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Abstract

We introduce ROMMATH, the first benchmark
designed to evaluate the capabilities and ro-
bustness of multimodal large language mod-
els (MLLMs) in handling multimodal math
reasoning, particularly when faced with adver-
sarial perturbations. ROMMATH consists of
4,800 expert-annotated examples, including an
original set and seven adversarial sets, each tar-
geting a specific type of perturbation at the text
or vision levels. We evaluate a broad spectrum
of 17 MLLMs on ROMMATH and uncover a
critical challenge regarding model robustness
against adversarial perturbations. Through de-
tailed error analysis by human experts, we gain
a deeper understanding of the current limita-
tions of MLLMs. Additionally, we explore var-
ious approaches to enhance the performance
and robustness of MLLMs, providing insights
that can guide future research efforts.

1 Introduction

Multimodal math reasoning is a compelling area
for assessing the reasoning capabilities of MLLMs
because it involves complex tasks that require ac-
curate interpretation and reasoning across both vi-
sual and textual modalities (Chen et al., 2021;
Masry et al., 2022a; Lu et al., 2024b; Zhang et al.,
2024b; Wang et al., 2024a; Chen et al., 2024a;
Liang et al., 2024a). Recently-released MLLMs
have shown remarkable performance on various
multimodal math reasoning benchmarks (Lu et al.,
2024a; Liu et al., 2024; Chen et al., 2024c; Abdin
et al., 2024; Liang et al., 2023a).

Despite their successes, the robustness of
MLLMs to adversarial perturbations remains
largely unexplored. This gap is critical as it
challenges the reliability and safety of deploying
MLLMs in real-world scenarios (Li et al., 2024c;
Xie et al., 2024; Zhao et al., 2023; Zhang et al.,
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RQ1: How robust are MLLMs when performing multimodal math 
reasoning against different adversarial perturbation types?

RQ3: What strategies can be explored in future research to enhance 
model performance & robustness against adversarial perturbations?

Error Analysis

Question: △OAB lies in the first 
quadrant, with vertex A having 
coordinates (6, 3) and vertex B having 
an x-coordinate of 2. It is known that the 
hyperbolic function y = k/(x + 1) passes 
through point B and C. If OC = 2AC, 
then the area of △OBC is ______.

Answer: 6

Subject: Function

Original Set Adversarial Set

RQ2: On ROMMATH, what common errors can be identified in MLLM 
reasoning, especially under adversarial perturbations?

Error Cases

Exploration 1: In-Context Learning
Exploration 2: Different Prompting Methods
…

Text-level perturbation
- Lexical Perturbation
- Structure Perturbation
- Semantic Complexification
- Interference Introduction

Vision-level perturbation
- Low-level Perturbation
- Vision-dominant Interpretation
- Interference Introduction MLLM Robustness 

Analysis

Text-level: Interference Introduction 
(...abbreviated, same as original problem) 

The area of △OBC is ______. (You will 
find Pythagorean Theorem useful to solve 
this problem)

Vision-level (Interference Introduction)

Figure 1: Overview of this research. (Top) An illustra-
tion of ROMMATH benchmark construction; (Bottom)
the three research questions investigated in this paper.

2024a). Adversarial perturbations–subtle changes
to input data designed to deceive models–can sig-
nificantly impact the performance and decision-
making processes of these models, leading to
harmful outcomes.

To bridge this gap, we introduce the ROM-
MATH benchmark, which is designed to system-
atically assess the RObustness of MLLMs on
Multimodal MATH reasoning against adversarial
perturbations. ROMMATH spans three primary ar-
eas: geometry, function, and statistic, ensuring the
coverage of diverse and challenging scenarios. We
construct an original set consisting of 600 multi-
modal math problems that span diverse mathemat-
ical and visual contexts. To systematically test the
robustness of MLLMs at text- and vision-levels,
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(1) Original Set Collection

Math Word Problem Collection
- From widely-used datasets and 
public question repositories.
- geometry, function, statistics

Example Check and Revision
- Ensure each included example 
requires both text and vision 
interpretation 

(2) Adversarial Perturbation 
Design

Pilot Annotation
- Involve human experts to perturb 
math problems, and collect examples 
that lead to GPT-4o failure

Perturbation Type Categorization
- Analyze collected examples
- Define seven distinct perturbation 
types at text- and vision--levels

(3) Adversarial Set Annotation
Perturbation Annotation

- For each example in original set, 
randomly assign the 7 perturbation 
types to different annotators

- Annotators carefully modify the 
problem based on the perturbation 
types and guidelines

(4) Data Quality Validation
All Examples are evaluated by the 
second annotator
✅Text is grammatically correct 
✅Align problems with high 
school-level difficulty and their 
designated subjects.
✅Create reasonable perturbations 
that challenge problem-solving process 
while maintaining educational intent.

