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Abstract
Large language models (LLMs), with demon-
strated reasoning abilities across multiple do-
mains, have been largely underexplored for
time-series reasoning (TsR), which is ubiq-
uitous in the real world. In this work, we
propose TimerBed, the first comprehensive
testbed for evaluating LLMs’ TsR performance.
Specifically, TimerBed includes stratified rea-
soning patterns with real-world tasks, diverse
combinations of LLMs and reasoning strate-
gies, and various supervised models as com-
parison anchors. We perform extensive ex-
periments with TimerBed, test multiple cur-
rent beliefs, and observe the initial failures
of LLMs in TsR, as evidenced by the ineffec-
tiveness of zero shot (ZST) and performance
degradation of few shot in-context learning
(ICL). Further, we identify one possible root
cause: the numerical modeling of data. To
address this, we propose a prompt-based solu-
tion VL-Time, with visualization-modeled data
and language-guided reasoning. Experimen-
tal results demonstrate that VL-Time enables
multimodal LLMs to be non-trivial ZST and
powerful ICL reasoners for time series, achiev-
ing about 140% average performance improve-
ment and 99% average token costs reduction.
TimerBed and VL-Time are available at https:
//github.com/AdityaLab/DeepTime/.

1 Introduction

With the rapid advancement of large language mod-
els (LLMs), they have exhibited powerful reason-
ing abilities with unique interpretability across mul-
tiple domains, including logic, mathematics, and
symbolic reasoning (Wei et al., 2022; Kojima et al.,
2022; Achiam et al., 2023; Dubey et al., 2024; Yang
et al., 2024). Time series, which records the dy-
namic evolution of data over time, is common in
the real world. Time-series reasoning (TsR) (Mer-
rill et al., 2024) has extensive real-world applica-
tions, such as pathological diagnosis (Dingwell
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and Cusumano, 2000), marine biological monitor-
ing (Baumgartner and Mussoline, 2011), and hu-
man activity recognition (Yang et al., 2015). There-
fore, in this paper, we aim to explore the question:
"Can LLMs be reused for time-series reason-
ing? If not, how can we enable them?"

However, this question has remained largely un-
explored. The first key obstacle is "How to ef-
fectively evaluate LLMs on TsR?". Existing
works (Merrill et al., 2024) face limitations at each
component of evaluation: (1) Task Structure and
Datasets. They directly mix multiple tasks without
a clear taxonomy of reasoning patterns, making it
difficult to understand LLMs’ limitations in TsR;
They rely on synthetic data, which fails to accu-
rately represent real-world scenarios. (2) LLMs
Reasoning Strategies: They only adopt the zero-
shot setting, ignoring chain-of-thought (Wei et al.,
2022) and few-shot in-context-learning (Brown
et al., 2020) strategies, which are widely used to
enhance LLMs’ reasoning abilities. (3) Compari-
son Anchors1: They either lack comparison anchor,
thus failing to quantify success, or adopt human-
level performance, which is costly and difficult to
scale to other datasets.

To address these issues, we propose TimerBed,
the first comprehensive and hierarchical testBed for
evaluating LLMs reasoning capabilities on Time-
series tasks. Using TimerBed, we conduct exten-
sive experiments to assess LLMs’ TsR effective-
ness, test several current beliefs about LLMs, and
verify the initial failure of LLMs for TsR.

Inspired by the fact that humans rely on visu-
alization to analyze complex data (Shneiderman,
2003), we propose a possible reason for LLMs’
failure: the numerical modeling of time-series data,
which are typically high-dimensional. We empiri-
cally validate this hypothesis and introduce a sim-

1In this context, an "anchor" refers to a fixed reference
used for performance comparison, which allows researchers
to quantify how well LLMs perform.
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ple yet effective solution, VL-Time, which lever-
ages Visualization for data modeling and Language
for reasoning guidance, thereby unlocking the po-
tential of multimodal LLMs for Time-series rea-
soning. Main contributions are summarized as :

• We propose TimerBed, the first comprehen-
sive testbed of evaluating LLMs for TsR.
TimerBed introduces stratified reasoning pat-
terns: simple deterministic reasoning, com-
plex deterministic reasoning, and probabilis-
tic reasoning, with curated real-world tasks.
TimerBed includes diverse combinations of
LLMs and reasoning strategies, and various
supervised models as comparison anchors.

• We conduct extensive evaluations with
TimerBed to provide insights and identify a
key underlying cause of LLMs’ initial fail-
ures in TsR: the direct numerical modeling of
data. Specifically, numerical modeling results
in difficulties in feature extraction and exces-
sively long contexts, which in turn lead to
ineffectiveness of zero-shot (ZST) reasoning
and performance degradation with in-context
learning (ICL), respectively.

• We propose a prompt-based solution, named
VL-Time, to address this limitation. VL-Time
employs two steps using LLMs: (1) acts as
a domain expert to plan visualization meth-
ods and reasoning guidance. (2) performs
TsR using visualization-modeled data and
language-guided reasoning. VL-Time effec-
tively compresses time-series data, to em-
power feature extraction and ICL; mimics the
human multi-step decision-making process to
unlock LLMs’ reasoning capabilities.

• Experimental results show that VL-Time en-
ables multimodal LLMs as non-trivial zero-
shot and powerful few-shot reasoners for time
series. Specifically, VL-Time with a few
demonstration examples can consistently out-
perform all supervised methods in determinis-
tic reasoning tasks and parts of them in prob-
abilistic reasoning tasks. Compared to direct
numerical modeling, VL-Time achieves an
average performance improvement of 140%,
with gains up to 433%, and average token cost
reduction of 99%.

In this work, we validate that visualization and
few-shot ICL are key to enabling LLMs to reason

about time series. We envision visual encoding
and ICL can be important ingredients for the next-
generation models to move beyond forecasting. Ad-
ditional related works are provided in Appendix A.
Limitations are discussed in Appendix B.

2 TimerBed: Testbed for LLMs
Reasoning about Time Series

In this section, we first define time-series rea-
soning following existing LLMs reasoning defi-
nitions (Wang et al., 2024) and then introduce the
constructed testbed.

Let the input numerical time series be X ∈
Rl×d, where l is the series length and d is the fea-
ture dimension. Let the textual question be Q and
the correct answer be A. The goal of time-series
reasoning is to derive a reasoning path P , a se-
quence of intermediate steps, that leads to A given
Q and X , using zero or a few samples.

As discussed in Section 1, existing evaluation ef-
forts have limitations at every component of bench-
marking. To address the question of "How to eval-
uate and understand the actual TsR capabilities
of LLMs?", we present TimerBed, the first-of-its-
kind testbed for evaluating LLM reasoning about
time series, as shown in Figure 1. We further detail
each component of TimerBed, including reasoning
patterns with tasks, LLMs and reasoning strategies,
as well as comparison anchors.

2.1 Stratified Reasoning Patterns with
Curated Real-world Tasks

Inspired by the classic reasoning problem taxon-
omy (Jaeger, 1994; Dechter, 2022), we stratify TsR
tasks into three patterns of increasing difficulty:
simple deterministic reasoning, complex determin-
istic reasoning, and probabilistic reasoning. Specif-
ically, "Simple" and "Complex" are defined based
on whether multiple factors need to be integrated
for reasoning. "Deterministic" and "Probabilistic"
are based on whether the relationship between in-
put and output is deterministic. We practically
distinguish them based on data annotation methods,
i.e., whether labeled by human experts or directly
derived from observations. The former establishes
a reasoning path from the input data to the label,
whereas the latter involves unobserved variables
and may introduce spurious correlations. To the
best of our knowledge, this is the first stratified
evaluation framework for LLMs’ TsR capability,
supporting a progressive analysis.
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Figure 1: Overview of our proposed testbed, TimerBed, for evaluating LLMs reasoning about time series. TimerBed
defines three patterns of TsR tasks with increasing difficulty: simple deterministic reasoning, complex deterministic
reasoning, and probabilistic reasoning. For each reasoning pattern, TimerBed matches two real-world tasks and
presents an example in the figure. TimerBed covers four types of LLMs with the corresponding most advanced
models and three reasoning strategies for comprehensive evaluation. TimerBed adopts eight supervised time-series
models and random guessing as anchors to quantify the success of LLMs for TsR.

We further mapped two real-world tasks to each
pattern for an effective evaluation. Following prior
works on benchmarking LLMs’ reasoning abili-
ties (Kojima et al., 2022; Wei et al., 2022; Sprague
et al., 2024), we standardized the dataset format as
classification tasks. These datasets cover multiple
domains (biology, healthcare, electricity, physics,
and nature), various task types (binary and multi-
class classification, fine-grained and coarse-grained
classification), and multiple data types (univariate
and multivariate) with varying sizes, precision lev-
els, value ranges, and sequence lengths, thereby
enabling a comprehensive evaluation.

Moreover, we curate relevant textual descrip-
tions, including explanations of tasks, data, and
labels, which are crucial for LLMs’ reasoning. De-
tails of each reasoning pattern and its correspond-
ing tasks are provided below:

Simple Deterministic Reasoning. This pattern
is conceptually simple due to the one-to-one cor-
respondence between patterns and their respec-
tive classes. We introduce two real-world tasks:
north atlantic Right Whale Calls detection (RCW)

and Transient Electromagnetic Event classification
(TEE). For both tasks, each class is clearly defined
by a single feature or pattern, and the labels are
annotated by human experts based on input time
series, guaranteeing simple deterministic reasoning.
The details are provided as follows:

The RCW task 2 contains audio recordings used
to identify right whale calls amidst oceanic environ-
mental noise. In this task, a short, rising "whoop"
sound serves as both a necessary and sufficient
condition for identifying a right whale call.

The TEE task 3 is sourced from the FORTE satel-
lite, which employs optical and radio frequency in-
struments to detect transient electromagnetic events
associated with lightning. Each event type corre-
sponds to a specific physical phenomenon. For
example, the "CG Positive" event type is character-
ized by a positive charge discharge from cloud to
ground, manifested in the power density time se-
ries as a distinct radiation spike followed by several

2https://www.kaggle.com/competitions/
whale-detection-challenge/data

3https://www.timeseriesclassification.com/
description.php?Dataset=Lightning7
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hundred microseconds of noise.

