
than Uniform and DataSize in both K&R tasks
and MT-Bench. Surprisingly, compared to the re-
sults in Table 1, FinalStatic (29.68) is even better
than RefLoss (29.55) in the averaged K&R score.
This indicates that our Dynamic method could help
find better sampling weights even on static sam-
pling. In addition, FinalStatic is still worse than
Dynamic, which verifies the model’s internal state
changes. Thus, dynamic sampling could reach a
better performance than static sampling.

Q: What if we use sentence embedding to com-
pute the dataset differences instead of gate loads?
To verify the effectiveness of the gate load versus
the sentence embedding distances, we utilize Sen-
tenceTransformers (Reimers and Gurevych, 2019)
to replace the input gate loads O in Alg. 1 and
compute L2 distances afterward.

As shown in Table 2, SentEmb outperforms
Uniform across the tasks, which indicates the ef-
fectiveness of dataset re-weighting by their inter
similarities. The averaged GateLoad performance
is lower than SentEmb in both the averaged knowl-
edge & reasoning tasks and the open-ended MT-
Bench. Nevertheless, SentEmb could not be eas-
ily applied to make constant improvements in the
whole training phase. Although GateLoad is worse
than SentEmb, the model benefits from the itera-
tive sampling weights adjustments, and Dynamic
surpasses SentEmb in both K&R and MT-Bench.

Q: What about other initial sampling weights
rather than the uniform distribution? Since Sen-
tEmb has better performance than Uniform and
GateLoad, we wonder if it is better to apply its
sampling weights as the initial ones rather than the
uniform distribution.

The results in Table 2 show that the uni-
form initialized DynamicUniform outperforms
DynamicSentEmb (30.78 vs. 29.63 in K&R, 5.22 vs.
5.16 in MT-Bench), which is in line with the con-
clusions in Zhu et al. (2024). We conjecture that
the imbalanced initial weights would bring biases
and make the model hard to convergence.

4.6.5 Ablation Study
There are differences between sparse MoE mod-
els and dense models during training due to their
specific techniques. Here we investigate the ef-
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Figure 3: Evaluation results on different data combinations. LLaMA-MoE 3.5B-2E is fine-tuned for this experiment.
S, O, M, and C denote for ShareGPT, OpenOrca, Math Instruct, and Code Instructions, respectively.
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Figure 4: Gate load differences of LLaMA-MoE 3.5B-2E under different training settings. If the experts are less
specialized after training, the distances and the CV(Oi)

2 would go down. For Dynamic and Dynamic w/o balance
loss, the “Beginning” stands for the first round of evaluation for easier recording.

fectiveness of fronzen gate, balance loss, and gate
noise for instruction tuning on MoE.

The results are presented in Table 3. Similar to
Shen et al. (2023a), we find the frozen gate, bal-
ance loss, and gate noise have all positive effects to
the model performances. Frozen gate is to freeze
the gate networks and the gate projections in FFNs
when fine-tuning. This leads to better performance
as the gate is well trained during the pre-training
stage, and instruction tuning may break the special-
ized token routing property. Balance loss and gate

noise are beneficial to model training since they are
in line with the pre-training objectives.

5 Related Work

Mixture-of-Experts. The Mixture-of-Experts
(MoE) is a sparsely activated architecture in neu-
ral networks with great efficiency (Shazeer et al.,
2017; Lepikhin et al., 2020; Fedus et al., 2022b; Qu
et al., 2024; Zhang et al., 2024; Lu et al., 2024a).
Attributed to its sparsity, MoE has attracted broad
attention in the realm of LLMs (Du et al., 2022;
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Knowledge & Reasoning Open-EndedModel MMLU BBH GSM8K MBPP QA Average MT-Bench

w/o IT 27.98 29.67 4.63 5.12 57.45 24.97 -

Static Sampling
DataSize 31.44 29.46 1.67 11.84 59.96 26.87 4.81
Uniform 32.48 29.18 5.91 14.52 60.85 28.59 5.07
FinalStatic 32.84 30.11 9.93 14.61 60.93 29.68 5.11

Static Distances
SentEmb 33.85 29.70 7.66 16.29 61.75 29.85 5.21
GateLoad 32.75 29.98 6.60 14.07 61.78 29.04 4.98

Initial Sampling Weights
DynamicSentEmb 33.46 29.02 8.95 15.68 61.03 29.63 5.16
DynamicUniform 33.07 30.77 11.90 16.88 61.28 30.78 5.22

Table 2: Other sampling weights. Experiments are conducted on LLaMA-MoE 3.5B-2E.