Figure 2: An overview of the ROMMATH benchmark construction pipeline.

we conduct a pilot study with expert annotators,
identifying and designing seven types of adversar-
ial perturbations to construct the adversarial sets.
For each problem in the original set, expert anno-
tators are assigned to develop multiple adversarial
examples, each subjected to one type of perturba-
tion. As a result, ROMMATH contains a total of
600 examples in the original set and 4,200 in the
adversarial sets.

Figure 1 outlines the three research questions
investigated in this study. We first conduct ex-
tensive experiments on ROMMATH, evaluating 17
MLLMs from 13 organizations known for their
leading performance in multimodal math reason-
ing. Our experimental results reveal that cur-
rent MLLMs generally exhibit performance drops
when facing adversarial perturbations. For exam-
ple, under the vision-level interference, the accu-
racy of the best-performing open-source model
(i.e., InternVL2.5 8B) falls from 55.7% to 46.3%.
To gain deeper insights into the limitations of cur-
rent MLLMs under adversarial perturbations, we
conduct a thorough error analysis, categorizing
five common error types these models exhibit. Fi-
nally, we investigate various strategies to improve
model robustness, including detailed evaluations
of in-context learning and prompting techniques.

Our contributions are summarized as follows:

• We introduce ROMMATH, a comprehensive
benchmark designed to systematically evaluate
the robustness of MLLMs in multimodal math
reasoning when faced with adversarial perturba-
tions. We design and annotate seven types of ad-
versarial perturbations at text- and vision-levels,
providing a systematic assessment (§2).

• We conduct a comprehensive evaluation of 17
MLLMs and reveal that current models gener-
ally exhibit significant performance drops when
facing adversarial perturbations (§3).

• We conduct a thorough error analysis of both
open-source and proprietary MLLMs with hu-
man experts, facilitating targeted improvement
for future research (§4).

• We explore several strategies to improve the ca-
pabilities and robustness of MLLMs, offering
valuable insights for future advancements (§5).

2 ROMMATH Benchmark

To provide a systematic and diagnostic evalua-
tion of MLLM performance and robustness, ROM-
MATH adheres to the following data collection
principles: (1) Diverse Mathematical and Visual
Contexts: The benchmark should cover a wide
range of mathematical and visual contexts. In re-
sponse, ROMMATH spans three primary areas: ge-
ometry, function, and statistics, complemented by
a variety of visual contexts (e.g., diagrams, plots,
and tables), to fully test the model’s robustness in
multimodal math reasoning (§2.1). (2) Diagnostic
Comprehensiveness: The benchmark should pro-
vide various diagnostic angles on MLLM robust-
ness. We design seven perturbations on text-level
and vision-level for a systematic evaluation (§2.2).
(3) Reasonable Adversarial Perturbation: The
adversarial perturbation should be reasonable and
meaningful, challenging the problem-solving pro-
cess effectively. We ensure this through compre-
hensive human validation on each annotated exam-
ple (§2.2).

In our preliminary study, we found it difficult to
maintain data quality using annotators from Ama-
zon Mechanical Turk. Therefore, we enlisted nine
graduate students who are fluent in English and
majoring in STEM fields for the dataset construc-
tion. We present an overview of the ROMMATH

construction pipeline in Figure 2; and detail each
construction process in the following subsections.
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△OAB lies in the first quadrant, with vertex A having coordinates 

(6, 3) and vertex B having an x-coordinate of 2. It is known that 

the hyperbolic function y = k/(x + l) passes through point B and C. 

If OC = 2AC, then the area of △OBC is ______.

Lexical Perturbation

△OAB resides in the first quadrant, with vertex A's coordinates being (6, 3) and vertex B 

possessing an x-coordinate of 2. It is established that the hyperbolic equation y = k/(x + l) 

passes through B and C. OC = 2AC, calculate the area enclosed by △OBC.