Complex Deterministic Reasoning. This pat-
tern is more complex due to the many-to-one map-
ping between patterns and classes. We introduce
two real-world tasks: Electrocardiogram (ECG)
Record Diagnosis and Electromyogram (EMG) Sig-
nal Diagnosis. These tasks originate from medi-
cal scenarios, where the labels are annotated by
doctors by integrating multiple patterns from time-
series signals, thus ensures both complexity and
determinism. The details are as follows:

The ECG task contains single-lead ECG record-
ings that measure four different cardiac arrhyth-
mias: normal sinus rhythm, atrial fibrillation, other
alternative rhythms, and unclassifiable conditions
due to excessive noise4. Each category requires the
integration of multiple factors. For example, doc-
tors diagnose atrial fibrillation by synthesizing mul-
tiple typical features, such as irregularly irregular
rhythm, absence of P waves, absence of an isoelec-
tric baseline, QRS complexes usually shorter than
120 ms, and the presence of fibrillatory waves (Lip
and Tse, 2007; Fuster et al., 2006).

The EMG task5 comprises muscle responses
recordings to neural stimulation, for diagnosing
muscular dystrophies and neuropathies. Specifi-
cally, it includes single-channel EMG recordings
classified into three types: healthy, neuropathy,
and myopathy. This task requires a holistic eval-
uation of multiple patterns. For instance, doc-
tors diagnose neuropathy by considering: fibril-
lations and positive sharp waves, high-amplitude
and long-duration motor unit action potentials, and
polyphasic waveforms (Kimura, 2013; Aminoff
and Weiskopf, 2004).

Probabilistic Reasoning Probabilistic reasoning
is challenging due to the uncertain relationship be-
tween features and classes, but is common in real-
world applications (Liu et al., 2021; Zhang et al.,
2022). We introduce two real-world tasks: Human
Activity Recognition (HAR) and Computer Type
Usage classification (CTU). Probabilistic reasoning
is characterized by: (1) labels that are automatically
collected, i.e., from observations, and (2) data col-
lected from multiple users, whose heterogeneous
behavioral habits significantly impact the results
but remain unobserved. Details are as follows:

4https://physionet.org/content/challenge-2017/
1.0.0/

5https://physionet.org/content/emgdb/1.0.0/

The HAR task6 uses wearable sensors on a smart-
phone to record six daily activities: walking, walk-
ing upstairs, walking downstairs, sitting, standing,
and lying down. We utilize three sensor chan-
nels, which capture body linear accelerations. This
dataset was collected from 30 users, whose user-
specific behavioral patterns play a crucial role in
reasoning but remain unobserved.

The CTU task7 aims to infer computer types
(desktop or laptop) based on consumer behavior
in 24-hour electricity usage. This dataset was col-
lected from 251 users, whose behavioral traits are
similarly crucial for reasoning but remain unob-
served. More details are in Appendix D.

2.2 Comprehensive Combination of LLMs
and Reasoning Strategies

Considering the rapid development of LLMs,
TimerBed conducts a comprehensive evaluation
by systematically combining various LLMs and
reasoning strategies. Specifically, TimerBed cov-
ers four types of LLMs, including open-source
unimodal models with the corresponding LLMs:
Qwen2.5-72B8 for open-source unimodal LLMs,
Qwen2-VL-72B9 for open-source multimodal
LLMs, GPT-410 for closed-source unimodal mod-
els, and GPT-4o11 for closed-source multimodal
LLMs. The distinction between open-source and
closed-source models influences their development
approaches, while the choice between unimodal
and multimodal architectures affects how they
adapt to the underexplored time-series modality.We
include multimodal LLMs in our evaluation be-
cause they incorporate audio data during pretrain-
ing, which shares similarities with time-series data
in its sequential nature. We evaluate three widely
used reasoning strategies: zero shot (ZST) (Kojima
et al., 2022), zero-shot chain of thought (CoT) (Wei
et al., 2022), and few-shot in-context learning
(ICL) (Brown et al., 2020).

2.3 Anchors for Quantifying Success

Considering the differences in reasoning patterns
and task difficulty, it is necessary to quantify the
success of LLMs using anchors. We include ran-

6https://archive.ics.uci.edu/dataset/240/
human+activity+recognition+using+smartphones

7https://www.timeseriesclassification.com/
description.php?Dataset=Computers

8https://qwenlm.github.io/blog/qwen2.5/
9https://github.com/QwenLM/Qwen-VL

10https://openai.com/index/gpt-4/
11https://platform.openai.com/docs/models
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dom guessing and eight supervised time-series
models as basic and strong anchors, respectively.
Specifically, the supervised time-series models
cover both time and frequency domains with three
main architectures: transformer-based models of
time domain (Vaswani et al., 2017; Zhou et al.,
2021; Wu et al., 2021; Nie et al., 2023; Liu et al.,
2024e) and frequency domain (Zhou et al., 2022),
convolution neural network-based models (Wu
et al., 2023), and multi-layer perceptron-based
models (Zeng et al., 2023). More details are pro-
vided in Appendix I.

TimerBed and VL-Time are publicly available12.

3 Evaluations and Insights

3.1 Evaluation Setups

We represent time-series data as numerical se-
quences to feed into LLMs, following existing
works on prompting LLMs for time-series anal-
ysis (Xue and Salim, 2023; Gruver et al., 2024;
Liu et al., 2024c; Dong et al., 2024). We apply
structured formatting instructions, which include
mandatory descriptions of tasks, data, and available
choices, as well as optional instructions, such as the
CoT instruction: "Please solve this problem step
by step." For ICL strategies that require context,
we randomly sample examples from the original
training set to construct the demo set and select
the number of demos per category from 1 to 6, fol-
lowing the existing few-shot setting (Jiang et al.,
2024). Details of the prompts are in Appendix E.
Following existing LLM evaluation works (Wang
et al., 2023a; Sun et al., 2024; Guha et al., 2024;
Niklaus et al., 2024), we employ a low temperature
setting to ensure more precise outputs. Accuracy
is used as the evaluation metric, where a higher
value indicates better performance. We run each
setting three times and report the average. More
setup details are provided in Appendix H

3.2 Results and Insights

We conduct evaluations using TimerBed with the
aforementioned setups to answer the question:
"How effective are LLMs for TsR under different
reasoning patterns and strategies?" We have the
following key observations:

Different Reasoning Patterns: ZST Perfor-
mance is Generally Near-Random. We visu-
alize ZST results in Figure 2, normalized by the

12https://github.com/AdityaLab/DeepTime/
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Figure 2: Normalized Results of Zero-Shot Time-series
Reasoning. The accuracy is normalized by random
guessing. Detailed original results are in Table 3. LLMs
consistently show near-random performance with ZST.

accuracy of random guessing. Detailed original re-
sults are in Table 3. We observe that for all LLMs,
their ZST performance across different reasoning
patterns is ineffective, often close to or even worse
than random guessing. This finding contradicts the
prevailing belief that LLMs are generally non-triv-
ial ZST reasoners (Kojima et al., 2022), especially
considering that we have provided clear and infor-
mative instructions.

Different Reasoning Strategies: CoT > ZST >
ICL. We visualize the results under different rea-
soning strategies in Figure 3, normalized by the
performance of random guessing. Detailed original
results are in Table 3.

Across LLMs, we find that CoT consistently
outperforms ZST for TsR, validating the rationality
of our reasoning tasks, which is consistent with the
prevailing belief that CoT is primarily useful for
reasoning tasks (Sprague et al., 2024).

However, the few-shot ICL strategy for TsR
often results in performance degradation, which
contradicts the prevailing belief that LLMs’ per-
formance can generally benefit from few-shot
ICL (Brown et al., 2020).

Additionally, we observe that multimodal LLMs
generally perform worse than unimodal LLMs,
consistent with the existing belief about potential
degradation of language capabilities in multimodal
LLMs (Lu et al., 2024).
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Figure 3: Normalized Results of Chain-of-Thought and Few-shot In-Context-Learning Time-series Reasoning. Each
subfigure corresponds to one LLM. The accuracy is normalized by random guessing. Detailed original results are in
Table 3. CoT shows marginal improvement, while ICL leads to performance degradation.

4 Failure Analysis: The Numerical
Modeling of Data.

We further investigate "What causes the failures
of LLMs for TsR?" Focusing on the two aforemen-
tioned anomalies, we verify that a key cause is the
numerical modeling of time-series data, following
most existing works (Xue and Salim, 2023; Gruver
et al., 2024; Liu et al., 2024c; Dong et al., 2024),
detailed as follows:

Numerical Modeled Data → Difficulty of Fea-
ture Extraction → Ineffectiveness of ZST. We
begin by checking the feature extraction plans of
LLMs. Through prompting, we present verbalized
feature extraction plans of each LLM for different
TsR tasks in Appendix J. We notice that these plans
are similar to each other and, in most cases, are rea-
sonable. This indicates that LLMs possess useful
knowledge for zero-shot TsR. However, most of
these planned features are difficult to extract from
numerical time series and can be classified into
four types:

(1) Pictorial Features: For example, "inverted,
peaked, or biphasic T-waves" for the ECG task or
"paired appearance" for the TEE task are challeng-
ing to extract from numerical time series.

(2) Time-Aware Features: Examples include the
"the PR interval, which is normally between 0.12
to 0.20 seconds" for the ECG task and the "noise
persisting for several hundred microseconds" for
the TEE task. As numerical input of LLMs, time
series naturally lose time stamps, and their lengths,

frequently exceeding 1000, further hinder LLMs
from accurately tracking time, detailed in Table 5.

(3) Cross-Dimension Features: For example, "si-
multaneous changes in X-, Y-, and Z-axis accel-
erations" for the HAR task. Numerical modeling,
which involves concatenating multiple variable se-
ries, naturally loses temporal alignment, thus hin-
dering the extraction of cross-dimension patterns.

(4) Frequency-Domain Features: Such as the
"the rising trend in the spectrogram" for the RCW
task, visualized in Figure 12. Numerical series
need transformations like the Fast Fourier Trans-
form (Brigham, 1988) to expose frequency-domain
features, which LLMs cannot handle implicitly.

