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Abstract
Knowledge conflict arises from discrepancies
between information in the context of a large
language model (LLM) and the knowledge
stored in its parameters. This can hurt per-
formance when using standard decoding tech-
niques, which tend to ignore the context. Ex-
isting test-time contrastive methods seek to
address this by comparing the LLM’s output
distribution with and without the context and
adjust the model according to the contrast be-
tween them. However, we find that these meth-
ods frequently misjudge the degree of conflict
and struggle to handle instances that vary in
their amount of conflict, with static methods
over-adjusting when conflict is absent. We pro-
pose a fine-grained, instance-level approach
called ADACAD, which dynamically infers the
weight of adjustment based on the degree of
conflict, as measured by the Jensen-Shannon
divergence between distributions representing
contextual and parametric knowledge. Across
four LLMs, six question-answering (QA) and
three summarization datasets, we demonstrate
that ADACAD consistently outperforms other
decoding baselines with average QA accuracy
gains of 14.21% (absolute) over a static con-
trastive baseline, and improves the factuality of
summaries by 6.19 (AlignScore). Lastly, we
show that while contrastive baselines hurt per-
formance when conflict is absent, ADACAD
mitigates these losses, making it more applica-
ble to real-world datasets in which some exam-
ples have conflict and others do not.1

1 Introduction

Large language models (LLMs) encode vast
amounts of information from pretraining in their pa-
rameters (Petroni et al., 2019; Roberts et al., 2020),
giving them remarkable capabilities in knowledge-
intensive NLP tasks. However, LLMs also hallu-
cinate plausible but factually incorrect responses

1Our code is publicly available at: https://github.com/
HanNight/AdaCAD

How many Summer Olympics has France hosted?
Question

France became the second country 
after the United Kingdom to host the 
Summer Olympics three times …

Context (after July 2024)

Parametric Knowledge (cutoff 2022)

France hosted the Summer Olympics twice, in 
1900 and 1924. France participated in …

LM

France has hosted two Summer 
Olympics, both in Paris. Paris is the 
second most frequent city to …

+ +
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Figure 1: In cases of high knowledge conflict, greedy
decoding fails to attend to the context, resulting in incor-
rect answers. Contrastive decoding allows the context
to be incorporated, but must be done with care: in low-
conflict cases, excessive contrast can over-correct (e.g.,
by CAD with α = 1), resulting in incorrect outputs.
ADACAD dynamically adjusts the degree of contrast,
allowing it to handle both high and low-conflict cases.

due to outdated knowledge (Lazaridou et al., 2021;
Dhingra et al., 2022; Kasai et al., 2023), lesser-
known facts (Mallen et al., 2023), and even mis-
information in the pre-training corpus. A popular
line of prior work aims to improve answers and
reduce hallucination by augmenting LLMs’ con-
text with external knowledge, including knowledge
from retrieved documents (Guu et al., 2020; Lewis
et al., 2020), web search results (Nakano et al.,
2022), and the outputs of tools (Schick et al., 2023).
However, discrepancies between the added contex-
tual knowledge and the model’s pretrained para-
metric knowledge can cause knowledge conflict. In
these cases, models often overlook the provided
context and rely overly on the parametric knowl-
edge (Longpre et al., 2021; Chen et al., 2022; Zhou
et al., 2023; Wan et al., 2023). For example, in
Fig. 1, the LLM’s pretraining data (and thus its
parametric knowledge) has a cutoff of September
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2022, at which point France had hosted the Sum-
mer Olympics twice. This conflicts with the lat-
est contextual knowledge (from July 2024) when
France had hosted three times, and leads the model
to answer incorrectly when using greedy decoding.

One promising direction for handling knowl-
edge conflict uses inference-time decoding strate-
gies that adjust the model’s output probability dis-
tribution without the need for additional training.
Shi et al. (2024) propose context-aware decoding
(CAD) which seeks to correct the model’s output
based on the difference between output probability
distributions with and without the context. How-
ever, in practice, we find that while CAD works
well when there is a uniformly high degree of con-
flict between the parametric knowledge and exter-
nal context, it struggles with scenarios in which
different examples have varying degrees of knowl-
edge conflict. Empirically, we observe that CAD
can in fact degrade performance on low-conflict
examples by overcorrecting the output distribution.
For example, in Fig. 1, when the context is sourced
from a document before July 2024, there is no con-
flict between the parametric knowledge and the
contextual knowledge; both state that France has
hosted the Olympics twice. Here, CAD overcor-
rects the distribution, leading to an invalid answer.

In this work, we present a simple and effec-
tive dynamic decoding method, Adaptive Context
Aware Decoding (ADACAD) , aimed at automati-
cally modeling the degree of conflict between the
context and parametric knowledge and dynamically
inferring the degree of adjustment needed for ev-
ery token. We use the Jensen-Shannon divergence
(JSD) between output distributions with and with-
out the context to measure the degree of knowledge
conflict, using the resulting value to reweight the
combination of distributions. A higher JSD indi-
cates a greater degree of conflict and signals the
need for higher adjustment (more weight on the
contextual knowledge) while a lower JSD reflects
a smaller degree of conflict requiring a smaller
adjustment (more weight on the parametric knowl-
edge). As illustrated in Fig. 1, this leads to correct
answers both for high and low-conflict examples by
helping the model adaptively decide how to weigh
contextual vs. parametric knowledge.

We demonstrate ADACAD’s effectiveness on
a diverse range of tasks, covering question-
answering (QA) and summarization, with six QA
datasets (Natural Question (NQ; Kwiatkowski
et al., 2019), NQ-SWAP (Longpre et al., 2021),

TriviaQA (Joshi et al., 2017), PopQA (Mallen et al.,
2023), HotpotQA (Yang et al., 2018), TabMWP
(Lu et al., 2023)) and three summarization datasets
(CNN-DM (See et al., 2017), XSum (Narayan et al.,
2018), and TofuEval (Tang et al., 2024)). We test a
range of base LLMs, examining Llama-2 (Touvron
et al., 2023), Llama-3 (AI@Meta, 2024), and Mis-
tral (Jiang et al., 2023). We consider different sizes
of these models and also test both the base and
instruction-tuned variants. Our results and anal-
yses show that decoding with a uniform level of
contrast benefits high-conflict scenarios but gener-
ally hurts performance, while the adaptive contrast
of ADACAD results in improvements across the
board. Overall, ADACAD generally achieves supe-
rior performance compared to the baselines, with
an absolute gain of 14.21% over CAD (a static
baseline), 4.82% over COIECD (Yuan et al., 2024,
a baseline that classifies instances as conflicting
or not), 5.86% over ConfCD (Zhao et al., 2024,
a method that makes dynamic token-level adjust-
ments based on LLM confidence), and 2.41% over
greedy decoding when averaged across models and
QA datasets. On summarization, ADACAD im-
proves summary quality and factuality, with an
average AlignScore (Zha et al., 2023) gain of 4.16
over greedy decoding, 2.19 over CAD, 10.44 over
COIECD, and 7.96 over ConfCD.