Structure Perturbation

Calculate the area of △OBC based on the following information: the triangle △OAB lies in 

the first quadrant. The hyperbolic function y = k/(x + l) goes through point B and C. Vertex A 

has coordinates (6, 3), and vertex B has an x-coordinate of 2. With OC being equal to 2AC.

Semantic Complexification

△OAB resides entirely within the first quadrant of the coordinate plane, where vertex A is 

located at (6, 3), and vertex B has precisely an x-coordinate of 2, without its y-coordinate 

explicitly provided. A hyperbolic curve described by the equation y = k/(x + l) is established 

to pass exactly through vertex B and C. Given that the distance from O to C along OA is 

twice the distance from A to C, determine the exact area enclosed by △OBC.

Interference Introduction

△OAB lies in the first quadrant, with vertex A having coordinates (6, 3) and vertex B having 

an x-coordinate of 2. It is known that the hyperbolic function y = k/(x + l) passes through 

point B and C. If OC = 2AC, then the area of △OBC is ______. (You will find Pythagorean 

Theorem useful to solve this problem)

Original Example

Interference Introduction

(Original textual problem)

Vision-dominant Interpretation

Answer the question in 
the figure.

Low-level Perturbation

(Original textual problem)

Figure 3: An example of the original problem (middle), with its corresponding text-level perturbations (top) and
vision-level perturbations (bottom).

2.1 Original Set Collection and Annotation

We include three primary subjects – geometry,
function, and statistics – into ROMMATH. ROM-
MATH focuses on high school-level math prob-
lems, ensuring they are challenging yet accessi-
ble to well-educated non-experts. By doing so,
we avoid the complexity of advanced college-level
mathematical topics like calculus and graph the-
ory (Chen et al., 2023; Yue et al., 2024a). While
some recent benchmarks (Lu et al., 2024b) include
additional tasks like numeric commonsense QA
and puzzle tests, we limit our scope to the three
core subjects mentioned, as our focus is on foun-
dational math reasoning capabilities.

We conduct a meticulous review, excluding
problems that exhibit inappropriate difficulty or
unsuitable formats. Additionally, the annotators
must confirm that solving the math problem re-
quires both textual and visual information. This
process results in a total of 600 problems remain-
ing within the ROMMATH original set.

2.2 Adversarial Perturbation Design

To ensure comprehensive coverage of perturbation
types in this study, we begin with a pilot anno-
tation phase involving multiple expert annotators.
Specifically, we randomly select 30 examples that

could be solved correctly by GPT-4o. We then en-
gage five annotators and two of the authors to cre-
atively perturb these questions, with the goal of in-
troducing modifications that would cause GPT-4o
to fail. We gather a total of 231 qualified examples.
These examples are then reviewed by the core au-
thors and categorized into seven distinct types that
span text- and vision-level perturbations, as illus-
trated in Figure 3.

Text-level Perturbation:
ROMMATH includes the following four types of
text-level perturbations:

(1) Lexical Perturbation Alter individual
words or phrases within the text of a math
problem without changing the overall structure.
For example, replace words with less common
synonyms or more specialized terminology.

(2) Structure Perturbation Modify the syntac-
tic structure of the problem’s textual statement.
For example, change the order in which informa-
tion is presented or rephrasing the statements us-
ing different grammatical structures.

(3) Semantic Complexification Enhance the
problem’s complexity by making its meaning
more intricate. This can be done by introduc-
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ing more complex relationships between elements
within problems or by presenting problems in a
more convoluted way. It aims to make the prob-
lem’s text content more challenging to interpret.

(4) Interference Introduction Include mislead-
ing or distracting textual information that is irrel-
evant to the solution. For example, include extra
numerical data, irrelevant background context, or
misleading statements, requiring models to focus
on pertinent information while ignoring the noise.

Vision-level Perturbation:
ROMMATH also includes the following three
types of vision-level perturbations:

(1) Low-Level Perturbation Make subtle
changes to the image in problem, e.g., alter colors,
brightness, contrast, or add minor visual noise.

(2) Vision-dominant Interpretation Move key
information within the text to the image, requiring
models to rely dominantly on the visual context to
solve the problem.

(3) Interference Introduction Introduce visual
elements that can distract or mislead the model.
For example, include irrelevant or misleading com-
ponents, extraneous symbols, or auxiliary lines
that are not related to the original problem.