Numerical Modeled Data → Excessive Context
Length → Performance Degradation with ICL.
The tokenization of LLMs is not optimized for
numerical series, leading to an excessive context
length. Specifically, one time-series sample typi-
cally consists of hundreds of time points, in which
each time point is represented by usually more
than 12 tokens. The token cost for each dataset is
summarized in Table 5. For example, in the RCW
dataset, a single time-series sample requires up to
60K input tokens when processed by GPT-4o. This
inefficient tokenization further leads to the perfor-
mance degradation with ICL due to:

(1) Challenges in Handling Long Contexts. With
multiple examples included in the context, ICL sig-
nificantly increases token length and the difficulty
of understanding for LLMs (Liu et al., 2024d).

(2) Limited Capacity for In-Context Examples.
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With numerical modeling, the number of time-
series examples included in the context is severely
limited. For instance, in the RCW dataset, even
with an LLM supporting a 128K context length,
only one example can be included, despite the
dataset having two classes. This leads to biased
information and harms performance.

5 VL-Time: Enabling LLMs Reasoning
about Time Series via Visualization

This section aims to answer: "How can we address
the original failure of LLMs in TsR?" by focusing
on the two observed anomalies: ZST ineffective-
ness and ICL performance degradation.

High-Level Idea. Inspired by the fact that hu-
mans rely on visualization to analyze complex
data (Shneiderman, 2003), we propose to replace
existing numerical modeling with visualization-
based modeling. In the context of LLMs reasoning
about time series, the motivation is detailed as:

(1) Visualization empowers feature extraction.
First, visualization makes pictorial features more
discernible. Second, visualization can directly
reflect time-related features by indicating time
stamps using axis indices. Additionally, visu-
alization naturally aligns different variables and
uses color and legends to annotate them, thus
clearly denoting cross-dimension features. Finally,
frequency-domain features can be effectively rep-
resented through frequency-domain visualization.

(2) Visualization compresses information, thus
reducing token length. Compared to numerical
modeling, where token usage is proportional to the
data precision and sequence length, visualization
serves as an effective compression method. By
adjusting the image size, visualization can effec-
tively control token count while largely preserving
information. For example, in the RCW task, when
processed by GPT-4o, a numerically modeled time-
series sample requires up to 60K tokens, whereas
only 85 tokens using visualization.

Framework and Details. As shown in Fig-
ure 4, we propose a prompt-based solution, named
VL-Time, which aims to empower any multimodal
LLMs to reason about Time series by data model-
ing via Visualization and task reasoning guided by
Language. Specifically, VL-Time adopts a "plan-
then-solve" framework (Wang et al., 2023b) in-
spired by human reasoning processes (Wei et al.,
2022) to prompt multimodal LLMs for TsR.

Figure 4: Comparison of existing numerical modeling
solution, denoted as "Traditional Solution", and pro-
posed VL-Time. The key difference is that VL-Time re-
places numerical modeling with visualization modeling
for time-series data, which enhances feature extraction
and reduces context length. VL-Time further divides
the entire reasoning process into planning and solving
stages, mimicking the behavior of human experts. A full
example is provided in Section ?????????F. For each
task, the planning stage needs to be executed only once.

The Planning Stage. VL-Time prompts LLMs
to act as domain experts and make two key plans
based on the task description: (1) choosing be-
tween time-domain or frequency-domain visualiza-
tion, and (2) proposing the reasoning clues. To
facilitate effective feature extraction, our visual-
ization designs include time stamps on the x-axis,
semantic labels on the y-axis, and different colors
and textual legends for each variable or frequency.
Figure ???13 and ???12 show examples of our visu-
alization. Notably, the planning stage only needs to
run once for each task, i.e., shared across samples.

The Solving Stage. VL-Time prompts multi-
modal LLMs to perform TsR using visualized data
(i.e., "Picture") and verbalized reasoning clues (i.e.,
"Hints") derived from the planning stage.

6 Experiments for Proposed Solution

This section aims to answer the question:"How
well can VL-Time unlock multimodal LLMs’ rea-
soning ability for time series?"
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Reasoning Pattern Simple Deterministic Complex Deterministic Probabilistic
Reasoning Task RCW TEE ECG EMG CTU HAR

Metric ACC(%) ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)
Random Guessing 50.00 14.29 25.00 33.33 50.00 16.67

Supervised
Time-series

Models
(8)

Transformer 64.12 59.52 25.00 86.67 59.20 87.26
Autoformer 62.59 26.19 23.95 46.67 67.20 75.04

Informer 75.51 59.52 22.39 66.66 67.20 85.83
FEDformer 76.59 42.86 26.40 73.33 51.60 89.88
PatchTST 82.11 57.14 24.82 60.00 64.00 79.60

iTransformer 76.92 21.43 24.48 46.67 46.40 89.49
TimesNet 80.23 61.90 26.20 73.33 64.00 88.65
DLinear 56.96 47.63 23.61 46.67 52.40 48.97

Zero-shot
LLMs

GPT-4o (numeric) 50.00 21.43 25.00 33.33 45.45 29.17
GPT-4o (VL-Time) 70.02 24.88 26.33 33.33 50.71 37.50

Improvement +40.04% +16.10% +5.32 % +0.00% +11.57% +28.56%
Win Supervised 3/8 1/8 7/8 0/8 1/8 0/8

Few-shot ICL
LLMs

GPT-4o (numeric) 50.00 35.71 31.25 33.33 50.00 12.50
GPT-4o (VL-Time) 91.03 64.29 43.75 91.67 63.64 66.67

Improvement +82.06% +80.03% +40.00% +175.04% +27.28% +433.36%
Win Supervised 8/8 8/8 8/8 8/8 4/8 1/8

Table 1: Performance comparison on TimerBed: (1) VL-Time enables GPT-4o to perform non-trivial zero-shot TsR,
with up to 40% relative improvement and consistently outperforming random guessing on all tasks. (2) VL-Time
enables GPT-4o to achieve powerful few-shot TsR, with up to 433% relative improvement, surprisingly surpassing
all supervised models in simple and complex deterministic TsR, and matching their performances in probabilistic
TsR. Here, few-shot refers to fewer than sixexamples per class. We bold the best result for each task.

6.1 Performance Comparison

We evaluate VL-Time on TimerBed, following the
same experimental setup as in Section 3.2. We use
GPT-4o as the default representative model, while
results for other LLMs are presented in Section 6.3.
To avoid confusion, we use GPT-4o (numeric) to
denote existing numerical modeling solution eval-
uated in Section 3.2. We use the low resolution
option of GPT-4o API. For supervised models, we
retain each dataset’s original train-test split or used
an 8:2 split of the original training set when the
test set lacked available labels. As shown in Ta-
ble ??????1, we make the following observations:

VL-Time enables multimodal LLMs as non-
trivial zero-shot time-series reasoners. First,
VL-Time significantly improves GPT-4o’s perfor-
mance by an average of 17% and up to 40%. Ad-
ditionally, VL-Time allows GPT-4o to surpass ran-
dom guessing on all tasks and outperform part of su-
pervised models on 4/6 tasks. Compared to GPT-4o
(numeric)’s random-level performance, VL-Time
enables a non-trivial improvement.

VL-Time enables multimodal LLMs as powerful
few-shot in-context time-series reasoners. First,
VL-Time boosts GPT-4o’s performance by an im-
pressive average of 140% and up to 433%. Be-
sides, VL-Time enables GPT-4o to outperform all

supervised time-series models on all tasks with sim-
ple and complex deterministic reasoning patterns.
Moreover, VL-Time even matches the performance
of supervised models (surpassing parts of them)
on all tasks with probabilistic reasoning patterns.
Recall that probabilistic reasoning demands more
data to capture uncertainty. However, VL-Time
remarkably enables multimodal LLMs to achieve
strong performance with fewer than six examples
per class, demonstrating unique data efficiency.

Cost Comparison. VL-Time introduces no addi-
tional training cost. The cost difference mainly
comes from the data modeling approach: visual
modeling in VL-Time and numerical modeling in
traditional prompts. Thus, we report the input to-
ken cost and per-sample token count in Table 4 and
5 with GPT-4o. Results show that VL-Time signif-
icantly reduces token count and costs, requiring
only about 1% of numerical modeling’s cost.

6.2 Ablation Studies
We choose the zero-shot RCW13 and HAR14 tasks.

Effectiveness of the Planning Stage. To validate
the effectiveness of the first stage, i.e., planning, we
use only the second stage, i.e., planning, referred
to as VL-Time\Planning. Due to the lack of a

13The Right Whale Calls detection task in Section 2.1
14The Human Activity Recognition task in Section 2.1
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decision between time- and frequency-domain vi-
sualization, VL-Time\Planning uniformly adopts
the more common time-domain visualization.

As shown in Figure 5, the planning stage proves
effective. Firstly, VL-Time\Planning performs
close to random on RCW, highlighting the impor-
tance of planning for time- or frequency-domain
visualizations, especially since RCW relies on fre-
quency features. Moreover, for HAR, a time-
domain task, VL-Time\Planning also shows per-
formance degradation, demonstrating that feature
hints from the planning stage play a crucial role in
guiding the solving stage.

Effectiveness of the Visualization Design. We
focus on two key visualization components in
VL-Time: the textual legend and annotated times-
tamps, which correspond to two ablation versions,
VL-Time\Legend and VL-Time\TimeStamps, re-
spectively. Specifically, RCW uses legends to map
colors to decibel levels, and HAR uses legends to
map curves to the x, y, and z axes of acceleration.
The visualization demos for RCW and HAR are
provided in Figure 12 and 13.

As shown in Figure 5, these two visualiza-
tion designs demonstrate their effectiveness.: (1)
VL-Time\Legend shows a significant performance
drop, particularly for HAR, where identifying the
x, y, and z axes is crucial for activity recognition.
(2) VL-Time\TimeStamps shows consistent perfor-
mance degradation, indicating that capturing time-
aware features is helpful.
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Figure 5: Ablation Study of VL-Time. The planning
stage and visualization designs, including the textual
legend and timestamps, are all validated as effective.

6.3 Exploratory Studies
Multimodal LLMs Selection within VL-Time.
We analyze the impact of LLM selection to answer
three questions: (1) Is VL-Time effective across
different LLMs? (2) How does model size affect
TsR performance? (3) What is the gap between
open-source and closed-source models?
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(a) Results of LLMs selection with ZST.
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Figure 6: Results of LLMs selections. We label the im-
provements of VL-Time over the numerical modeling at
the top of bars. We observe the consistent effectiveness
of VL-Time, the importance of model scale, and the gap
between open- and closed-source models.