Furthermore, in our analyses, we explore why
ADACAD improves over the baselines. We first
validate the hypothesis that ADACAD is able to
balance contextual and parametric knowledge by
assigning lower weights to lower-conflict instances,
testing each method on datasets designed to have
high and low conflict, finding that ADACAD’s in-
ferred weight is much lower when there is no con-
flict. We also compare the amount by which CAD
and ADACAD adjust the base model’s distribution
on examples with and without conflict, finding that
while ADACAD changes the distribution less when
there is no conflict (i.e., when the base model’s
distribution is already sufficient), CAD adjusts by
roughly the same amount whether there is con-
flict or not, explaining its lower QA performance.
Additionally, for summarization tasks, ADACAD
generates more faithful summaries whereas other
methods tend to hallucinate details.

2 Related Work

Knowledge Conflict Integrating external knowl-
edge as context into LLMs enables them to keep
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abreast of current world knowledge (Kasai et al.,
2023), reduce hallucination (Shuster et al., 2021),
and improve factuality. However, a recent line of
work focuses on discrepancies between external
contextual knowledge and the model’s paramet-
ric knowledge, such as LLMs’ over-reliance on
their parametric knowledge on entity-based QA
tasks (Longpre et al., 2021), ignoring retrieved con-
texts (Tan et al., 2024), and exhibiting confirmation
bias (Xie et al., 2024), etc. Zhou et al. (2023)
demonstrate that LLMs’ faithfulness to the con-
text can be significantly improved using carefully
designed prompting strategies – this is orthogo-
nal to our work, which is compatible with differ-
ent prompts. Zhang et al. (2023) address how to
combine retrieved and parametric knowledge to im-
prove open-domain QA, but require further train-
ing discriminators with silver labels, whereas our
method is training-free.

Contrast in Text Generation Contrastive ap-
proaches for text generation have been widely stud-
ied and used to enhance response diversity in con-
versations (Li et al., 2016), steering model gener-
ations towards desired attributes while maintain-
ing fluency and diversity (Liu et al., 2021), and
contrasting between larger and relatively smaller
language models to generate high-quality text (Li
et al., 2023), and improve visually-grounded gen-
eration tasks (Wan et al., 2024). Context-aware
decoding (CAD; Shi et al., 2024) leverages a con-
trastive output distribution that amplifies the differ-
ences between the output probabilities predicted by
a model with and without the context, promoting
greater attention to the input context for more faith-
ful and reliable text generation. Unlike ADACAD,
these past contrastive approaches do not adapt the
weight on distributions to varying degrees of knowl-
edge conflict. To address this, Yuan et al. (2024)
introduce COIECD, a decoding-time method that
categorizes instances into two discrete bins – high
and low conflict – based on a complex information-
entropy constraint governed by tuned hyperparam-
eters, and employs different decoding strategies
(by altering CAD) for each. Zhao et al. (2024)
uses LLM confidence to adjust the output probabil-
ities dynamically (denoted as ConfCD) as well as
relies on additional noisy and irrelevant contexts.
In contrast, ADACAD employs a single dynamic
instance-level strategy that automatically models
(based on Jensen-Shannon divergence) a continu-
ous degree of conflict without imposing rigid cate-

gories or requiring additional noisy and irrelevant
contexts, accommodating more general knowledge
conflict settings. In addition to these conceptual
differences, in Section 4.2, we show that ADACAD
outperforms CAD, COIECD, and ConfCD on QA
and summarization.

3 Methodology

Task and Notation Given an input query x with
a relevant context c, a language model parame-
terized by θ is tasked with generating a correct
response y = y1, . . . , yn of length n that respects
the context. At each decoding step t, a token yt
can be sampled autoregressively from a probability
distribution conditioned on query x and context c
as y ∼ pθ(y | c,x,y<t). However, when there is
conflict between knowledge in the context c and
parametric knowledge encoded in LLM, the model
can struggle to pay enough attention to c and overly
rely on the parametric knowledge (Longpre et al.,
2021; Chen et al., 2022), i.e., sample from a distri-
bution more akin to pθ(y|x,y<t).

Background: Context-aware Decoding To mit-
igate knowledge conflicts, Shi et al. (2024) intro-
duce Context-aware Decoding (CAD), which sam-
ples from a contrastive output distribution that am-
plifies the difference between output probabilities
with and without context. CAD measures the para-
metric knowledge via pθ(y|x,yt) and prioritizes
relevant contextual knowledge over the model’s
parametric knowledge by using the pointwise mu-
tual information (PMI) between the context c and
the generation y, conditioned on x,y<t to modify
the model’s original output distribution.

yt ∼ p̃θ (y | c,x,y<t)

∝ pθ(y | c,x,y<t)

[
pθ(y | c,x,y<t)

pθ(y | x,y<t)

]α
(1)

where the PMI term
pθ(y|c,x,y<t)
pθ(y|x,y<t)

is a scaling factor

used to adjust the parametric knowledge, and α
governs the weight or degree of adjustment. A
larger α means a greater adjustment and α = 0
reduces to no adjustment, i.e., greedy decoding.2

ADACAD: Handling Variable Conflict In test-
time contrastive methods – such as those presented

2While PMI also measures the amount of conflict between
the distributions with and without context, empirically, we
find that it still results in a high degree of perturbation to the
output distribution in cases of low conflict (c.f. Section 5.2).
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How many Summer Olympics has France hosted?

France became the second country after the United 
Kingdom to host the Summer Olympics three times …

Context

Question

How many Summer Olympics has UK hosted?

The United Kingdom has hosted the Summer 
Olympics three times, in 1908, 1948 and 2012. …

Context

Question

Parametric Knowledge
(cutoff 2022)

France hosted Summer Olympics 
twice, in 1900 and 1924. …

LM

Parametric Knowledge
(cutoff 2022)

Britain is the first country to host 
three Summer Olympics …

LM

Question

Context + Question (Greedy)

Question

CAD

 AdaCAD

CAD

 AdaCAD

High Conflict
Low Conflict

✅

❌

✅

𝛼 = 1
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𝛼 = JSD(    ||    ) = 0.8
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❌

✅
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Figure 2: Comparison of greedy decoding (Context+Question), CAD, and ADACAD on high-conflict and low-
conflict examples. Greedy decoding struggles to incorporate contextual knowledge in high-conflict examples. CAD
tends to overemphasize irrelevant tokens in the vocabulary, leading to incorrect answers in low-conflict examples.
ADACAD uses dynamic adaptation to effectively balance between context and parametric knowledge.

by Li et al. (2023) and Shi et al. (2024) – α is a
fixed hyperparameter set for an entire dataset, re-
quiring tuning on a validation set. However, every
instance in the dataset may need a different weight
for adjustment; furthermore, in longer-form gen-
eration, individual timesteps may require different
weights, making a single α value suboptimal. For
instance, in the presence of a high degree of con-
flict, e.g., Fig. 2 (top), a larger α can perturb the
LLM’s output distribution to mitigate over-reliance
on parametric knowledge, whereas in cases with
low or no conflict (as in Fig. 2 (bottom)), the adjust-
ment to the LLM’s output distribution is minimal.
Therefore, a fixed α may fail on scenarios where
there are heterogeneous examples with and without
conflict, i.e., on realistic datasets.