2.3 Adversarial Example Annotation
For each example in the original set, we randomly
assign the seven perturbation types to different an-
notators. Each perturbation type corresponds to a
unique adversarial version of the original example.
This random assignment ensures that the perturba-
tions cover a wide range of strategies, making the
adversarial set diverse and comprehensive. Anno-
tators are required to perturb the question accord-
ing to the specific definitions and guidelines pro-
vided for their assigned perturbation type.

2.4 Data Quality Validation
To ensure the high quality of our ROMMATH

dataset, particularly the adversarial sets, each an-
notated example is evaluated by another annotator
based on the following criteria: (1) Text within
the math problems should be grammatically cor-
rect and maintain clarity. (2) The problems should
be appropriate for high school-level mathematics
in terms of difficulty. (3) The adversarial perturba-
tions should be reasonable and meaningful, chal-
lenging the problem-solving process effectively.

Property Testmini Set Test Set

Original Set (§2.1)

Total Questions 200 400
Geometry 66 149
Function (new) 72 136
Statistics (new) 62 115

Multiple-choice Questions 138 270
Choices per Question 4 4

Free-form Questions 62 130

Question Length (Avg. / Max.) 52.5 / 190 51.8 / 188

Adversarial Set (§2.2)

Total Perturbation Types (§ 2.2) 7 7
Text-level 4 4
Vision-level 3 3

Total Questions 200 × 8 400 × 8
= 1,600 = 3,200

Question Length (Avg. / Max.) 39.5 / 175 40.4 / 164

Total Examples 200+1,400 400+2,800
= 1,600 = 3,200

Table 1: Data Statistics of ROMMATH.

The validators are asked to revise examples that
do not meet these standards. In practice, 451 out
of 4,800 examples were revised by validators.

2.5 Data Statistics and Benchmark Release

Table 1 presents the key statistics of ROMMATH.
We randomly divide the benchmark into two sub-
sets: testmini and test. The testmini set is intended
for model development validation, while It con-
tains 200 original examples and 1,400 correspond-
ing adversarial perturbations. the test set is de-
signed for standard evaluation. It comprises the
remaining 400 original examples and 2,800 corre-
sponding perturbations. To prevent data contam-
ination (Jacovi et al., 2023; Shi et al., 2024), the
ground-truth answer for the test set will not be
publicly released. Instead, we will develop and
maintain an online evaluation platform, allowing
researchers to evaluate models and participate in a
public leaderboard.

3 Main Experiments

This section discusses the experimental setup and
key findings from our main experiments, with a
focus on addressing the first research question:

RQ1: How robust are different MLLMs
when performing multimodal math reasoning
against different adversarial perturbations?
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Model Orig Text-level Perturb Vision-level Perturb Avg
Lexical Structure SemComp Interfer. Low-lvl. V-dom. Interfer.

Human Expert 93.3 ( 86.7 ) ( 90.0 )

Gemini-2-Flash 59.8 59.3 59.0 54.2 55.5 58.7 56.3 57.1 57.2
Grok-2-vision 55.0 56.0 53.8 51.3 50.3 54.7 40.7 47.2 50.6
GPT-4o 51.8 50.3 49.7 51.3 47.5 50.7 49.3 50.0 49.8
Claude-3.5-sonnet 49.7 52.3 48.5 49.5 49.5 50.5 47.8 48.3 49.5
InternVL2.5-8B 55.7 51.2 52.8 48.0 47.8 47.7 38.3 46.3 47.4
GPT-4o-mini 49.8 46.2 45.3 46.0 44.8 48.8 44.3 46.2 45.9
InternVL2-8B 50.5 43.2 46.2 41.2 44.7 45.8 34.8 40.5 42.3
LLaVA-onevision-7B 47.7 42.3 43.7 45.3 42.7 42.5 24.0 35.6 39.4
Qwen2-VL-7B 43.2 41.5 42.5 39.2 43.3 36.0 34.0 37.2 39.1
Pixtral-12b 36.5 38.0 35.2 37.7 37.7 37.7 26.8 35.1 35.5
Llama-3.2-V-11B 38.3 36.2 37.8 43.8 34.5 36.0 27.7 31.2 35.3
Idefics3-8B-Llama3 34.3 31.7 33.2 31.8 33.2 31.8 22.5 30.6 30.7
Molmo-7B-D 31.8 29.8 32.8 36.5 30.2 29.7 25.5 27.2 30.2
GLM-4V-9B 31.3 29.5 26.2 29.5 30.3 30.7 22.2 26.5 27.8
Phi-3 29.2 29.0 26.7 27.3 24.3 26.3 19.8 22.6 25.1
LLaVA-Next-8b 22.7 21.2 24.2 28.5 22.2 21.5 14.3 17.9 21.4
h2ovl-mississippi-2B 26.3 21.7 21.8 21.3 20.0 21.3 17.2 19.8 20.4