To answer these questions, we introduce two ad-
ditional multimodal LLMs: GPT-4o-mini for Ques-
tion (2) and Qwen2-VL-72B for Question (3).

As shown in Figure 6a and 6b, we make the
following observations: (1) VL-Time is effective
across different multimodal LLMs. (2) LLM’s TsR
capability relies on model size. (3) State-of-the-
art open-source multimodal LLMs still lag behind
closed-source models on TsR tasks.

Results of the open-source Llama-3.2-11B and
Llama-3.2-90B are detailed in Section 6.3. We
have the similar observations.

7 Conclusion

In this work, we explore LLMs reasoning about
time series with a two-fold contribution: evaluation
and methodology. We present the first comprehen-
sive evaluation suite, conduct extensive evaluations,
provide insights and verify the initial failures. We
identify the direct numerical data modeling as one
key issue and propose a prompt-based solution with
visualized data modeling. We empirically validate
that visualization of data and few-shot ICL are key
to enabling LLMs reasoning about time series. We
expect that visual encoding and ICL could be im-
portant ingredients for future time-series models.
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Appendix

A Additional Related Works

LLMs have a wide range of applications across var-
ious domains (Jin et al., 2024b; Xiao et al., 2024).
Here, we introduce related works on prompting
LLMs for time series analysis. These works (Xue
and Salim, 2023; Gruver et al., 2024; Liu et al.,
2024c; Dong et al., 2024) mainly model time series
numerically as language inputs to LLMs. This ap-
proach is somewhat limited by the fact that LLMs
at that time are mainly unimodal. With the re-
cent rapid development of multimodal LLMs (Yin
et al., 2023; Zhang et al., 2024) and multimodal
time-series analysis (Liu et al., 2024b), our pro-
posed solution aims to demonstrate that visualiza-
tion modeling is the key to LLMs reasoning about
time series.

Recently, limited works (Merrill et al., 2024;
Chow et al., 2024) try to explore the use of LLMs
for time-series reasoning, with preliminary con-
clusions indicating that LLMs still struggle with
zero-shot reasoning on time series. However, our
work demonstrates that, for current LLMs, visual-
ization of data and few-shot in-context learning are
critical for effective reasoning about time series,
as verified in Section 1. Furthermore, our work
addresses the limitations in evaluation present in
existing studies, as discussed in Section 6.

B Limitations

According to the three levels of causality defined
by Pearl and Mackenzie, this paper focuses on rea-
soning problems at the basic "Association" level.
For reasoning problems at the further "Interven-
tion" and "Counterfactual" levels, we look forward
to future works, especially in addressing the lack
of suitable datasets.

Besides, all reasoning tasks in this work are for-
malized as classification tasks. For other forms of
time series analysis, it remains unclear whether task
performance can reveal reasoning ability. Specif-
ically, time-series forecasting (Liu et al., 2024a;
Jin et al., 2024a; Kamarthi and Prakash, 2024) and
imputation (Du et al., 2024) focus on generating
specific future numerical sequences, which are typ-
ically "open-ended." For example, when forecast-
ing future influenza infection trends, any unfore-
seen event within the prediction window, such as
a disease outbreak, might impact the final future
values. (Mathis et al., 2024). We expect future

research to further explore how to reasonably eval-
uate reasoning ability using these task formats.

Moreover, this work focuses on a prompt-based
solution to unlock the ability of multimodal LLMs
to reason about time series, which is simple but
effective. We expect that our evaluation suite, in-
sights, and solution will inspire future fine-tuning-
based approaches and more general solutions for
both unimodal and multimodal LLMs.

Additionally, this work leverages the vision-
text alignment capability of multimodal LLMs to
achieve time series-text alignment. Our concur-
rent work (Cai et al., 2024) also evaluated the su-
periority of visual modeling in feature alignment.
However, this approach focuses on repurposing
existing LLMs rather than serving as the optimal
solution. We look forward to future research on
time-series-specific multimodal models, including
improvements in accuracy and safety,such as ad-
dressing hallucination issues(Agarwal et al., 2024).

C Detailed Evaluation Results

Detailed Evaluation Results are provided in Ta-
ble 3.

D Details of Datasets

Statistics of original dataset are provided in Table 2.

E Details of Prompts

Prompts used for Zero-Shot, Zero-Shot Chain-of-
Thought, Few-shot In-Context Learning Setting
are detailed in Figure 7, Figure 8 and Figure 9
correspondingly.

E.1 Details of Task Description
E.1.1 RCW
Play the role of a marine biology expert: is there a
right whale call in the record?

E.1.2 TEE
Based on the power density time series data and
select the transient electromagnetic event that best
matches. The FORTE satellite detects transient
electromagnetic events associated with lightning
using a suite of optical and radio-frequency (RF)
instruments. There are 7 event types. CG Positive
Initial Return Stroke: A positive charge is lowered
from a cloud to the ground. The characteristic
feature of this type of event in the power density
time series is a sharp turn-on of radiation, followed
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Dataset Number of Variable Length of Series Number of Class Number of Samples
RCW 1 4000 2 30,000
TEE 1 319 7 143
ECG 1 1500 4 43,673
EMG 1 1500 3 205
CTU 1 720 2 500
HAR 3 206 6 10,299

Table 2: Statistics of Original Datasets.

Task RCW TEE ECG EMG CTU HAR
Metric ACC(%) ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)

Random Guessing 50.00 14.29 25.00 33.33 50.00 16.67

Qwen2.5-72B
ZST 50.00 21.43 25.00 33.33 40.91 29.17
CoT 50.00 25.00 30.77 33.33 45.45 29.17
ICL 50.00 21.43 12.50 33.33 54.55 25.00

Qwen2-VL-72B
ZST 50.00 14.29 25.00 33.33 38.89 20.83
CoT 50.00 17.86 25.00 33.33 45.45 20.83
ICL 50.00 17.86 25.00 16.67 54.55 29.17

GPT-4
ZST 50.00 14.29 25.00 33.33 40.91 25.00
CoT 50.00 21.43 25.00 33.33 45.45 29.17
ICL 50.00 17.86 18.75 41.67 45.45 12.50

GPT-4o
ZST 50.00 10.71 25.00 33.33 22.73 12.50
CoT 50.00 14.29 31.25 55.56 54.55 16.67
ICL 50.00 35.71 31.25 33.33 50.00 12.50

Table 3: Detailed Results of Time-series Reasoning without Normalization.

by a few hundreds of microseconds of noise; IR
Negative Initial Return Stroke: A negative charge
is lowered from a cloud to ground. The power
waveform slowly ramps up to a level known as
an attachment point, where a large surge current
causes the VHF power to ’spike’. This attachment
is followed by an exponentially shaped decline in
the waveform.; SR Subsequent Negative Return
Stroke: A negative charge is lowered from a cloud
to ground. As the name implies, subsequent return
strokes come after initial return strokes. Note that
subsequent positive return strokes don’t exist. I
Impulsive Event: Typically an intra-cloud event
characterized by a sudden peak in the waveform.
I2 Impulsive Event Pair: Another intra-cloud event
characterized by sudden peaks in the waveform
that come in closely separated pairs. These are also
called TIPPs (Trans-Ionospheric Pulse Pairs). KM
Gradual Intra-Cloud Stroke: An intra-cloud event
which increases in power more gradually than an
impulsive event. O Off-record: 800 microseconds
was not enough to fully capture the lightning event.

E.1.3 ECG

As a cardiologist, you are tasked with classifying a
patient’s heart condition based on single-lead ECG
recordings.

E.1.4 EMG

As an Electromyograms (EMG) analysis expert,
you are tasked with determining the type of the
subject based on the EMG record.

E.1.5 CTU

Play as a computer energy consumption analysis ex-
pert, please correctly determine whether this com-
puter is a desktop or a laptop based on the 24-hour
power consumption data.

E.1.6 HAR

As a human activity recognition expert, you are
tasked with determining the type of activity per-
formed by the subject based on the accelerometer
record series along the x, y, and z axes over time.
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prompt = f " " "
{ TimeSeries_Number } .
Given t h e t ime s e r i e s d a t a above ,
answer t h e f o l l o w i n g q u e s t i o n
u s i n g t h e s p e c i f i e d f o r m a t .

Q u e s t i o n : { t a s k _ d e s c r i p t i o n }
Cho ices : { s t r ( c l a s s _ d e s c r i p t i o n ) }
P l e a s e r e s p o n d wi th t h e f o l l o w i n g f o r m a t :
−−−BEGIN FORMAT TEMPLATE−−−
Answer Choice : [ Your Answer Choice Here ]
−−−END FORMAT TEMPLATE−−−
Do n o t d e v i a t e from t h e above f o r m a t .
Repea t t h e f o r m a t t e m p l a t e f o r t h e answer .

" " "

Figure 7: Prompt used for Zero-Shot Setting.

F Full Sample

Here, we provide a complete input example from an
ECG task. Other tasks can be easily implemented
by replacing the corresponding task description in
Section E.1 and the class descriptions from Sec-
tion 2.1.

F.1 Input of the planning stage

As a cardiologist, you are tasked with classifying a
patient’s heart condition based on single-lead ECG
recordings. You need to distinguish between four
types: normal sinus rhythm, fibrillation, alterna-
tive rhythm, and too noisy to be classified. What
features do you plan to use for making this deter-
mination? Just give the keywords.

To extract these features, what is better between
time-domain and frequency-domain visualization?
Just give answer.

F.2 Input of the solving stage

<IMAGE> Given the visualization of time series
data above, answer the following question Ques-
tion: As a cardiologist, you are tasked with classi-
fying a patient’s heart condition based on single-
lead ECG recordings. Choices: (A) normal sinus
rhythm; (B) fibrillation; (C) alternative rhythm, (D)
too noisy to be classified Hint: Consider character-
istics including 1. Heart rate variability; 2. P-wave
presence; 3. QRS complex morphology;4. RR in-
tervals; 5. Rhythm regularity 6. Noise level Please
solve this problem step by step. [Optional: Exam-

ples of in-context learning]

G Additional Experiments

Additional experiments on Llama-3.2-11B and
Llama-3.2-90B are shown in Figure 11.