To address variable conflict, we introduce a
different αt for each timestep and each instance.
Specifically, we automatically infer αt dynami-
cally based on the degree of knowledge conflict for
each instance (and decoding step) without supervi-
sion, enabling automatic adaptation. To accomplish
this, we use Jensen-Shannon divergence (JSD; Lin,
1991) to model the degree of conflict between the
context and parametric knowledge. While similar
to Kullback-Leibler divergence, JSD is symmet-
ric and bounded within the range [0, 1], making it
more suitable for modeling conflicts, as it provides
a more interpretable and normalized measure of
divergence (details in Appendix A). A larger JSD
between pθ(y | x,yt) and pθ(y | c,x,yt) reflects
a greater conflict between context and parameter
knowledge, suggesting that we need a larger α to
encourage the LM to rely more on the context,

while a smaller JSD reflects a smaller conflict, sug-
gesting that a smaller α is required to maintain
the LM’s adherence to its parametric knowledge.
Therefore, we set αJSD

t at each decoding step t to:

αJSD
t = JSD (pθ (yt | x,y<t) ∥ pθ (yt | c,x,y<t))

This enables both coarse-grained instance-level and
fine-grained token-level adjustments. Finally, we
sample outputs from the probability distribution:

yt ∼ pθ(y |c,x,y<t)

[
pθ(y |c,x,y<t)

pθ(y |x,y<t)

]αJSD
t

This dynamic adaptation allows our approach to
effectively balance between context and parametric
knowledge, ensuring robust performance across
varying degrees of conflict without the need for
extensive manual tuning, thereby enhancing both
flexibility and accuracy in diverse scenarios.

ADACAD for Long-form Generation In long-
form generation tasks, we find that initially, the
JSD values tend to be low (cf. Fig. 5 in Ap-
pendix A.1). This may be due to the model’s ten-
dency to produce generic, low-information outputs
at the start of each sequence. Therefore, the diver-
gence between pθ(yt|x,y<t) and pθ(yt|c,x,y<t)
is minimal. To mitigate this issue and ensure
more consistent performance throughout the gen-
eration process, we introduce a warmup operation:
αJSD
t = max (αJSD

t , λ), where λ is a lower bound
to adjust for the initially low JSD values, ensuring
a more robust and stable starting point. We set
λ = 0.3 for long-form generation tasks.3

3We set λ = 0.3 to match the maximum JSD values for
non-conflicting data from QA (cf. Section 5.1).
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4 Experiments and Results

4.1 Experimental Setup

Datasets and Metrics We evaluate on several
QA datasets: Natural Questions (NQ; Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), PopQA
(Mallen et al., 2023), and HotpotQA (Yang et al.,
2018). We use these datasets to simulate real sce-
narios with varying degrees of conflict for each
instance. Additionally, we evaluate on an existing
knowledge conflict dataset, NQ-SWAP (Longpre
et al., 2021), which is based on the NQ dataset and
consists of synthetic conflicting data. Lastly, we
also test on a popular tabular question-answering
dataset, TabMWP (Lu et al., 2023), that requires
LLMs to use reasoning skills over tabular contexts.
We report exact match accuracy on all QA datasets.

To test ADACAD on longer-form generation
tasks, we evaluate on three standard summarization
tasks: CNN-DM (See et al., 2017), XSum (Narayan
et al., 2018), and TofuEval (Tang et al., 2024).
While many documents from older datasets (such
as CNN-DM and XSum) are present in LLM’s
pretraining data,4 TofuEval is a recent, more chal-
lenging benchmark on topic-focused dialogue sum-
marization (especially for marginal or secondary
topics in the document). We use two reference-
based metrics, ROUGE-L (Lin, 2004) and BERT-P
(Zhang et al., 2020), to evaluate summarization
quality. As TofuEval does not support reference-
based evaluation Tang et al. (2024), we use recom-
mended AlignScore (Zha et al., 2023) to measure
the factual consistency of summaries on both main
(central to the document) and marginal (lesser ex-
plored) topics. For additional details and examples
of all datasets, refer to Appendix B.

Source of Context We use the gold context pro-
vided by NQ, NQ-SWAP, TriviaQA, and HotpotQA
as the relevant contexts. Since PopQA does not pro-
vide gold contexts, we employ BM25 (Robertson
and Zaragoza, 2009), to retrieve relevant contexts
from Wikipedia. For TabMWP, we take the semi-
structured table as the relevant context. In summa-
rization tasks, the source document serves as the
relevant context, while the instruction is used as
the input query. A summary of input query x and
context c for all datasets is shown in Table 10 with
corresponding prompts in Appendix F.

4Using pile.dataportraits.org, we find several docu-
ments from CNN-DM appear in the Pile (Gao et al., 2020),
commonly used to pretrain LLMs.

Models We test ADACAD on different pre-
trained base language models, including Llama2
(13B) (Touvron et al., 2023), Llama3 (8B, 70B)
(AI@Meta, 2024), and Mistral (7B) (Jiang et al.,
2023); we measure ADACAD’s effectiveness both
on the base and instruction-tuned model variants.

Baselines We compare ADACAD to standard de-
coding, context-aware decoding (CAD; Shi et al.,
2024) – which has a fixed α, COIECD (Yuan et al.,
2024) – which classifies whether there is knowl-
edge conflict using a method controlled by tuned
thresholds and then operates in two different de-
coding modes, each with the same fixed α, and
ConfCD (Zhao et al., 2024) – which dynamically
sets alpha based on LLM confidence. Across all
tasks and baselines, we use greedy decoding un-
der a zero-shot setting.5 For CAD, we set α = 1
for the QA datasets and α = 0.5 for the summa-
rization datasets, following prior work (Shi et al.,
2024). For COIECD, the values of λ and α are set
to 0.25 and 1 for QA datasets, and 0.25 and 0.5 for
the summarization datasets, respectively, following
Yuan et al. (2024). For ConfCD, the α values are
set to the maximum token probability with context
(CR = maxy′∈V pθ(y

′|c,x,y<t)) if CR exceeds
the maximum token probability without context
(i.e. CR > C = maxy′∈V pθ(y

′|x,y<t)); other-
wise, it is given by 1 − C. In ADACAD, the α
values are dynamically adjusted based on the de-
gree of knowledge conflict for each instance.