Table 2: Performance of MLLM on the ROMMATH test set. Average accuracy on the adversarial set is used as
the ranking indicator. Cell colors indicate the rate of change in accuracy on the perturbation set compared to the
original set, with red indicating a decrease, and green indicating an increase. “SemComp” refers to “Semantic
Complexification”, and “V-dom.” refer to “Vision-dominant Interpretation”, respectively.

3.1 Experiment Setup

Answer Accuracy Evaluation. Following pre-
vious work (Liang et al., 2023c; Zhang et al.,
2024b; Lu et al., 2024b), we use accuracy as our
evaluation metrics. Our evaluation pipeline adopts
the approach used by MathVista (Lu et al., 2024b),
which involves applying GPT-4o to extract answer
text, normalizing this text to the required answer
format (e.g., an option letter for multi-choice ques-
tions), and then computing the accuracy scores.

Baseline and Human-level Performance. We
also set up several baselines for performance com-
parison: (1) random chance, where we select
one option at random for multiple-choice ques-
tions and leave free-form questions blank; and (2)
frequent chance, where we choose the most fre-
quent answer for multiple-choice and free-form
questions, separately. We also measure the Hu-
man Expert Performance on ROMMATH. Specif-
ically, we enlisted four evaluators and randomly
distributed 120 different examples among them.
These 120 examples were composed of 40 sets of
problems. Each set included one sample from the
original set and its corresponding samples from
the text-level and vision-level adversarial sets. To
prevent leakage effects caused by evaluators com-
pleting problems with the same original source,
we randomly assigned each example to the evalu-

ators without providing any hints about the pertur-
bations and ensured that each evaluator only com-
pleted one problem from each set.

Evaluated MLLMs. We examine the perfor-
mance of 17 MLLMs across two distinct cate-
gories on ROMMATH: (1) Open-source MLLMs,
including LLaVA (Liu et al., 2023, 2024), Qwen2-
VL and Qwen2.5-VL (Wang et al., 2024b),
GLM-4V (GLM et al., 2024), Molmo (Deitke
et al., 2024), Pixtral-12B (Dong et al., 2024),
H2OVL (Galib et al., 2024), Idefics3 (Lau-
rençon et al., 2024), Phi-3.5-Vision (Abdin
et al., 2024), Llama-3.2-Vision (Meta, 2024), In-
ternVL2 (Ailab, 2024), and InternVL2.5 (Chen
et al., 2025). (2) Proprietary MLLMs, including
GPT-4o & GPT-4o-mini (OpenAI, 2024), Grok-
2-Vision (xAI, 2024), Claude-3.5 (Anthropic,
2024b), and Gemini-2.0-flash (Gemini, 2024). Ap-
pendix A presents the details of evaluated models.
Following previous work on multimodal reason-
ing (Yue et al., 2024a; Lu et al., 2024b), by de-
fault, our experiments are conducted under zero-
shot Chain-of-Thought settings to assess the gen-
eralization capacity of MLLMs without few-shot
prompting or further fine-tuning. The employed
CoT prompt is presented in Table 3.
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3.2 Experimental Results
Table 2 presents the MLLM performance on
ROMMATH. We first analyze the results on origi-
nal set and summarize our key findings as follows:

ROMMATH presents substantial challenges for
current MLLMs. A significant performance
gap is observed between human experts and eval-
uated MLLMs on the original set of ROMMATH.
Notably, Gemini-2-Flash, the highest-performing
model to date, achieves an accuracy rate of only
59.8%, in contrast to the 93.3% accuracy of hu-
man experts. Moreover, the evaluated proprietary
MLLMs generally exhibit better performance than
open-source MLLMs. These discrepancies high-
light the complexity and challenges of the original
problems collected in our benchmark. We believe
that the ROMMATH original set is valuable on its
own in assessing MLLM performance.

We then analyze the MLLM performance
against adversarial perturbations and present the
following key findings, with more detailed analy-
ses provided in the subsequent sections.