H More Details of Setup

To prevent models from abstaining (which is com-
mon in ICL setting with numerical modeling but
rarely for our VL-Time), we rerun the query until
an answer is provided. We follow the most re-
cent evaluation work on multimodal LLMs (Jiang
et al., 2024) and LLMs for time series (Gruver et al.,
2024) to perform sampling, aiming to control class
balance and evaluation costs, i.e., evaluating LLMs
using a subset of the original test set.

I Included Eight Supervised Time-Series
Models

• Transformer(Vaswani et al., 2017), a classic
sequence-to-sequence model based on multi-
head attention mechanism.

• Informer(Zhou et al., 2021), an advanced
Transformer designed to tackle long-term
modeling problem with sparse attention layers
and self-attention distilling.

• Autoformer(Wu et al., 2021), a Transformer-
based model that keeps encoder-decoder struc-
ture but alters attention computations by auto-
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prompt = f " " "
{ TimeSeries_Number } .
Given t h e t ime s e r i e s d a t a above ,
answer t h e f o l l o w i n g q u e s t i o n
u s i n g t h e s p e c i f i e d f o r m a t .

Q u e s t i o n : { t a s k _ d e s c r i p t i o n }
Cho ices : { s t r ( c l a s s _ d e s c r i p t i o n ) }
P l e a s e s o l v e t h i s problem s t e p by s t e p .
P l e a s e r e s p o n d wi th t h e f o l l o w i n g f o r m a t :
−−−BEGIN FORMAT TEMPLATE−−−
Answer Choice : [ Your Answer Choice Here ]
−−−END FORMAT TEMPLATE−−−
Do n o t d e v i a t e from t h e above f o r m a t .
Repea t t h e f o r m a t t e m p l a t e f o r t h e answer .

" " "

Figure 8: Prompt used for Zero-Shot Chain-of-Thought Setting.

correlation mechanism in order to benefit
long-term modeling.

• FEDformer(Zhou et al., 2022), a Transformer
that explicitly uses Fourier decomposition re-
sults to enhance long-term modeling ability.

• PatchTST(Nie et al., 2023), a transformer-
based model using segmentation of time series
and channel-independence design.

• iTransformer(Liu et al., 2024e), an inverted
Transformer that tokenizes multivariate time-
series at each timestamp.

• DLinear(Zeng et al., 2023), a linear model
that performs modeling by a direct regression
upon historical time series with a one-layer
linear model.

• TimesNet(Wu et al., 2023), temporal 2D-
variation modeling approach for general time
series analysis.

J Verbalized Feature Extraction Plans

J.1 RCW
J.1.1 Prompt
Given the task: Play the role of a marine biology
expert: is there a right whale call in the record?
Please tell me what features or patterns do you plan
to extract from input data to correctly complete this
task?

J.1.2 GPT-4

To determine if there are right whale calls in a
recording while playing the role of a marine biol-
ogy expert, several key features and patterns can
be extracted from the audio data. Here’s a plan to
approach this task:

Frequency Analysis: Right whale calls typically
fall within specific frequency ranges, often between
50 Hz to 500 Hz. Analyzing the frequency content
of the audio can help identify segments where these
calls might occur.

Temporal Patterns: Right whale calls have dis-
tinctive durations and temporal patterns. For exam-
ple, up-calls usually last about one second and rise
in frequency. Identifying these patterns can help
differentiate right whale calls from other sounds.

Energy and Power: Examining the energy or
power of the audio signal over time can help to
detect calls, as vocalizations tend to have higher
energy levels compared to background noise.

Spectral Characteristics: Spectrogram analysis
can be very useful. Right whale calls exhibit spe-
cific shapes on spectrograms, such as the curved
shape of up-calls. Machine learning models can be
trained to recognize these shapes.

Harmonic Patterns: Whale calls often consist
of harmonic series where multiple harmonics of
a fundamental frequency are present. Detecting
these can help confirm the presence of whale calls.

Temporal Consistency: Repeated patterns over
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prompt = f " " "
f o r demo i n demo_examples :

prompt += f " " " { TimeSer ies_Number } .
Given t h e t ime s e r i e s d a t a above ,
answer t h e f o l l o w i n g q u e s t i o n
u s i n g t h e s p e c i f i e d f o r m a t .
Q u e s t i o n : { t a s k _ d e s c r i p t i o n }
Cho ices : { s t r ( c l a s s _ d e s c r i p t i o n ) }
Answer Choice : {demo . answer }

" " "
prompt += f " " "
{ TimeSeries_Number } .
Given t h e t ime s e r i e s d a t a above ,
answer t h e f o l l o w i n g q u e s t i o n
u s i n g t h e s p e c i f i e d f o r m a t .

Q u e s t i o n : { t a s k _ d e s c r i p t i o n }
Cho ices : { s t r ( c l a s s _ d e s c r i p t i o n ) }
P l e a s e s o l v e t h i s problem s t e p by s t e p .
P l e a s e r e s p o n d wi th t h e f o l l o w i n g f o r m a t :
−−−BEGIN FORMAT TEMPLATE−−−
Answer Choice : [ Your Answer Choice Here ]
−−−END FORMAT TEMPLATE−−−
Do n o t d e v i a t e from t h e above f o r m a t .
Repea t t h e f o r m a t t e m p l a t e f o r t h e answer .

" " "

Figure 9: Prompt used for Few-shot In-Context Learning Setting.
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Figure 10: <IMAGE>: The visualization used in this
full sample.

(a) Results of zero shot.

(b) Results of few shot.

Figure 11: Results on Llama-3.2.

time could indicate the presence of biological
sources (like whales) as opposed to random noise
or other transient sounds.

Machine Learning Classification: After extract-
ing features, employing a classifier such as a Sup-
port Vector Machine (SVM) or a neural network
that has been trained on labeled examples of right
whale calls and other sounds can automate the de-
tection process.

Audio Quality Assessment: Ensuring the record-
ing’s quality and clarity can aid in more accurate
analysis, considering factors like signal-to-noise
ratio and possible interference.

By combining these methods, the task of de-
tecting right whale calls in recordings can be ap-
proached systematically and effectively.

J.1.3 GPT-4o
To detect right whale calls in a sound recording,
the following features and patterns are essential
for accurate analysis. I will approach this task
systematically, as it typically involves bioacoustic

signal processing. Below are the key features and
patterns I would focus on:

1. Spectral Features (Frequency Domain) Spec-
trogram Analysis: Visual representation of frequen-
cies over time to identify characteristic call patterns.
Peak Frequency: Right whale calls often occur be-
tween 50-300 Hz. Band Energy Ratios: Measure
energy distribution within specific frequency bands
of interest. Mel-Frequency Cepstral Coefficients
(MFCCs): Captures timbral features, useful for
bioacoustic identification. 2. Temporal Features
(Time Domain) Duration of Calls: Right whale
calls typically last 0.5 - 1.5 seconds. Temporal
Gaps: Identifying rhythmic patterns or repetitions
of the same call type. Zero-Crossing Rate: Number
of times the signal crosses the zero amplitude axis,
useful for characterizing specific call types. 3. Call
Types and Patterns Upcalls: A rising frequency con-
tour starting around 50 Hz and ending at 150-200
Hz (most common call type for North Atlantic right
whales). Gunshots: Brief, broadband pulses that
are associated with social behavior or communica-
tion. Chirps: Shorter calls with a rapid change in
frequency. Harmonics: Identify overtones accom-
panying the primary frequency of calls. 4. Acoustic
Context Features Ambient Noise: Identify and fil-
ter background noise like boat engines, wind, or
waves to focus on whale vocalizations. Signal-to-
Noise Ratio (SNR): Assess how clearly the whale
calls are distinguishable from background noise.
Call Repetition Patterns: Determine if calls appear
in sequence or clusters, which is typical in some
behavioral contexts. 5. Geospatial and Seasonal
Context (if metadata is available) Time of Day /
Season: Right whales exhibit seasonal calling be-
havior—more frequent calls during migration and
breeding seasons. Location and Habitat Informa-
tion: Helps determine if the recording region over-
laps with known whale migration routes or habitats.
6. Feature Engineering and Post-processing Tech-
niques Smoothing and Filtering: Applying band-
pass filters to isolate frequencies relevant to whale
calls. Dynamic Time Warping (DTW): Useful for
matching whale call templates to observed audio
signals. Call Classification Models: Using super-
vised machine learning or deep learning models
(e.g., Convolutional Neural Networks) trained on
annotated whale call data. By extracting and ana-
lyzing these features, I can determine the presence
of right whale calls within a recording. The focus
will be on identifying the upcall pattern, as it is
the most diagnostic feature for right whales, but
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other patterns like gunshots and chirps will also be
investigated to ensure comprehensive detection.

J.1.4 Qwen2.5-72B
Certainly! To determine whether a recording con-
tains right whale calls, we need to analyze the
acoustic characteristics of the audio data. Here’s a
detailed breakdown of the features and patterns I
would extract from the input data:

1. Frequency Analysis Dominant Frequency
Range: Right whales typically produce low-
frequency vocalizations, often in the range of 50-
200 Hz. Analyzing the frequency spectrum to
identify dominant frequencies within this range
can help confirm the presence of right whale calls.
Spectral Peaks: Look for distinct peaks in the fre-
quency spectrum that correspond to known right
whale call frequencies. 2. Temporal Analysis Du-
ration: Right whale calls can vary in duration but
are generally between 0.5 and 2 seconds. Measur-
ing the duration of potential calls can help filter
out non-whale sounds. Inter-Call Intervals: The
intervals between successive calls can also be a
useful feature. Right whales often produce calls
at regular intervals, which can be characteristic of
their vocal behavior. 3. Amplitude Modulation En-
velope Shape: Analyze the amplitude envelope of
the sound to identify patterns typical of right whale
calls. These calls often have a distinctive rise and
fall in amplitude. Peak Amplitude: Identify the
peak amplitude of the sound and compare it to
known thresholds for right whale calls. 4. Spectral
Features Spectral Centroid: This is the center of
mass of the spectrum and can help distinguish be-
tween different types of sounds. Right whale calls
tend to have a lower spectral centroid compared to
other marine sounds. Spectral Bandwidth: Mea-
sure the width of the frequency band where most
of the energy is concentrated. Right whale calls
often have a relatively narrow bandwidth. 5. Mel-
Frequency Cepstral Coefficients (MFCCs) MFCCs:
These coefficients capture the shape of the spectral
envelope and are widely used in speech and bioa-
coustic analysis. Extracting MFCCs from the audio
can help in identifying the unique spectral patterns
of right whale calls. 6. Waveform Analysis Zero-
Crossing Rate: The rate at which the waveform
crosses the zero axis can provide information about
the texture of the sound. Right whale calls often
have a specific zero-crossing rate. Energy Distri-
bution: Analyze the energy distribution over time
to identify segments with high energy that could

correspond to whale calls. 7. Machine Learning
and Pattern Recognition Feature Vectors: Com-
bine the above features into a feature vector for
each segment of the audio. Classification Models:
Train machine learning models (e.g., Support Vec-
tor Machines, Neural Networks) on labeled data to
classify segments as either containing right whale
calls or not. 8. Contextual Analysis Environmental
Noise: Consider the ambient noise level and other
marine sounds that might interfere with the detec-
tion of right whale calls. Geographic and Temporal
Context: Use metadata such as location and time
of recording to cross-reference with known right
whale habitats and migration patterns. By extract-
ing and analyzing these features, we can effectively
determine whether a given audio recording con-
tains right whale calls. This approach combines
both traditional signal processing techniques and
modern machine learning methods to ensure accu-
rate identification.