4.2 Main Results

QA Tasks From Table 1, we observe that ADA-
CAD consistently outperforms greedy decoding,
CAD, COIECD, and ConfCD. For instance, on
Llama3-70B, ADACAD achieves an average score
improvement of 2.18% (absolute) over greedy de-
coding, 12.91% over CAD, 3.52% over COIECD,
and 2.44% over ConfCD. Note that while CAD
performs quite well on NQ-SWAP (containing only
high-conflict examples), it often degrades perfor-
mance (relative to greedy decoding) on other QA
datasets, resulting in an 18.58% accuracy drop on
average across all models and tasks; in contrast,
ADACAD performs well across datasets, whether
they have conflict or not. Furthermore, ADACAD
consistently outperforms COIECD across various

5We find that greedy decoding outperforms top-p sampling
on CNN-DM, so we use greedy decoding across all methods
for summarization tasks instead of top-p sampling as in Shi
et al. (2024) (c.f. Table 9, Appendix D).
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Model Decoding NQ NQ-SWAP TriviaQA PopQA HotpotQA TabMWP Avg

Llama2-13B

Greedy 44.26 54.89 85.50 76.65 38.27 38.30 56.31
CAD 37.91 80.35 71.40 76.83 31.92 19.30 52.95
COIECD 44.60 59.84 87.00 81.05 42.81 38.80 59.02
ConfCD 45.81 76.89 81.70 79.08 35.11 29.10 57.95
ADACAD 46.73 67.84 85.40 78.79 37.83 37.50 59.02

Llama3-8B

Greedy 44.63 47.81 85.70 80.51 51.42 52.20 60.38
CAD 35.96 77.94 40.20 74.27 39.53 26.60 49.08
COIECD 43.36 51.16 83.10 78.49 45.63 49.70 58.57
ConfCD 42.90 72.44 71.20 79.80 47.13 46.20 59.95
ADACAD 45.47 62.34 82.50 81.34 50.53 53.00 62.53

Llama3-70B

Greedy 44.13 55.74 90.20 86.10 56.11 66.70 66.50
CAD 34.05 81.32 54.60 75.16 40.86 48.60 55.77
COIECD 45.09 57.26 88.60 83.60 52.03 64.40 65.16
ConfCD 41.44 79.34 81.00 82.00 50.14 63.50 66.24
ADACAD 45.43 70.07 88.80 85.68 55.00 67.10 68.68

Mistral-7B

Greedy 42.56 56.86 80.40 67.56 40.89 38.90 57.65
CAD 20.98 66.89 24.20 48.54 18.49 20.10 35.82
COIECD 29.00 58.09 71.60 64.59 35.83 31.60 48.45
ConfCD 23.99 59.29 58.70 54.19 29.83 31.30 42.88
ADACAD 45.09 67.27 80.20 67.26 41.35 39.70 60.23

Table 1: Under a zero-shot setting, we show that on average (across tasks and models) ADACAD improves accuracy
by 14.21% over CAD, 4.82% over COIECD, and 5.86% over ConfCD (results with instruction-tuned models in
Appendix C).

CNN-DM XSum TofuEval (AlignScore)

Decoding ROUGE-L BERT-P AlignScore ROUGE-L BERT-P AlignScore Overall Main / Marginal

Greedy 24.93 95.41 91.44 14.36 94.05 85.28 76.66 81.64 / 61.19
CAD 24.76 94.45 91.01 14.59 93.65 84.34 83.93 87.26 / 73.58
COIECD 23.47 92.06 85.49 14.51 91.04 73.81 75.24 80.68 / 58.31
ConfCD 23.94 93.37 87.03 14.78 92.71 77.98 76.97 78.17 / 73.23
ADACAD 25.42 94.91 94.97 14.91 94.29 85.81 85.07 88.06 / 75.79

Table 2: Results on summarization datasets with Llama3-70B showing ADACAD yields the best performance on
factuality metrics (AlignScore) and overall summarization quality (ROUGE-L, and BERT-P). The full results with
other language models are shown in Table 8 of Appendix E.

QA datasets, highlighting the strength of our contin-
uous JSD-based approach over COIECD’s binary
classification approach that splits instances into
ones with conflict or without. For instance, ADA-
CAD outperforms COIECD by a large average
margin of 10.29% on NQ-SWAP across all mod-
els. Additionally, on more complex datasets like
TabMWP with newer LLMs, ADACAD also shows
superior performance against all baselines, e.g.,
achieving average improvements of 6.30% with
Llama3-70B and 9.23% with Mistral-7B. These re-
sults indicate that ADACAD is better able to com-
bine the advantages of greedy decoding and CAD,
performing well in scenarios without knowledge
conflict (as greedy decoding does) as well as those
with conflict (as CAD does).

Summarization Tasks In Table 2, we investi-
gate how ADACAD can improve performance on

longer-form generation, showing results on three
summarization tasks, CNN-DM, Xsum, and To-
fuEval. For TofuEval, ADACAD demonstrates
substantial improvements, particularly excelling in
marginal topics (i.e., topics not central to the docu-
ment) where it outperforms greedy decoding, CAD,
COIECD, and ConfCD by 14.60, 2.21, 17.48, and
2.56 points in terms of AlignScore – a measure of
faithfulness – respectively. This highlights ADA-
CAD’s ability to handle diverse topics and main-
tain factual consistency, especially when prompted
to focus on a marginal topic; qualitatively, we see
in Fig. 4 that these improvements are driven by less
hallucination on the part of ADACAD.

On CNN-DM, ADACAD achieves the highest
ROUGE-L score of 25.42, surpassing greedy de-
coding, CAD, COIECD, ConfCD by 0.49, 0.66,
1.95, and 1.48, respectively. In terms of factual con-
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Decoding NQ-SWAP NQ-SYNTH Overall

Greedy 51.60 88.20 69.90
CAD 79.60 64.00 71.80
COIECD 50.80 83.60 67.20
ADACAD 62.80 86.40 74.60

Table 3: Accuracy on conflicting data (NQ-SWAP) and
non-conflicting data (NQ-SYNTH) with Llama3-70B.

sistency, ADACAD also leads with an AlignScore
of 94.97. On XSum, ADACAD also outperforms
all baselines across all metrics. For instance, ADA-
CAD achieves an average improvement of 1.43,
and 5.46 points in BERT-P, and AlignScore, re-
spectively. For BERT-P metric on CNN-DM, ADA-
CAD outperforms all contrastive decoding base-
lines and is slightly lower than Greedy decoding; as
mentioned in Section 4.1, this may be a result of a
lack of conflict in these datasets, which are at least
partly included in large pretraining corpora. These
improvements indicate that ADACAD’s dynamic
adjustment mechanism is effective in long-form
generation, allowing it to balance context and para-
metric knowledge.