Human performance maintains consistency on
the original and adversarial sets. The results
reveal that human experts are largely unaffected
by the annotated adversarial perturbations, con-
sistent with the “Reasonable Adversarial Pertur-
bation” data collection principle outlined in Sec-
tion 2. This demonstrates that the adversarial
perturbations in ROMMATH are reasonable and
should not hinder those individuals with strong
and robust reasoning abilities.

The critical challenge of MLLM robustness
against adversarial perturbations needs greater
attention from the research community. Both
open-source and proprietary MLLMs generally ex-
hibit significant performance drops when facing
adversarial perturbations. This highlights the vul-
nerability of current MLLMs to adversarial per-
turbations, underscoring the need for improved
model robustness in future work. Among vari-
ous text- and vision-level perturbation types, inter-
ference introduction causes the significant perfor-
mance degradation. This highlights the weakness
of current MLLMs in distinguishing key informa-
tion from irrelevant and misleading noise, espe-
cially when visual interpretation is required. How-
ever, we observe a notable performance improve-
ment in open-source models released recently. In
particular, the InternVL2.5 achieves performance

comparable to proprietary models, underscoring
the potential of open-source models through con-
tinued innovation and community collaboration.

4 MLLM Error Analysis

RQ2: On ROMMATH, what common er-
rors can be identified in MLLM reasoning, es-
pecially under adversarial perturbations?

To answer RQ2, we conduct an in-depth hu-
man analysis of the error cases made by GPT-
4o, Qwen2-VL-7B, and Llama 3.2-Vision 11B, as
they achieve substantial performance among pro-
prietary and open-source MLLMs. Specifically,
for each model, we randomly sample (1) 50 er-
ror examples from the testmini original set and (2)
50 examples that are correctly solved in the test-
mini original set but fail under adversarial pertur-
bations. Through in-depth analysis, we have iden-
tified the following five common error types that
current MLLMs are likely to make:

(1) Reasoning Error: The model lacks or incor-
rectly applys logical reasoning to solve the prob-
lem, such as missing critical steps or making im-
proper reasoning.

(2) Vision Misinterpretation: The model
makes errors when interpreting or extracting
elements and their attributes from charts, such as
numbers, geometric shapes, element matching,
and annotation relationships.

(3) Text Misinterpretation: The model misun-
derstands the given conditions of the textual prob-
lem. It may involve misreading or misinterpreting
key terms, instructions, or numerical values within
the problem statement.

(4) Text and Vision Misalignment: The model
mismatches the information presented in the im-
age and the question, such as misplaced objects
or skewed angles, hinders accurate correlation and
understanding.

(5) Calculation Error: The model makes errors
in mathematical calculation, leading to incorrect
numerical results.

5 Exploring Strategies to Enhance
MLLM Robustness

Building on the analysis from RQ2, we explore
several potential strategies for enhancing model ro-
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Prompt Variants Prompt

Standard CoT (used for
main experiments)

Solve the math world problem using the provided textual and visual context. You should
first conduct reasoning step by step, and then provide the final answer at the end.

Direct Output Solve the math world problem using the provided textual and visual context. You should
directly output the final answer without providing reasoning process.

Descibe-then-Reason CoT Solve the math word problem using the provided textual and visual context. You should
conduct reasoning step by step in the format [Problem Overview, Step-by-Step Detailed
Solution, Final Answer], ’Problem Overview’ should contain the information you learn
from the text and image respectively.

Table 3: Variants of zero-shot prompting methods investigated in RQ3.

bustness on the ROMMATH testmini set. For these
experiments, we utilize the two top-performing
open-source models, Llama 3.2-Vision 11B and
Qwen2-VL-7B, to gain insights addressing RQ3:

RQ3: What strategies can be explored in
future research to enhance the performance
and robustness of MLLMs against adversarial
perturbations?

5.1 In-Context Learning

As discussed in Section 3.1, our main experiments
are conducted in zero-shot settings to assess the
generalization capacity of MLLM without exam-
ple demonstrations. However, we believe that
utilizing few-shot settings with example demon-
strations could potentially enhance model perfor-
mance and robustness. To test this hypothesis, we
compare several variants in a one-shot setting us-
ing examples, along with human-annotated step-
by-step solutions, from different sources: (1) from
the original set; (2) from the adversarial sets and
with a different perturbation type; and (3) from the
adversarial sets and with the same type of pertur-
bation as the tested one. To ensure fairness, we em-
ploy the same standard CoT prompting for exper-
iments. We randomly sample one math problem
from the testmini set for the example demonstra-
tion. As illustrated in Table 5, providing example
demonstrations generally improves MLLM perfor-
mance on both original and adversarial sets. Addi-
tionally, using examples from the adversarial sets
to demonstrate how to handle adversarial perturba-
tions can help reduce the performance gap caused
by the adversarial perturbations.