J.1.5 Qwen2-VL-72B

To determine if there are right whale calls in a given
audio record, I would extract the following features
or patterns from the input data:

Spectrogram: A spectrogram is a visual represen-
tation of the spectrum of frequencies in a sound as
they vary with time. By analyzing the spectrogram
of the audio record, I can identify the frequency
range and duration of the calls, which can help
me distinguish right whale calls from other sounds.
Pitch: Right whale calls have a distinct pitch that is
typically between 20 and 30 Hz. By analyzing the
pitch of the audio record, I can determine if there
are any sounds that fall within this range. Duration:
Right whale calls typically last between 1 and 10
seconds. By analyzing the duration of the sounds
in the audio record, I can identify any sounds that
fall within this range. Intensity: Right whale calls
are typically loud and can be heard over long dis-
tances. By analyzing the intensity of the sounds in
the audio record, I can determine if there are any
sounds that are loud enough to be right whale calls.
Repetition: Right whale calls are often repeated
in a specific pattern. By analyzing the repetition
of the sounds in the audio record, I can determine
if there are any sounds that follow a pattern that
is consistent with right whale calls. By analyzing
these features and patterns, I can determine if there
are any right whale calls in the audio record.
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J.2 TEE

J.2.1 Prompt

Given the task: Based on the power density time
series data and select the transient electromagnetic
event that best matches. The FORTE satellite de-
tects transient electromagnetic events associated
with lightning using a suite of optical and radio-
frequency (RF) instruments. There are 7 event
types. CG Positive Initial Return Stroke: A posi-
tive charge is lowered from a cloud to the ground.
The characteristic feature of this type of event in the
power density time series is a sharp turn-on of radi-
ation, followed by a few hundreds of microseconds
of noise; IR Negative Initial Return Stroke: A nega-
tive charge is lowered from a cloud to ground. The
power waveform slowly ramps up to a level known
as an attachment point, where a large surge current
causes the VHF power to ’spike’. This attachment
is followed by an exponentially shaped decline in
the waveform.; SR Subsequent Negative Return
Stroke: A negative charge is lowered from a cloud
to ground. As the name implies, subsequent return
strokes come after initial return strokes. Note that
subsequent positive return strokes don’t exist. I
Impulsive Event: Typically an intra-cloud event
characterized by a sudden peak in the waveform.
I2 Impulsive Event Pair: Another intra-cloud event
characterized by sudden peaks in the waveform
that come in closely separated pairs. These are also
called TIPPs (Trans-Ionospheric Pulse Pairs). KM
Gradual Intra-Cloud Stroke: An intra-cloud event
which increases in power more gradually than an
impulsive event. O Off-record: 800 microseconds
was not enough to fully capture the lightning event.
Please tell me what features or patterns do you plan
to extract from input data to correctly complete this
task?

J.2.2 GPT-4

To successfully classify transient electromagnetic
events based on power density time series data from
the FORTE satellite, you would analyze specific
features from the time series that correspond to the
unique characteristics of each event type. Here are
the key features and patterns to focus on for each
of the seven event types:

CG Positive Initial Return Stroke:
Sharp Onset of Radiation: Look for a very quick

rise in power density at the beginning of the event.
Short Duration Noise: After the sharp onset, ex-
pect a period of noisy signal lasting a few hundred

microseconds. IR Negative Initial Return Stroke:
Slow Ramp-Up: The power density will increase

gradually until it reaches a specific threshold. Spike
at Attachment Point: After the slow ramp-up, look
for a significant spike in the power density. Expo-
nential Decline: Post-spike, the waveform should
show an exponentially shaped decline. SR Subse-
quent Negative Return Stroke:

Multiple Peaks: Since these strokes occur after
the initial return strokes, identify multiple peaks
that might follow initial peaks in a given timeframe.
Characteristics Similar to IR Negative: Each subse-
quent return stroke might mirror the slow ramp-up
and sharp spike, though typically less pronounced
than the initial stroke. I Impulsive Event:

Sudden Peak: Look for a sudden, sharp peak in
the power density without prior gradual increase
or subsequent pairs of peaks. I2 Impulsive Event
Pair:

Paired Peaks: Identify closely spaced pairs of
sharp peaks. Consistency in Time Interval: The
time interval between the paired peaks should be
consistent across events classified as TIPPs. KM
Gradual Intra-Cloud Stroke:

Gradual Increase in Power: Unlike impulsive
events, these will show a more gradual rise in power
density. Sustained High Power Levels: The power
might stay elevated for a longer period compared
to other intra-cloud events. O Off-record:

Incomplete Waveform: Look for waveforms that
seem to cut off or end abruptly without resolving
normally within the 800-microsecond timeframe.
To automate the classification process and improve
accuracy, you can implement a series of steps:

Preprocessing: Apply noise reduction and nor-
malization techniques to clean the data for more
precise analysis. Feature Extraction: Develop algo-
rithms to extract the above features from the time
series data. This might include detecting peaks,
analyzing the rate of rise and fall in power density,
and measuring durations and intervals. Classifi-
cation Model: Use machine learning techniques
such as decision trees, support vector machines,
or neural networks to classify events based on the
extracted features. Training the model with labeled
examples of each event type will be crucial. Valida-
tion and Testing: Continuously validate the model
with new data and adjust parameters to handle varia-
tions in signal characteristics or noise levels. By fo-
cusing on these features and employing robust data
processing and machine learning techniques, you
can effectively classify the types of transient elec-
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tromagnetic events detected by the FORTE satel-
lite.

J.2.3 GPT-4o
To correctly classify transient electromagnetic
events detected by the FORTE satellite using the
power density time series, I will extract the follow-
ing features and patterns from the data:

1. Onset Shape and Slope (Turn-On Pattern)
Feature: Detect the rate of power increase at the
start of the event. Reason: CG Positive Initial
Return Stroke: Sharp, sudden increase in power.
IR Negative Initial Return Stroke: Gradual ramp-
up to an attachment point, followed by a sudden
spike. 2. Noise Characteristics (Post-Onset) Fea-
ture: Identify high-frequency noise following the
event onset. Reason: CG Positive Initial Return
Stroke: Hundreds of microseconds of noise follow-
ing the sharp turn-on. IR Negative Initial Return
Stroke: Less noise following the attachment point.
3. Peak Power Amplitude and Timing Feature:
Measure the peak power and the time to reach the
peak. Reason: I Impulsive Event: Single, sharp
peak. I2 Impulsive Event Pair (TIPPs): Two closely
spaced peaks of similar amplitude. SR Subsequent
Negative Return Stroke: Peak power smaller than
the initial stroke, coming after an initial event. 4.
Power Decay Pattern (Post-Peak) Feature: Exam-
ine the post-peak decay shape (exponential or not).
Reason: IR Negative Initial Return Stroke: Expo-
nential decline following the surge. KM Gradual
Intra-Cloud Stroke: Power decays gradually over
time without a sharp drop. 5. Duration of the
Event Feature: Calculate the total event duration
(from onset to the end of the waveform). Reason:
O Off-Record: The event continues beyond the
800-microsecond recording window. Other Events:
Fit within the 800-microsecond window. 6. Num-
ber of Peaks and Time Separation Between Peaks
Feature: Identify the number of distinct peaks and
measure time intervals between them. Reason: I2
Impulsive Event Pair (TIPPs): Two closely spaced
peaks. I Impulsive Event: Single peak without sub-
sequent pulses. SR Subsequent Negative Return
Stroke: A second peak occurring after the initial
return stroke. 7. Power Level at Attachment Point
(For IR Events) Feature: Detect the power level at
the attachment point for initial return strokes. Rea-
son: IR Negative Initial Return Stroke: The power
ramps up gradually and hits an attachment point be-
fore spiking. 8. Pattern in Power Increase (Gradual
vs. Sudden) Feature: Classify the pattern of power

increase (impulsive or gradual). Reason: KM Grad-
ual Intra-Cloud Stroke: Gradual increase in power
compared to impulsive events. I Impulsive Event:
Sudden increase in power. These features will help
in differentiating between the seven event types
by matching the time series patterns against the
characteristic behaviors described.