5 Analysis

5.1 Performance comparison on instances
with higher and lower degrees of conflict

Setup In Table 1, we find that CAD underper-
forms ADACAD, COIECD, as well as greedy de-
coding on most QA datasets, except NQ-SWAP,
wherein every instance by design has a high degree
of conflict (Longpre et al., 2021). We hypothesize
that on more realistic datasets, the trailing perfor-
mance of CAD stems from its inability to account
for instances with low or minimal conflict. To test
this hypothesis, we evaluate all methods on exam-
ples designed to have minimal conflict, i.e., where
the model’s internal representation aligns well with
the context. Specifically, we generate a dataset of
synthetic non-conflicting data called NQ-SYNTH:
we sample 500 questions from Natural Questions
and then prompt the Llama-3-70B to generate the
answer for each question. We replace the gold
answer entity in the context with the generated an-
swer by regex, thus, making the context consistent
with the LLM’s internal knowledge. Finally, we
evaluate Llama-3-70B on NQ-SYNTH and on NQ-
SWAP. See Table 6 in Appendix B for examples of
NQ-SWAP and NQ-SYNTH.

Decoding ρ (NQ-SWAP) ρ (NQ-SYNTH) |∆ρ|
CAD 0.56 0.57 0.01
ADACAD 0.86 0.94 0.08

Table 4: Spearman rank-order correlation coefficient
between original and adjusted output distributions for
CAD and ADACAD on NQ-SWAP and NQ-SYNTH.
The difference |∆ρ| measures the sensitivity of a decod-
ing method to the degree of conflict (higher is better).

Result: CAD hurts performance when conflict
is low, while ADACAD can handle both cases.
Consistent with our hypothesis, in Table 3, we
observe that in the absence of conflict (on NQ-
SYNTH), CAD substantially degrades performance
by ≈24% relative to greedy decoding, while ADA-
CAD maintains a comparable performance. Al-
though COIECD seeks to detect conflict and oper-
ates in two distinct decoding modes for high and
low confllict, it also underperforms in non-conflict
scenarios, falling 2.8% behind ADACAD. How-
ever, in cases of high conflict (NQ-SWAP), where
greedy decoding yields dramatically lower accu-
racy, ADACAD improves over greedy decoding by
11.2%, while COIECD cannot handle high-conflict
examples as well, lagging behind ADACAD by
12%. To further investigate how ADACAD bal-
ances instances with lower and higher degrees of
conflict, we compute αJSD

max, which is the maximum
αJSD
t value across tokens, for both datasets. Indeed,

we find that αJSD
max adapts to the amount of conflict,

with an average value of 0.45 on NQ-SWAP with
a higher level of conflict, and substantially lower
value (αJSD

max = 0.28) on NQ-SYNTH which does
not contain any conflict by design.

5.2 PMI does not adequately address conflict

As described in Section 3, both CAD and ADA-
CAD compute the PMI between the LLM’s output
distributions with and without external context c.
However, CAD relies solely on the PMI term to bal-
ance the level of conflict, whereas in ADACAD, we
compute (PMI)α

JSD
t where both PMI and αJSD

t adapt
with the degree of conflict. In cases of low conflict,
the LLM’s distributions should in principle be the
same with and without context, rendering PMI≈1,
i.e., resorting to greedy decoding for any value of
α (cf. Eq. (1)). However, in practice, we find that,
even with minimal conflict, the PMI term reranks
the tokens in the head of the LLM’s distribution,
resulting in poor performance for CAD.
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Datasets CAD (tuned α) ADACAD

NQ 44.35 (0.25) 45.47
TriviaQA 79.60 (0.25) 82.50
PopQA 78.19 (0.25) 81.34
HotpotQA 46.81 (0.50) 50.53
TabMWP 46.90 (0.50) 53.00

Average 59.17 62.57

Table 5: Performance of CAD with tuned α and ADA-
CAD on QA datasets with Llama3-8B.

Setup To test how well the PMI term accounts
for conflict, we measure the amount of reranking
(among tokens) done by CAD and ADACAD rel-
ative to the greedy distribution. We compute the
Spearman rank-order correlation coefficient ρ be-
tween the greedy distribution and output distribu-
tion from CAD and ADACAD (with scaling factors
PMI and (PMI)α

JSD
t respectively). We restrict the

measurement to the top-20 tokens (averaged across
decoding steps) on NQ-SWAP and NQ-SYNTH.6

Intuitively, a method sensitive to the degree of con-
flict should yield a lower rank correlation (more per-
turbation) when the amount of conflict is high (on
NQ-SWAP), and higher rank correlation (less per-
turbation) in cases of low conflict (on NQ-SYNTH).
To this end, we compute the absolute difference or
sensitivity, |∆ρ| between the two ρ values of NQ-
SWAP and NQ-SYNTH. A larger |∆ρ| indicates
that the method is more effective at distinguishing
between conflicting and non-conflicting data, i.e.,
more sensitive to the degree of conflict in instances.

Result: PMI over-perturbs greedy distribution
in low conflict setting; ADACAD is adaptive.
Results in Table 4 demonstrate that CAD, which
only relies on the PMI term to offset conflicts, per-
turbs the greedy distribution to roughly the same
extent (ρ) in the presence or absence of conflict,
i.e., on NQ-SWAP and NQ-SYNTH, respectively.
This minimal difference in |∆ρ| suggests that CAD
is agnostic to the amount of conflict, leading to
over-correction for non-conflicting examples. On
the other hand, the correlation coefficient of ADA-
CAD is higher on NQ-SYNTH than on NQ-SWAP

(0.94 vs. 0.86), indicating more perturbation to
the greedy distribution in the presence of conflict.
Additionally, the sensitivity to conflict (|∆ρ|) of
ADACAD is substantially larger (8×) than that of
CAD, highlighting ADACAD’s superior ability to
distinguish between conflicting and non-conflicting

6As the rank of low-probability tokens does not influence
the generation, we focus on the top-20 tokens at each step.

examples. Note that ADACAD has a higher ρ in
both settings, indicating that overall, it perturbs the
LLM’s distribution to a lesser extent.

5.3 Tuning α of CAD for each dataset

Since ADACAD does not require validation data
to tune the value of α, we set CAD’s α = 1 (tuned
on NQ-SWAP) for QA datasets following Shi et al.
(2024), which may explain the strong performance
of CAD on NQ-SWAP and low performance on
other datasets. To further underscore the advan-
tages of ADACAD over CAD, we compare ADA-
CAD (untuned) to a CAD baseline with a tuned
α value. Specifically, we tune CAD’s α using a
validation set of 500 instances (randomly sampled
from the train set) for each dataset.