5.2 Different Prompting Methods

We also investigate the impact of different instruc-
tions within zero-shot prompts on the model’s per-

Systems Orig. Set Adv. Set

Llama 3.2-Vision 11B

0-shot CoT 38.3 35.3
1-shot CoT

From original set 38.6 (+0.3) 35.8 (+0.5)
From different type 39.1 (+0.8) 36.5 (+1.2)
From same type 39.0 (+0.7) 37.2 (+1.9)

Qwen2-VL-7B

0-shot CoT 43.2 39.1
1-shot CoT

From original set 44.0 (+0.8) 40.1 (+1.0)
From different type 44.3 (+1.1) 40.3 (+1.2)
From same type 43.8 (+0.6) 40.6 (+1.5)

Table 4: Result analyses of Llama 3.2-Vision 11B and
Qwen2-VL-7B on the testmini set under different in-
context learning setting.

Systems Orig. Set Adv. Set

Llama 3.2-Vision 11B
Standard CoT 38.3 35.3
Direct Output 36.9 (-1.4) 33.0 (-2.3)
Describe-then-Reason CoT 40.6 (+2.3) 38.5 (+3.2)

Qwen2-VL-7B

Standard CoT 43.2 39.1
Direct Output 41.6 (-1.6) 37.0 (-2.1)
Describe-then-Reason CoT 44.2 (+1.0) 40.5 (+1.4)

Table 5: Result analyses of Llama 3.2-Vision 11B
and Qwen2-VL-7B on the testmini set using different
prompting methods.

formance and robustness. We design three vari-
ants of zero-shot prompts (presented in Table 3),
specifically: (1) Direct Output: the MLLM is in-
structed to directly output the final answer without
performing step-by-step reasoning. (2) Standard
CoT: the same as used in the main experiments,
where the model is instructed to perform step-by-
step reasoning before providing the final answer.
(3) Describe-then-Reason CoT (Jia et al., 2024):
the model is instructed to first re-describe the math
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problem, interpreting and extracting all key tex-
tual and visual information before proceeding with
step-by-step reasoning. This aligns with our find-
ings in RQ2 that more reasoning errors occur in
the step of interpreting and extracting information
from the textual and visual context. Therefore, we
adopt this idea in our benchmark. As illustrated in
Table 5, Describe-then-Reason CoT achieves the
best performance and robustness.

6 Related Work

Multimodal Math Reasoning Benchmark.
With the growing interest in evaluating the rea-
soning capabilities of foundation models across
textual and visual contexts, multimodal math
reasoning benchmarks have gained prominence.
Early benchmarks primarily focused on specific
areas such as geometry (Seo et al., 2015; Lu
et al., 2021; Chen et al., 2022; Cao and Xiao,
2022) and chart interpretation (Kahou et al.,
2017; Methani et al., 2020; Masry et al., 2022b;
Wang et al., 2024c). Recently, comprehensive
datasets (Lu et al., 2024b; Wang et al., 2024a;
Chen et al., 2024a; Sun et al., 2024; Yue et al.,
2024b) have been developed to cover a broad
spectrum of specialized multimodal mathematical
tasks. However, despite these advancements,
the robustness of MLLMs in multimodal math
reasoning remains under-explored.

Evaluating Robustness of Foundation Model.
Evaluating robustness of multimodal foundation
models has become a critical area of research.
Benchmarks like Avibench (Zhang et al., 2024a)
and ChartInsights (Wu et al., 2024) primarily tar-
get low-level image perturbations, examining a va-
riety of distortions such as noise, blur, weather
effects, font size, and image element transfor-
mations. Additionally, initiatives like Math-
Verse (Zhang et al., 2024b) and MMStar (Chen
et al., 2024a) emphasize balancing models’ visual
and textual capabilities. However, these meth-
ods are mainly centered on low-level perturbations
and do not thoroughly analyze how such image
changes induce specific errors or affect the mod-
els’ reasoning abilities. In contrast, our research
shifts the focus towards understanding the impacts
of adversarial perturbations on model reasoning.
We develop ROMMATH and conduct a systematic
evaluation of MLLM robustness against adversar-
ial perturbations.