Model Avg. K&R MT-Bench

LLaMA-MoE 30.78 5.22
w/o frozen gate 28.78 4.91
w/o balance loss 29.38 4.88
w/o gate noise 30.04 4.98

Table 3: Ablation study. Avg. K&R stands for the av-
eraged score of knowledge & reasoning tasks (MMLU,
BBH, Math, and Code).

Jiang et al., 2024). Subsequent studies follow these
model architectures, showing the effectiveness of
MoE in dealing with reasoning (Dai et al., 2024),
cross-domain (Li et al., 2023), and multi-modal
(Mustafa et al., 2022) problems.

Instruction Tuning. Instruction tuning is an im-
portant step for the LLM alignment. Wang et al.
(2022) devise an automatic prompting method to
generate enormous instructions and responses with
LLMs. Based on this idea, Xu et al. (2023) and
Zhao et al. (2023) further utilize LLMs to gener-
ate diverse and complex instructions to enhance
the alignment. Different from the data augmenta-
tion methods, Tunstall et al. (2023) and Zhou et al.
(2023) find a small number of high quality instruc-
tion data can boost the alignment performance. Cao
et al. (2023) and Liu et al. (2023) further study data
patterns to filter out high quality data to help LLM
alignment. However, none of these approaches
consider using different sampling weights when
training on multiple instruction datasets.

Dynamic Data Mixing in Pre-training. Since
there is no relevant literature on dynamic sampling
for instruction tuning, we introduce the relevant
methods in LLM pre-training. Xie et al. (2023)
propose DoReMi, a dynamic sampling method for
LLM pre-training on multiple domains of data with
an extra proxy model for the reference. Xia et al.
(2023) propose to use a series of language mod-
els in the same family and estimate the reference
loss by fitting scaling law curves. However, these
methods need extra models for estimating reference
losses on target domains, which introduces addi-
tional training computations. Albalak et al. (2023)
introduce an online data mixing method for LLM
pre-training via the multi-armed bandit algorithm.
However, the exploration stage at the beginning
of training takes a huge amount of steps, which is
not applicable for instruction tuning. In summary,
these dynamic sampling methods are difficult to
be transferred into instruction tuning, where the
dataset size is relatively small and there are no
available proxy models for references.

6 Conclusion

To combine different datasets and maximize the
MoE model’s alignment ability, we assign differ-
ent sampling weights to corresponding datasets.
By incorporating the internal model state and the
dataset properties, we propose to use the gate load
from MoE models to obtain dataset representa-
tions. Based on the representations, we calculate
distances between each pair of datasets, indicat-
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ing the inter-redundancies. We further devise an
automatic algorithm to dynamically update the sam-
pling weights.

We find there is a strong correlation between
the dataset-level load balance and the final per-
formance, and the proposed dynamic sampling
strategy could reach great balancing. The results
also demonstrate good performance on the overall
downstream tasks.

Limitations

More Models. Due to the limited computing
resources, we test the method’s effectiveness on
two representative decoder-style MoE models.
Dynamic sampling on larger models like Mix-
tral (Jiang et al., 2024) is currently not verified.

Number of Datasets. For a combination of two
datasets, there are no differences between the dis-
tance vector ∆, so the dynamic sampling method
does not take into effect and the sampling weights
would stay unchanged. Therefore, there should be
at least three instruction tuning datasets for apply-
ing our method.
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A Appendix

A.1 Evaluation Interval

Q: How does the evaluation interval affect the per-
formance? Our dynamic sampling weights strat-
egy is applied every m training steps. Here we
investigate the effect of the evaluation intervals by
conducting experiments with different m values.

As shown in Figure 5, the evaluation interval is
crucial to the sampling weights update and may
vary a lot with different m values. When m = 200,
the sampling weights do not converge and mono-
tonically go up or down. However, when m = 20,
there are more sampling weights adjustments, lead-
ing to training instability as the differences in gate
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Figure 5: Dynamic sampling weights with different evaluation intervals. Experiments are conducted on LLaMA-
MoE 3.5B-2E.

loads may have reversals. Comparing to the con-
vergence status in Figure 5 and results in Table 4,
we take m = 100 as the best practice.

Evaluation Interval BBH GSM8K

200 29.21 8.19
100 30.77 11.90
50 29.04 7.58
20 28.98 5.99

Table 4: LLaMA-MoE 3.5B-2E performances with dif-
ferent evaluation intervals.

A.2 Learning Efficiency

Q: How does the number of training steps affect the
results? We change the number of training steps
and freeze the other hyper-parameters to observe
the trend of performance variation.