Table 5 shows that ADACAD achieves an av-
erage improvement of 3.4% (absolute) over CAD
even when α is tuned. We hypothesize that ADA-
CAD’s superior performance stems from varying
the level of adjustment adaptively depending on
the underlying instance, whereas a tuned-α CAD
still uses the same α uniformly for all instances
and does not adjust according to varying degrees of
conflict among instances. Moreover, while tuning
CAD’s α for each dataset might improve perfor-
mance in a controlled setting, such tuning does not
scale well to real-world scenarios wherein models
encounter a mix of user queries – some with high
conflict and others with low or no conflict – and
this categorization is not known a priori.

5.4 Qualitative Examples

QA Tasks We highlight the importance of adap-
tively capturing the degree of conflict between the
context and parametric knowledge, we show a qual-
itative example from the NQ dataset in Fig. 3. ADA-
CAD outperforms other methods by correctly gen-
erating the “CN Tower’s 2,579 steps”. We also
observe that CAD tends to produce unrelated out-
puts due to over-correction, which over-amplifies
the influence of irrelevant tokens within the vo-
cabulary. COIECD fails to detect the conflict and
generates the same incorrect answer as greedy de-
coding. We find that ADACAD strikes the best
balance between providing contrast in scenarios
with high knowledge conflict while not suffering
from over-correction on low-conflict instances.

Summarization We also show a qualitative ex-
ample from TofuEval in Fig. 4. Given a meeting
transcript centered on “report on air quality im-
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Context (CN Tower Wikipedia Article):
A metal staircase reaches the main deck level after 1,776 steps, and the SkyPod 100 m (328 ft) above after 2,579 steps; ... but the fastest climb on record is 7 minutes and 52 seconds in 
1989 by Brendan Keenoy, an Ontario Provincial Police officer. ... Paralympic champion Jeff Adams climbed the stairs of the tower in a specially designed wheelchair.
Question: How many steps does the CN tower have? 
Gold Answer: 2,579 | Parametric Knowledge (Llama3-70B): 1776
Greedy: 1,776 steps CAD: Brendan Keenoy climbed the stairs in 7 minutes and 52 seconds in 1989. Jeff Adams climbed the stairs in a specially wheelchair. COIECD: 1,776 steps 
AdaCAD: 2,579 steps

Figure 3: Qualitative example from NQ. Informative text is highlighted in blue, while text about unrelated facts
and wrong answers is highlighted in red. ADACAD produces the correct answer, while CAD generates unrelated
outputs and COIECD fails to detect the conflict and generates the same incorrect answer as greedy decoding.

Meeting Transcripts:
… they discussed the report on air quality impacts from Paramount's metal processing facilities on Long Beach residents …
Speaker 4: Katie, public comment CNN. Okay. We'll go ahead and do the this motion for this for this report. Then with consensus, no objection. Next item.
Speaker 6: To.
Speaker 1: Item 21 is a report from financial management recommendations received for the fiscal year 2016 year end budget performance report citywide.
Topic: Fiscal Year 2016 | Type: marginal

Greedy Decoding: The City Council received and filed the Fiscal Year 2016 Year-End Budget Performance Report. The report provides a summary of the City's financial performance for 
the fiscal year ended September 30, 2016. 
CAD: Item 21 is a report from financial management recommendations received for the fiscal year 2016 year end budget performance report citywide.\nSpeaker 7: Mr. Mayor, members 
of the council, I'm Pat West, Long Beach City Manager. I'm joined by John Gross, our director of Financial Management. And we're here to present the fiscal year 2016 year end …
COIECD: The fiscal year 2016 year end budget performance report is a citywide report that provides a summary of the city's financial performance for the fiscal year 2016. The report 
includes information on the city's revenues, expenditures, and fund balances, as well as recommendations for improving financial performance. The report is intended to provide …
AdaCAD: The City Council received and filed the Fiscal Year 2016 Year-End Budget Performance Report Citywide.

Figure 4: TofuEval: Text unsupported by the transcripts is highlighted in red, while consistent and relevant text is
highlighted in blue. ADACAD generates a faithful summary whereas other methods tend to hallucinate details.

pacts from Paramount’s metal processing facilities
on Long Beach residents”, we prompt the LLMs to
generate a summary focused on the marginal topic

“Fiscal Year 2016”. Baselines like greedy decod-
ing, CAD, and COIECD tend to hallucinate details,
such as fabricated financial data or names of indi-
viduals not mentioned in the transcript, which are
highlighted in red. In contrast, ADACAD gener-
ates a more accurate and faithful summary without
introducing unverified information.

6 Discussion and Conclusion

In naturalistic scenarios with mixed datasets con-
taining examples with and without knowledge con-
flicts, existing decoding methods, including CAD,
fail to adapt to changing amounts of conflict and
in fact can lead to reduced performance. Although
larger and more performant models can store more
information in their parametric knowledge – thus
leading to less and less conflict as models improve
– there will still always be gaps between the model
and the actual state of the world (e.g., because
of time cutoffs). This means that models will en-
counter both low- and high-conflict scenarios, no
matter their strength.

To this end, we introduce ADACAD, a sim-
ple yet effective dynamic decoding method that
uses Jensen-Shannon divergence to dynamically
model the degree of conflict for a given example
(and timestep) and automatically balance the con-

trast between contextual and parametric knowledge.
On diverse QA datasets, we show that ADACAD
combines the best of greedy decoding and context-
aware decoding, improving performance. Addition-
ally, experiments on summarization demonstrate
that ADACAD enhances both the quality and factu-
ality of generated text, while other methods tend to
hallucinate details. Lastly, ADACAD consistently
outperforms COIECD, another hybrid decoding
strategies that detects conflict. Our analysis reveals
that ADACAD mitigates the overcorrection seen in
CAD by dynamically adjusting the weight of con-
textual knowledge based on the degree of conflict.

Limitations

Since our proposed method ADACAD is based
on CAD, it requires access to output logits from
LLMs to calculate the difference between output
probabilities with and without context. However,
API-based LLMs like GPT-4 often do not provide
output logits, making it challenging to directly ap-
ply logit-based methods like ADACAD and CAD
to fully black-box models. Additionally, our exper-
iments focus on English datasets and pre-trained
models; as LLMs become available for other lan-
guages, future research will be needed to explore
the interactions between language and knowledge
conflict. We do not foresee any particular risks
associated with the application of our method.
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A Jensen-Shannon Divergence

Jensen–Shannon divergence (JSD) is a symmetric
measure of the similarity between two probability
distributions, defined as the average of the Kull-
back–Leibler divergences from their mean distribu-
tion. JSD between two probability distribution P
and Q is defined as:

JSD(P ∥ Q) =
1

2
(KL(P ∥ M) + KL(Q ∥ M))

where M = 1
2(P +Q) is a mixture distribution of

P and Q and:

KL(P ∥ M) =
∑

x P (x) log P (x)
M(x)

KL(Q ∥ M) =
∑

xQ(x) log Q(x)
M(x)
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Figure 5: Plot of JSD values of the first 5 decoding steps
using Llama3-70B on TofuEval. The JSD values tend to
have lower values and variance at the start of decoding.