7 Conclusion

This paper presents ROMMATH, a new bench-
mark designed to evaluate the robustness of
MLLMs in multimodal math reasoning against ad-
versarial perturbations. We reveal a significant de-
cline in MLLMs performance under adversarial
conditions. Through detailed error analysis by hu-
man experts, we gain a deeper understanding of
the current limitations of MLLMs. We also ex-
plore various strategies, including in-context learn-
ing and different prompting methods, to enhance
both model performance and robustness, provid-
ing insights for future research.

Limitations and Future Work

In this work, we perform a comprehensive anal-
ysis of MLLMs’ capabilities and robustness on
multimodal math reasoning tasks. However, our
work still has some limitations: First, recent
works (Zhao et al., 2023; Sheshadri et al., 2024)
have shown that training foundation models on ad-
versarial data can enhance their robustness. How-
ever, due to computational constraints, we do not
explore the adversarial training in our study. In-
stead, our study does not explore adversarial train-
ing. Instead, we focus on improving model ro-
bustness through in-context learning and advanced
prompting techniques. We encourage future re-
search to investigate the application of model train-
ing methods (Liang et al., 2023b; Sheshadri et al.,
2024; Liang et al., 2024b) on ROMMATH for
further robustness improvements. Moreover, this
study focuses on high-school-level multimodal
math reasoning and does not extend to more
advanced topics such as calculus or graph the-
ory (Chen et al., 2024b; He et al., 2024). The
primary objective is to examine the robustness
of models in multimodal mathematical reasoning
when faced with adversarial perturbations. High-
school-level problems are chosen as they present
a manageable level of complexity, enabling us to
focus on robustness without the additional chal-
lenges posed by more advanced reasoning and
domain-specific knowledge. We believe that fu-
ture work, as multimodal language models con-
tinue to evolve, could extend our work by evaluat-
ing model robustness in more sophisticated math-
ematical reasoning tasks.
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A Appendix

Model Series Organization Release Source

GPT-4o (OpenAI, 2024) OpenAI 2024-11 https://platform.openai.com/
docs/models/gpt-4o

Claude-3.5-sonnet (Anthropic, 2024a) Anthropic 2024-10 https://www.anthropic.com/api

Gemini-2.0-flash (Gemini, 2024) Google 2024-11 https://ai.google.dev/
gemini-api/docs

Grok-2-Vision (xAI, 2024) xAI 2024-8 https://docs.x.ai/docs/models?
cluster=us-east-1

Qwen2-VL (Wang et al., 2024b) Qwen Team 2024-9 Qwen/Qwen2-VL-*B-Instruct
Qwen2.5-VL (Wang et al., 2024b) 2025-1 Qwen/Qwen2.5-VL-7B-Instruct

Idefics3 (Laurençon et al., 2024) Hugging Face 2024-8 HuggingFaceM4/Idefics3-8B-Llama3

LLaVA-NeXT (Li et al., 2024a) LMMs-lab 2024-4 lmms-lab/llama3-llava-next-8b-hf
LLaVA-Onevision(Li et al., 2024b) 2024-8 lmms-lab/llava-onevision-qwen2-7b-ov

Phi-3.5-Vision (Abdin et al., 2024) Microsoft 2024-7 microsoft/Phi-3.5-vision-instruct

H2OVL (Galib et al., 2024) H2O AI 2024-10 h2oai/h2ovl-mississippi-2b

GLM-4V (GLM et al., 2024) THUDM 2024-8 THUDM/glm-4v-9b

Molmo (Deitke et al., 2024) Allen Institute for AI 2024-9 allenai/Molmo-7B-D-0924

Pixtral-12B (Dong et al., 2024) Mistral AI 2024-9 mistralai/Pixtral-12B-2409

Llama-3.2-Vision (Meta, 2024) Meta 2024-9 meta-llama/Llama-3.2-11B-Vision-Instruct

InternVL2 (Ailab, 2024) Shanghai AI Lab 2024-7 OpenGVLab/InternVL2-*B
InternVL2.5 (Chen et al., 2025) 2025-2 OpenGVLab/InternVL2.5-*B

Table 6: Details of the organization, release time, and model source (i.e., url for proprietary models and Hugging-
face model name for open-source models) for the LLMs evaluated in ROMMATH.
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