From Figure 6, both Uniform and Dynamic ben-
efit from more training steps, and they consistently
improve the performance on knowledge and reason-
ing tasks. Even 500 steps can make the fine-tuned
model outperforms the foundation model (Uniform
26.67 & Dynamic 26.28 vs. w/o IT 24.97). As the
number of training steps grows, Uniform seems
to reach its performance ceiling, and the gap be-
tween these two methods further increases. As to
the open-ended performance on MT-Bench, the Dy-
namic method has more fluctuations, but it could
outperform the Uniform baseline as more training
steps are applied.

A.3 Inverse Hypothesis

We conduct experiments on the counterpart hypoth-
esis (denoted as Inverse), where similar datasets
would have greater sampling weights in the next
round during training.

25
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Figure 6: Performances with different training steps.
Experiments are conducted on LLaMA-MoE 3.5B-2E.

Method GSM8K MBPP MT-Bench

Inverse 5.84 17.27 4.65
Uniform 5.91 14.52 5.07
Dynamic 11.90 16.88 5.22

Table 5: Inverse-hypothesis results of LLaMA-MoE
3.5B-2E, where the sampling weights of similar datasets
would be increased in the next round.

As illustrated in Figure 7, the Inverse sampling
method leads to different sampling weights com-
pared to Dynamic. As shown in Table 5, the per-
formance of Inverse is imbalanced, where GSM8K
(5.84 vs. 11.90) is much lower than Dynamic. The
scores of MT-Bench also show that the Inverse
method would bring an adverse effect and the per-
formance is even lower than Uniform.

These results demonstrate that our proposed hy-
pothesis is both intuitive and effective.

A.4 Gate Load Differences

Here we provide the gate load L2 distance compar-
isons between four training datasets and five down-
stream benchmarks in Figure 8. We find that both
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Figure 7: Dynamic sampling weights of different hy-
potheses. Experiments are conducted on LLaMA-MoE
3.5B-2E.

the Uniform and Dynamic training could ease the
imbalanced token routing, while Dynamic could
reach a more balanced routing scheme.

A.5 Datasets and Metrics for Evaluations
Here we introduce the datasets and the correspond-
ing metrics in Table 6. We evaluate different sam-
pling strategies on 6 widely used academic bench-
marks to measure knowledge and reasoning abili-
ties. Here, we report the macro-averaged score of
ARC-e, ARC-c, and BoolQ as the QA task perfor-
mance. Besides, open-ended user queries (e.g. cre-
ative writing) are more common in real scenarios,
so we also evaluate methods on MT-Bench (Zheng
et al., 2023), which is aligned with human prefer-
ences.

A.6 Final Sampling Weights
The final sampling weights of the proposed Dy-
namic method across MoE models are shown
in Table 8. We find the two models show dif-
ferent preferences for instruction tuning datasets.
MoLM prefers ShareGPT while LLaMA-MoE
prefers Math-Instruct. This indicates that unified
pre-defined sampling weights may not be suitable
for all models, and we should devise sampling
weights carefully according to their states.

A.7 Performance Comparison with the
Publicly Available SFT Model

We provide the performance comparisons with
publicly available SFT models in Table 7. Since
MoLM does not have corresponding SFT versions
of models, we present the performance compar-
isons between LLaMA-MoE-SFT (Zhu et al., 2024)
and our fine-tuned LLaMA-MoE models, where
these models are fine-tuned on the same foundation
model. Since LLaMA-MoE-SFT is only fine-tuned

on a single dataset (ShareGPT), we find the simple
Uniform baseline surpasses the public SFT model
with large improvements, demonstrating the power
of utilizing multiple instruction tuning datasets. Be-
sides, our proposed Dynamic outperforms Uni-
form with large margins, showing the effectiveness
of dynamic sampling.

A.8 Detailed Results of MT-Bench & BBH
Table 9 shows the detailed multi-turn results on
MT-Bench. For better comparison the Dynamic
effect on different tasks, we provide the detailed
results on BBH subtasks in Table 10.
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(a) Before Training (b) After Uniform Training (c) After Dynamic Training

Figure 8: Gate load differences between training datasets and downstream benchmarks. Greater values (darker cells)
indicate larger dataset differences.

Dataset #Tasks #Few-shots Metric Introduction

MMLU (Hendrycks et al., 2021) 57 5 Macro-averaged Accuracy Multiple choice problems with a wide range
of subjects, e.g. geography, history, etc.

BBH (Suzgun et al., 2022) 13 3 Macro-averaged Exact Match Reasoning over abstract reasoning tasks, e.g.
logical expressions, causal judgement, etc.

GSM8K (Cobbe et al., 2021) 1 8 Macro-averaged Exact Match Grade school math problems with basic arith-
metic operations (+-×÷).

MBPP (Austin et al., 2021) 1 0 Pass@1 Generating Python function codes to pass test
cases.

ARC-e (Clark et al., 2018) 1 0 Normalized Accuracy Multiple-choice grade school level science
question answering.