A.1 JSD Value Trend for Summarization
Fig. 5 illustrates the trend of JSD values over the
initial decoding steps when using LLama3-70B on
the TofuEval dataset. We observe that JSD val-
ues start relatively low and exhibit less variation
or sensitivity in the early steps of decoding. This
may be due to the model’s tendency to produce
generic, low-information outputs at the start of
each sequence. As the decoding progresses, the
JSD values increase and become more sensitive,
indicating the dynamic adjustment in ADACAD
works well.

B Dataset Details

We use six question answering datasets and three
summarization datasets for evaluation. We also
present one example from each dataset, as detailed
in Table 10. For the synthetically generated QA
datasets NQ-SWAP and NQ-SYNTH, we provide
examples in Table 6.

B.1 QA Datasets
Some QA datasets, such as NQ, TriviaQA, and Hot-
potQA, do not have public test sets. For these we
report performance of baselines and ADACAD on
the dev set. Further, following Shi et al. (2024), to
expedite inference, we sub-sample datasets where
the test sets are very large (>8K instances).

• Natural Question (NQ; Kwiatkowski et al.,
2019) is a large-scale QA dataset consisting
of real user questions issued to Google search,
with answers found from Wikipedia. We test
on 3231 instances from the NQ validation set,
which originally contained 7.83K examples.

These instances were selected because they
have short answers, making them suitable for
evaluating all baselines and our method.

• NQ-SWAP (Longpre et al., 2021) introduces
synthetic conflicts by swapping entities in the
context to challenge the model’s ability to
manage conflicting information. Specifically,
Longpre et al. (2021) first identify instances
with named entity answers, then substitute
mentions of the entity in the gold document
with an alternate entity. NQ-SWAP consists
of 4K instances derived from the NQ dataset.

• TriviaQA (Joshi et al., 2017) is a realistic
QA dataset that includes a wide variety of
trivia questions, requiring models to deal with
large amounts of text from various sources
and handle inference over multiple sentences.
We randomly sample 1K instances from the
TriviaQA Wiki validation set, which contains
a total of 8K examples.

• PopQA (Mallen et al., 2023) is a dataset de-
signed to test models’ performance on ques-
tions about long-tail entities. We choose 1.6K
instances from the PopQA test set for which
we are successfully able to retireive contexts
containing the gold answer (c.f. Section 4.1).

• HotpotQA (Yang et al., 2018) is a QA dataset
that requires multi-hop reasoning, where the
model needs to find and combine informa-
tion from multiple sources to answer complex
questions. We use the entire development set
of HotpotQA, consisting of 7.4K instances.

• TabMWP (Lu et al., 2023) is a dataset fo-
cused on open-domain grade-level problems
that require mathematical reasoning on both
textual and tabular data. We use an official
“lite” subset of TabMWP called “test1k” which
contains 1K instances.

B.2 Summarization Datasets
• CNN-DM (See et al., 2017) is a widely used

dataset for training and evaluating models
on abstractive summarization tasks, involving
news articles and their summaries. We ran-
domly sample 500 examples from the original
11.5k test set.

• XSum (Narayan et al., 2018) is an abstractive
summarization dataset known for its highly
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Question:
How many episodes are in Chicago Fire season 4?

NATURAL QUESTION
Original Context:
The fourth season of Chicago Fire contained 23 episodes.
It is an American drama television series with ...
Original Answer: 23

NQ-SWAP
Substitute Context:
The fourth season of Chicago Fire contained 10 episodes.
It is an American drama television series with ...
Substitute Answer: 10

NQ-SYNTH
Substitute Context:
The fourth season of Chicago Fire contained 22 episodes.
It is an American drama television series with ...
Substitute Answer (generated from LLM): 22

Table 6: Example from NQ-SWAP and NQ-SYNTH.
A substitute example for NQ-SWAP is made from the
original example by replacing the original answer, 23,
with a similar but conflicting answer, i.e., 10. A substi-
tute example for NQ-SYNTH is made from the original
example by replacing the original answer, 23, with one
generated by Llama3-70B without context, i.e., 22.

challenging nature, where the goal is to gen-
erate concise, one-sentence summaries from
longer documents. We used 500 instances
from the XSum dataset’s 11.3K test set.

• TofuEval (Tang et al., 2024) is a benchmark
for evaluating the factual consistency and
topic relevance of summaries, especially in
scenarios involving dialogue or meeting tran-
scriptions. This benchmark draws 50 test set
documents from each of two datasets: Me-
diaSum (Zhu et al., 2021) and MeetingBank
(Hu et al., 2023). For each document, three
topics were generated, resulting in a total of
300 topic-focused summaries. Approximately
75% of the total are main topics that refer to
the central information in a document that is
under discussion or is presented in the doc-
ument, and the rest are marginal topics that
refer to information in a document that is not
the main focus of the document but is still part
of the context.

B.3 Licenses
Datasets are released under the following licenses:

• Natural Questions: Apache-2.0 license

• NQ-Swap: MIT license

• TriviaQA: Apache-2.0 license

• PopQA: MIT license

• HotPotQA: Apache-2.0 license

• TabMWP: MIT license

• CNN-DM: Apache-2.0 license

• XSum: MIT license

• TofuEval: MIT license

The models we use have the following licenses:

• Llama 2: custom license https://ai.meta.
com/llama/license/

• Llama 3: custom license https://www.
llama.com/llama3/license/

• Mistral: Apache-2.0 license

C Instruction-tuned LLMs Experiments

We compare ADACAD against the baselines on all
datasets using instruction-tuned language models
and show the results in Table 7. We find that ADA-
CAD achieves comparable or better performance
than all baselines when applied to instruction-tuned
models.

D Results of Different Decoding Methods
on CNN-DM

Table 9 shows the results of different base decoding
methods on CNN-DM with Llama-70B. Here, we
see that greedy decoding performs better than Top-
p sampling (Holtzman et al., 2020), motivating our
use of greedy decoding in Table 2.

Decoding ROUGE-L BERT-P

Top-p Sampling 17.48 86.79
Greedy Decoding 23.47 92.06

Table 9: Comparison of greedy decoding and top-p
sampling (p = 0.9) with Llama3-70B on CNN-DM.