ARC-c (Clark et al., 2018) 1 0 Normalized Accuracy Similar to ARC-e with challenging question
answering pairs selected.

BoolQ (Clark et al., 2019) 1 0 Accuracy Given a passage and a question about world
knowledge, answer YES or NO.

MT-Bench (Zheng et al., 2023) 8 0 Subjective Score Given a prompt and a generated response, us-
ing GPT-4 (OpenAI, 2022) to give scores from
1 to 10.

Table 6: Datasets and metrics for evaluations.

Model MMLU BBH GSM8K MBPP QA MT-Bench

w/o IT 27.98 29.67 4.63 5.12 57.45 -
LLaMA-MoE-SFT 25.53 28.84 2.81 7.31 57.95 4.72
Uniform 32.48 29.18 5.91 14.52 60.85 5.07
Dynamic 33.07 30.77 11.90 16.88 61.28 5.22

Table 7: Performances comparison with publicly available LLaMA-MoE-SFT.
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Model ShareGPT OpenOrca Math-Instruct Code Instructions

MoLM 700M-4E 28.41 23.51 23.45 24.63
LLaMA-MoE 3.5B-2E 17.98 21.49 32.02 28.51
LLaMA-MoE 3.5B-2Ebalanced 17.21 22.45 37.66 22.68

Table 8: Final sampling weights of Dynamic (%). The summation may not equal to exact 100% due to digit
rounding. We find the final static weights of different models have many variations. MoLM prefers to accept more
ShareGPT, while LLaMA-MoE samples more Math-Instruct. LLaMA-MoE 3.5B-2Ebalanced denotes the estimated
sampling weights as introduced in § 4.6.1.

Rounds MoLM LLaMA-MoE
DataSize Uniform Dynamic DataSize Uniform Dynamic

1st 2.81 2.98 3.10 5.52 5.78 5.96
2nd 2.36 2.28 2.36 4.10 4.36 4.48

Overall 2.59 2.63 2.73 4.81 5.07 5.22

Table 9: Detailed results on MT-Bench. Each question in MT-Bench has two turns of responses. Here we list the
results of each turn.

Rounds MoLM LLaMA-MoE
DataSize Uniform Dynamic DataSize Uniform Dynamic

Boolean Expressions 53.20 54.40 55.20 49.20 47.20 46.80
Causal Judgement 36.90 52.94 51.87 52.94 52.41 50.80

Date Understanding 20.80 18.40 19.20 24.40 29.60 36.80
Disambiguation Qa 38.00 38.80 38.80 30.80 31.60 28.00

Dyck Languages 9.20 13.60 15.20 18.40 10.80 15.60
Formal Fallacies 37.60 39.60 21.60 49.20 53.20 52.40

Geometric Shapes 12.00 9.60 10.40 9.60 9.60 22.40
Hyperbaton 48.40 48.40 48.40 51.60 45.60 43.60

Logical Deduction Five Objects 8.40 21.20 22.80 18.40 22.80 20.00
Logical Deduction Seven Objects 10.00 17.20 14.40 15.60 15.60 14.40
Logical Deduction Three Objects 34.00 33.60 34.40 39.20 36.40 38.00

Movie Recommendation 14.80 22.40 19.60 41.60 22.40 26.00
Multistep Arithmetic Two 0.00 0.00 0.00 0.80 1.20 1.20

Navigate 32.40 42.40 46.40 50.80 56.40 50.80
Object Counting 14.80 16.80 13.20 33.20 33.60 38.40

Penguins In A Table 10.27 10.27 22.60 20.55 21.23 26.03
Reasoning About Colored Objects 1.60 7.60 13.20 7.60 14.00 21.60

Ruin Names 20.80 11.60 10.80 21.20 18.00 20.00
Salient Translation Error Detection 20.80 11.60 18.00 22.40 22.40 22.40

Snarks 48.31 51.69 52.25 55.62 46.63 60.67
Sports Understanding 46.00 54.00 54.40 56.00 58.40 57.60
Temporal Sequences 27.60 21.20 25.20 11.60 10.80 12.80

Tracking Shuffled Objects Five Objects 6.80 8.40 18.40 13.60 20.00 16.40
Tracking Shuffled Objects Seven Objects 7.20 14.00 14.00 12.80 15.20 14.80
Tracking Shuffled Objects Three Objects 33.20 32.80 36.00 33.60 33.60 32.00

Web Of Lies 51.20 50.40 49.60 49.60 51.60 53.60
Word Sorting 2.00 1.20 2.00 5.20 7.60 7.60

Average 23.94 26.08 26.96 29.46 29.18 30.77

Table 10: Detailed results on different subtasks of BBH.
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