E Full Results with Different Base LMs
on Summarization Tasks

Table 8 shows the full results with all base language
models on three summarization tasks: CNN-DM,
XSum, and TofuEval. ADACAD achieves com-
parable or better performance than all baselines
across different LLMs.
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Model Decoding NQ NQ-SWAP TriviaQA PopQA HotpotQA TabMWP Avg

Llama2-13B-Chat
Greedy 35.75 50.24 54.40 72.61 32.15 50.40 49.26
CAD 39.49 71.24 59.40 68.81 30.14 48.70 52.96
ADACAD 37.08 57.69 61.20 72.31 32.34 52.10 52.12

Llama3-8B-Inst
Greedy 40.27 60.89 64.00 70.89 39.66 68.50 57.37
CAD 39.43 71.19 52.30 70.35 37.27 63.10 55.61
ADACAD 39.65 67.37 61.50 70.41 39.43 66.10 57.41

Llama3-70B-Inst
Greedy 40.82 59.16 64.10 64.41 47.70 70.40 57.77
CAD 42.31 66.37 58.40 64.23 47.21 69.30 57.97
ADACAD 41.35 60.77 64.60 65.78 48.21 71.90 58.77

Mistral-7B-Inst
Greedy 42.93 64.74 77.20 76.59 50.26 50.20 60.32
CAD 42.56 67.89 71.70 74.45 47.12 46.40 58.35
ADACAD 42.87 63.99 75.40 76.89 49.49 47.30 59.32

Table 7: Results on QA datasets with different instruction-tuned language models. When averaged across datasets,
ADACAD is better than or comparable to the baselines.

F Prompts

We provide the prompts for pre-trained base lan-
guage with and without context for both QA and
summarization tasks.

Question Answering

With Context:
{context}
Using only the references listed above, answer the following question:
Question: {question}
Answer:

Without Context:
Answer the following question:
Question: {question}
Answer:

Summarization - CNN-DM

With Context:
Document: {document}
Summarize the document in three sentences.
Summary:

Without Context:
Summarize the document in three sentences.
Summary:

Summarization - XSum

With Context:
Document: {document}
Summarize the document in one sentence.
Summary:

Without Context:
Summarize the document in one sentence.
Summary:

Summarization - TofuEval

With Context:
Document: {document}
Summarize the provided document focusing on “{topic}”. The sum-
mary should be less than 50 words in length.
Summary:

Without Context:
Summarize the provided document focusing on “{topic}”. The sum-
mary should be less than 50 words in length.
Summary:
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CNN-DM XSum TofuEval (AlignScore)

Decoding ROUGE-L BERT-P AlignScore ROUGE-L BERT-P AlignScore Overall Main / Marginal

Llama2-13B

Greedy 23.70 94.25 87.28 13.51 93.30 85.23 66.11 72.51 / 46.23
CAD 24.33 94.44 88.99 14.86 93.36 82.41 80.39 84.03 / 69.07
COIECD 20.21 88.63 75.72 13.95 89.80 70.41 62.88 68.45 / 45.55
ADACAD 23.93 94.63 91.15 14.18 94.04 84.33 80.39 83.94 / 69.36

Llama3-8B

Greedy 25.16 94.92 90.33 13.16 93.43 83.65 68.17 73.51 / 51.57
CAD 24.91 94.70 91.44 13.80 93.37 86.88 83.40 86.77 / 72.94
COIECD 23.60 92.01 83.92 13.65 91.40 69.47 70.07 73.65 / 58.94
ADACAD 25.42 95.09 94.35 13.83 94.02 86.78 80.62 83.24 / 72.46

Llama3-70B

Greedy 24.93 95.41 91.44 14.36 94.05 85.28 76.66 81.64 / 61.19
CAD 24.76 94.45 91.01 14.59 93.65 84.34 83.93 87.26 / 73.58
COIECD 23.47 92.06 85.49 14.51 91.04 73.81 75.24 80.68 / 58.31
ADACAD 25.42 94.91 94.97 14.91 94.29 85.81 85.07 88.06 / 75.79

Mistral-7B

Greedy 24.59 93.57 80.80 14.07 88.56 58.76 63.07 68.62 / 45.79
CAD 23.72 93.22 90.61 18.20 91.54 84.94 67.64 67.55 / 67.48
COIECD 23.50 92.06 83.97 17.85 89.79 69.26 65.95 70.63 / 51.39
ADACAD 24.76 94.21 93.05 18.51 92.19 86.79 74.00 77.59 / 62.84

Llama3-70B-Instruct

Greedy 24.72 90.64 88.22 23.19 90.80 82.40 78.56 80.18 / 73.52
CAD 25.17 91.19 88.52 20.92 91.52 86.54 79.86 79.55 / 80.82
COIECD 23.85 89.84 83.88 22.41 90.61 81.42 77.54 78.69 / 73.97
AdaCAD 25.26 90.91 88.68 21.52 91.30 85.30 81.16 82.82 / 76.03

Table 8: Results on summarization datasets with different LMs. ADACAD generally outperforms the baselines
across metrics and datasets.
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Natural Question

c: The second season of the American television drama series Breaking Bad premiered on March 8, 2009 and
concluded on May 31, 2009. It consisted of 13 episodes, each running approximately 47 minutes in length ...
x: How many episodes in season 2 Breaking Bad?

NQ-SWAP

c: The second season of the American television drama series Breaking Bad premiered on March 8, 2009 and
concluded on May 31, 2009. It consisted of 27 episodes, each running approximately 47 minutes in length ...
x: How many episodes in season 2 Breaking Bad?

TriviaQA

c: ... Removal of dental biofilm is important as it may become acidic causing demineralization of the teeth (also
known as caries) or harden into calculus (dental) (also known as tartar). Calculus can not be removed through ...
x: In dentistry, what is the name given to hardened dental plaque?

PopQA

c: The 2012 Uzbekistan First League was the 21st season of 2nd level football in Uzbekistan since 1992. It is
split in an Eastern and Western zone, each featuring 12 teams ...
x: What sport does 2012 Uzbekistan First League play?

HotpotQA

c: <t> Superdrag </t> Superdrag was an American alternative rock band from Knoxville, Tennessee ...
<t> Collective Soul </t> Collective Soul is an American rock band originally from Stockbridge, Georgia ...
x: Are both Superdrag and Collective Soul rock bands?

TabMWP

c: alpaca | $1,605.00
kinkajou | $1,837.00
python | $8,343.00
parrot | $1,123.00
macaw | $1,629.00
x: Erik has $7,616.00. How much money will Erik have left if he buys a parrot and a kinkajou? (Unit: $)

CNN-DM

c: Article: (CNN)Two years ago, the storied Boston Marathon ended in terror and altered the lives of runners,
spectators and those who tried to come to their rescue. Just last week, Dzhokhar Tsarnaev was convicted ...
x: Summarize the article in three sentences. Summary:

XSum

c: You may want to choose another fantasy destination after the British Foreign Office told tourists to be aware
that some political demonstrations in the capital, Male, have led to violence. It did add, though, that most trips ...
x: Summarize the article in one sentence. Summary:

TofuEval

c: Document: DOBBS: General Motors today announced it will offer early retirement buyouts for 113,000 of its
employees. Management calls it, “accelerated attrition”. And it is only the latest sign of the dramatic decline ...
x: Summarize the provided document focusing on “Buyouts for General Motors employees”. The summary
should be less than 50 words in length. Summary:

Table 10: An illustration of input query x and relevant context c for different datasets.
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