J.2.4 Qwen2.5-72B
To accurately classify transient electromagnetic
events based on the power density time series data
from the FORTE satellite, several key features and
patterns should be extracted and analyzed. Here’s
a detailed breakdown of what to look for in each
event type:

1. CG Positive Initial Return Stroke Sharp Turn-
On: Look for a sudden and significant increase in
power density over a very short period (a few mi-
croseconds). Noise Duration: After the sharp turn-
on, there should be a period of noise lasting a few
hundred microseconds. 2. IR Negative Initial Re-
turn Stroke Ramp-Up: Identify a gradual increase
in power density leading to an attachment point.
Spiking: At the attachment point, there should
be a sharp spike in the power waveform. Expo-
nential Decline: Following the spike, the power
should decline exponentially. 3. SR Subsequent
Negative Return Stroke Sudden Peak: Look for
a sudden and significant increase in power den-
sity, similar to the initial return stroke but typically
less intense. Timing: Consider the timing relative
to the initial return stroke, as subsequent strokes
often occur shortly after the initial one. 4. I Im-
pulsive Event Sudden Peak: Identify a sudden and
sharp peak in the power waveform. Duration: The
peak should be relatively short-lived, typically a
few microseconds. 5. I2 Impulsive Event Pair
(TIPPs) Paired Peaks: Look for two closely spaced
peaks in the power waveform. Separation: The
separation between the peaks should be very short,
typically a few microseconds. 6. KM Gradual
Intra-Cloud Stroke Gradual Increase: Identify a
gradual and sustained increase in power density
over a longer period compared to impulsive events.
Smooth Transition: The transition from low to high
power should be smooth without sharp spikes. 7. O
Off-record Duration Exceeding 800 microseconds:
If the event lasts longer than 800 microseconds,
it is classified as off-record. Feature Extraction
Techniques: Time Domain Analysis: Peak Detec-
tion: Use algorithms to detect peaks in the power
density waveform. Rise Time: Measure the time
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it takes for the power to rise from a baseline to a
peak. Fall Time: Measure the time it takes for the
power to fall from a peak back to a baseline. Noise
Analysis: Analyze the noise characteristics follow-
ing a sharp turn-on. Frequency Domain Analysis:
Spectral Analysis: Perform Fourier Transform to
analyze the frequency components of the wave-
form. Bandwidth: Determine the bandwidth of
the signal, which can help distinguish between dif-
ferent types of events. Statistical Analysis: Mean
and Variance: Calculate the mean and variance of
the power density over different segments of the
waveform. Skewness and Kurtosis: These higher-
order statistics can provide insights into the shape
of the waveform. Machine Learning: Feature Engi-
neering: Combine the above features into a feature
vector. Classification Models: Train machine learn-
ing models (e.g., Random Forest, Support Vector
Machines, Neural Networks) to classify the events
based on the extracted features. By carefully ex-
tracting and analyzing these features, you can effec-
tively classify the transient electromagnetic events
detected by the FORTE satellite.

J.2.5 Qwen2-VL-72B
To correctly complete this task, I plan to extract the
following features or patterns from the input data:

Sharp turn-on of radiation: This feature is char-
acteristic of a positive initial return stroke (CG
Positive Initial Return Stroke). I will look for
a sudden increase in power density at the begin-
ning of the time series data. Exponentially shaped
decline: This feature is characteristic of a nega-
tive initial return stroke (IR Negative Initial Re-
turn Stroke). I will look for a slow increase in
power density followed by a sudden spike and then
a gradual decline in the waveform. Subsequent
negative return stroke: This feature is characteristic
of a subsequent negative return stroke (SR Sub-
sequent Negative Return Stroke). I will look for
a negative charge being lowered from a cloud to
the ground after an initial return stroke. Sudden
peak in the waveform: This feature is characteristic
of an impulsive event (I Impulsive Event). I will
look for a sudden increase in power density in the
time series data. Closely separated pairs of sudden
peaks: This feature is characteristic of an impulsive
event pair (I2 Impulsive Event Pair). I will look
for two closely separated peaks in the time series
data. Gradual increase in power: This feature is
characteristic of a gradual intra-cloud stroke (KM
Gradual Intra-Cloud Stroke). I will look for a grad-

ual increase in power density in the time series data.
Off-record event: This feature is characteristic of
an off-record event (O Off-record). I will look for
a lightning event that was not fully captured within
the 800 microseconds of the time series data.

J.3 ECG

J.3.1 Prompt
Given the task: As a cardiologist, you are tasked
with classifying a patient’s heart condition based on
single-lead ECG recordings. Please tell me what
features or patterns do you plan to extract from
input data to correctly complete this task?

J.3.2 GPT-4
To classify a patient’s heart condition based on
single-lead ECG recordings effectively, various fea-
tures and patterns can be extracted from the ECG
signal to facilitate accurate diagnosis. Here are
some key features and patterns typically consid-
ered:

Heart Rate: The average heart rate can be calcu-
lated by detecting the intervals between R-peaks
(RR intervals) in the ECG signal. Variations in
heart rate can indicate conditions like tachycardia
or bradycardia.

RR Intervals: Analyzing the variability of RR
intervals helps in assessing the autonomic nervous
system’s control over the heart, indicating potential
arrhythmias or other heart conditions.

P-Wave Analysis: The presence, size, shape,
and duration of the P-wave, which represents atrial
depolarization, are important. Abnormalities in
P-waves can indicate atrial enlargement or atrial
arrhythmias.

QRS Complex: The duration, amplitude, and
morphology of the QRS complex, which represents
ventricular depolarization, are crucial. Changes
can indicate ventricular hypertrophy, bundle branch
blocks, or other ventricular disorders.

ST Segment: The level and shape of the ST
segment can indicate ischemia or myocardial in-
farction. Elevation or depression of this segment is
particularly significant in diagnosing these condi-
tions.

T-Wave Analysis: Alterations in T-wave mor-
phology can be indicative of electrolyte imbalances,
ischemia, or myocardial infarction.

QT Interval: Measuring the duration of the QT
interval, which represents the total time for ventric-
ular depolarization and repolarization, is important.
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Prolonged or shortened QT intervals can lead to
arrhythmias.

Signal Quality: Assessing the quality of the ECG
signal to detect noise, artifacts, or missing segments
which could affect the analysis.

Advanced Signal Processing Features:
Spectral Analysis: Frequency components of the

ECG can provide insights into periodic oscillations
of the heart rhythm, identifying arrhythmic condi-
tions. Wavelet Transform: This helps in detecting
transient features and non-stationary changes in the
ECG signal. Machine Learning Features:

Feature Engineering: Creating composite fea-
tures like heart rate variability, RR interval statis-
tics (mean, median, range, standard deviation), and
counts of arrhythmic beats. Time-Series Analy-
sis: Applying algorithms to detect trends, patterns,
and outliers over time. Statistical Features: These
include calculating the mean, variance, skewness,
and kurtosis of the intervals and amplitudes, pro-
viding a statistical summary that may indicate un-
derlying pathologies.

These features can be extracted using various sig-
nal processing techniques and then used as inputs
into classification models or algorithms to deter-
mine specific heart conditions. By analyzing these
aspects of the ECG, a cardiologist can effectively
classify different types of heart conditions with
higher accuracy.

J.3.3 GPT-4o

To classify a patient’s heart condition based on
single-lead ECG recordings, the following key fea-
tures and patterns can be extracted:

1. Time-Domain Features Heart Rate (HR):
Average beats per minute (bpm) over the record-

ing. Heart rate variability (HRV) to assess auto-
nomic function. R-R Interval:

Interval between successive R-peaks, essential
for rhythm assessment. P, QRS, and T Wave Dura-
tion:

Abnormal durations may indicate conduction
delays (e.g., bundle branch block). PR Interval:

Prolonged PR intervals could indicate first-
degree heart block. QT and Corrected QT Interval
(QTc):

Long QT may indicate risk for arrhythmias.
QRS Complex Morphology:

Shape or width of the QRS complex provides
insight into ventricular conduction. Frequency-
Domain Features Power Spectral Density (PSD):

Analysis of frequency components to detect
anomalies in heart rhythms (e.g., tachyarrhythmia).
LF/HF Ratio:

Low-Frequency (LF) and High-Frequency (HF)
ratio reflects autonomic nervous system balance.
Morphological Features Amplitude of P, QRS, and
T Waves:

Useful to detect hypertrophy, ischemia, or elec-
trolyte imbalances. ST-Segment Deviation:

Elevated or depressed ST-segment indicates is-
chemia or myocardial infarction. Presence of U-
Waves:

Might indicate hypokalemia or repolarization
abnormalities. Rhythm Patterns and Waveforms
Detection of Arrhythmias:

Identification of atrial fibrillation (AF), ventric-
ular tachycardia (VT), or bradycardia. Atrial and
Ventricular Premature Contractions:

Isolated ectopic beats that may suggest arrhyth-
mogenic risks. Regularity of Beats:

Distinguishing between sinus rhythm, AF, and
other irregular rhythms. Nonlinear and Statistical
Features Poincaré Plots:

Used to visualize HRV patterns and detect ar-
rhythmias. Entropy (e.g., Approximate and Sample
Entropy):

Measures signal complexity, with reduced en-
tropy indicating abnormal rhythms. Fractal Dimen-
sion:

Provides insight into the complexity of ECG
signals, useful for arrhythmia detection. Wavelet
Transform Features Wavelet Coefficients:

Helps in time-frequency analysis to detect tran-
sient events like arrhythmias or ischemia. Multi-
scale Analysis:

Captures changes in the ECG signal across dif-
ferent scales, useful for feature extraction from
noisy signals. Machine Learning or Deep Learning
Based Features (if applicable) Learned Features
from CNN or RNN Models:

Automatically extracted patterns that represent
ECG morphology and rhythm. Latent Features
from Autoencoders:

Captures compressed representations of the sig-
nal for efficient classification. By extracting these
features, both traditional cardiologists and machine
learning models can perform accurate heart condi-
tion classification based on ECG recordings, im-
proving the diagnostic process and patient out-
comes.
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J.3.4 Qwen2.5-72B

To classify a patient’s heart condition based on
single-lead ECG recordings as a cardiologist, sev-
eral key features and patterns need to be extracted
from the ECG data. These features can help in diag-
nosing various cardiac conditions such as arrhyth-
mias, ischemia, and myocardial infarction. Here
are the primary features and patterns to consider:

Heart Rate (HR): Mean Heart Rate: Average
beats per minute (BPM). Heart Rate Variability
(HRV): Variations in the time interval between
heartbeats. QRS Complex: Amplitude: The height
of the QRS complex. Duration: The width of the
QRS complex. Morphology: Shape and pattern
of the QRS complex, which can indicate bundle
branch blocks or ventricular hypertrophy. P Wave:
Amplitude: Height of the P wave. Duration: Width
of the P wave. Morphology: Shape and pattern of
the P wave, which can indicate atrial enlargement
or atrial fibrillation. T Wave: Amplitude: Height of
the T wave. Duration: Width of the T wave. Mor-
phology: Shape and pattern of the T wave, which
can indicate ischemia or electrolyte imbalances. ST
Segment: Elevation or Depression: Changes in the
ST segment can indicate myocardial ischemia or
infarction. Morphology: Shape of the ST segment,
including upsloping, downsloping, or flat patterns.
PR Interval: Duration: Time from the onset of the
P wave to the onset of the QRS complex. Vari-
ability: Changes in the PR interval can indicate
conduction abnormalities. QT Interval: Duration:
Time from the onset of the Q wave to the end of
the T wave. Corrected QT (QTc): Adjusted for
heart rate to account for variations in heart rate.
RR Interval: Duration: Time between successive
R waves. Variability: Changes in RR intervals
can indicate arrhythmias. Rhythm Analysis: Regu-
lar vs. Irregular: Consistency of the R-R intervals.
Rate: Whether the heart rate is normal, bradycardic,
or tachycardic. Pattern: Specific patterns such as
atrial fibrillation, atrial flutter, or ventricular tachy-
cardia. Waveform Analysis: Presence of Abnormal
Waves: Such as U waves, epsilon waves, or delta
waves. Abnormal Patterns: Such as J-point ele-
vation, Osborn waves, or T-wave inversions. Fre-
quency Domain Analysis: Power Spectral Density
(PSD): Distribution of power over different fre-
quency bands. Dominant Frequencies: Frequencies
with the highest power. Time-Frequency Analysis:
Spectral Analysis: Techniques like Fourier Trans-
form or Wavelet Transform to analyze both time

and frequency components. Bispectral Analysis:
Higher-order spectral analysis to detect nonlinear
interactions. Machine Learning Features: Feature
Engineering: Creating new features from raw ECG
data, such as statistical measures, derivatives, and
integrals. Feature Selection: Using techniques like
PCA (Principal Component Analysis) or LASSO
(Least Absolute Shrinkage and Selection Operator)
to select the most relevant features. By extracting
and analyzing these features, you can effectively
classify a patient’s heart condition and provide an
accurate diagnosis. Each feature provides a piece
of the puzzle, and together they form a comprehen-
sive picture of the patient’s cardiac health.

J.3.5 Qwen2-VL-72B
To classify a patient’s heart condition based on
single-lead ECG recordings, I would extract the
following features or patterns from the input data:

Heart rate: The number of heartbeats per minute
can provide important information about the pa-
tient’s heart condition. Rhythm: The regularity
of the heartbeats can indicate whether the patient
has a normal or abnormal heart rhythm. P wave:
The P wave represents atrial depolarization and can
provide information about the patient’s atrial activ-
ity. QRS complex: The QRS complex represents
ventricular depolarization and can provide infor-
mation about the patient’s ventricular activity. ST
segment: The ST segment represents the period
between the end of ventricular depolarization and
the beginning of ventricular repolarization and can
provide information about the patient’s myocardial
ischemia. T wave: The T wave represents ven-
tricular repolarization and can provide information
about the patient’s ventricular repolarization. QT
interval: The QT interval represents the time be-
tween the start of ventricular depolarization and the
end of ventricular repolarization and can provide
information about the patient’s ventricular repolar-
ization. PR interval: The PR interval represents
the time between the start of atrial depolarization
and the start of ventricular depolarization and can
provide information about the patient’s atrioventric-
ular conduction. QRS duration: The QRS duration
represents the time it takes for the ventricles to
depolarize and can provide information about the
patient’s ventricular conduction. Axis: The axis
represents the direction of the electrical activity of
the heart and can provide information about the
patient’s heart position and orientation. By ana-
lyzing these features or patterns, I can classify the
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patient’s heart condition based on the single-lead
ECG recordings.

J.4 EMG

J.4.1 Prompt
Given the task: As an Electromyograms (EMG)
analysis expert, you are tasked with determining
the type of the subject based on the EMG record.
Please tell me what features or patterns do you plan
to extract from input data to correctly complete this
task?

J.4.2 GPT-4
As an Electromyograms (EMG) analysis expert
tasked with determining the type of subject based
on the EMG record, the following features and
patterns would be essential to extract from the input
data to facilitate accurate classification:

Signal Amplitude: The peak amplitude of the
EMG signal provides information on muscle ac-
tivity level, which can vary significantly between
different types of subjects, such as athletes vs. non-
athletes, or among different medical conditions.

Mean Absolute Value (MAV): This feature rep-
resents the average of the absolute values of the
EMG signal. It is useful for estimating the overall
muscle activation over time.

Variance: The variance of the EMG signal can
help in assessing the signal’s power and muscle
fatigue, which may differentiate between subject
types based on their endurance and muscle condi-
tion.

Root Mean Square (RMS): This is a measure
of the signal’s power, reflecting muscle force and
fatigue. It’s particularly useful in continuous moni-
toring of muscle activity.

Zero Crossing Rate (ZCR): This measures the
rate at which the signal changes from positive to
negative and vice versa, indicating muscle fiber
recruitment patterns and firing rates.

Waveform Length: The cumulative length of
the waveform over time, reflecting the complexity
of the muscle activation pattern. It can indicate
the contractile characteristics of different muscle
groups.

Frequency Domain Features:
Median Frequency (MDF): This frequency di-

vides the spectrum into two regions with equal
power; it shifts downwards as muscles fatigue.
Mean Frequency (MNF): This is the average fre-
quency weighted by the amplitude, used to assess

muscle fatigue and fiber composition. Power Spec-
tral Density (PSD): Analysis of the distribution
of power across various frequency bands can in-
dicate the type of muscle activity and its intensity.
Entropy: This measures the complexity or random-
ness of the EMG signal, useful for distinguishing
between controlled and uncontrolled muscle activ-
ity.

Higher Order Statistics (HOS): Skewness and
kurtosis of the EMG signal provide insights into the
symmetry and peakiness of the distribution, which
can vary with different types of muscle activation.

Autoregressive Model Coefficients: Parameters
from fitting an autoregressive model to the EMG
signal can help in characterizing the muscle activity
and can be used as features for classification.

Signal Decomposition:
Wavelet Transform: Decomposing the signal

into wavelets to capture both frequency and lo-
cation information about muscle activity. Empiri-
cal Mode Decomposition (EMD): This non-linear
and non-stationary signal analysis technique can
adaptively decompose an EMG signal into intrinsic
mode functions (IMFs), revealing hidden patterns.
Pattern Recognition: Detecting specific patterns
of muscle activation that are characteristic of cer-
tain actions or types of subjects, using sequence
modeling or neural networks.

These features can be extracted using advanced
signal processing techniques and subsequently used
in machine learning models to classify different
types of subjects based on their EMG records. The
choice of features and model depends on the speci-
ficity of the subjects being classified and the quality
and type of EMG data available.

J.4.3 GPT-4o

Time-Domain Features Mean Absolute Value
(MAV):

Average of the absolute EMG signal, reflecting
muscle contraction intensity. Root Mean Square
(RMS):

Indicates the power of the signal and reflects
muscle contraction strength. Zero Crossing Rate
(ZCR):

The number of times the signal changes sign,
related to muscle activation and fatigue. Slope
Sign Changes (SSC):

Number of slope changes in the signal, which
identifies muscle state changes. Waveform Length
(WL):
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Cumulative length of the signal waveform, rep-
resenting complexity and activity. Integrated EMG
(IEMG):

Summed absolute values of the EMG sig-
nal, used to measure muscle workload over
time. Frequency-Domain Features Mean Fre-
quency (MNF):

Average frequency content of the signal, which
decreases during muscle fatigue. Median Fre-
quency (MDF):

Frequency at which the power spectrum is di-
vided into two equal halves, commonly used for
fatigue detection. Power Spectral Density (PSD):

Quantifies the power across different frequency
bands, helping to identify fatigue or abnormal mus-
cle states. Band Power (BP):

Signal energy in specific frequency bands (e.g.,
10-500 Hz for EMG). Spectral Moments:

Useful for characterizing the distribution of spec-
tral content across the frequency spectrum. Time-
Frequency and Nonlinear Features Short-Time
Fourier Transform (STFT):

Analyzes how the frequency components of the
signal change over time. Wavelet Transform:

Provides multi-scale analysis to capture transient
muscle activations and fatigue patterns. Entropy
Measures:

Sample Entropy, Approximate Entropy: Mea-
sures the signal complexity, with reduced entropy
indicating fatigue or pathology. Fractal Dimension:

Assesses signal irregularity, with higher values
indicating more complex muscle activation pat-
terns. Muscle Activation Features Onset and Offset
Detection:

Time points when a muscle starts or stops con-
tracting, useful for activity detection. Co-activation
Patterns:

Correlation between different muscle groups,
helping in understanding coordination and motor
control. Muscle Synergy Analysis:

Identifying groups of muscles activated together
to perform specific tasks. Fatigue and Pathology
Detection Features Decrease in MNF and MDF
Over Time:

Indicators of muscle fatigue as spectral content
shifts to lower frequencies. Increase in Signal Am-
plitude and Variability:

Pathological conditions may exhibit irregular or
spastic muscle activity. Motor Unit Action Poten-
tial (MUAP) Features:

MUAP size, shape, and firing rates provide
insights into motor unit recruitment and muscle

health. Statistical Features Skewness and Kurtosis:
Indicates asymmetry and peakedness of the sig-

nal distribution, respectively. Variance and Stan-
dard Deviation:

Reflects the variability in muscle activity, use-
ful for fatigue and abnormality detection. Cross-
Correlation:

Measures synchronization between signals from
different muscles. Machine Learning or Deep
Learning Features (if applicable) Learned Features
from CNN, RNN, or LSTM Models:

Automatically extracted patterns representing
complex muscle activity and fatigue states. Latent
Features from Autoencoders:

Compressed representations for efficient subject
classification. By extracting these features from the
EMG signal, both traditional analysis and machine
learning models can accurately classify the subject
type, providing insights into muscle performance,
fatigue, or pathology.

J.4.4 Qwen2.5-72B
To determine the type of the subject based on Elec-
tromyogram (EMG) records, several key features
and patterns can be extracted from the EMG data.
These features help in distinguishing between dif-
ferent types of muscle activities, which can be in-
dicative of various conditions or states of the sub-
ject. Here are some of the most important features
and patterns to consider:

Amplitude: Mean Amplitude: The average am-
plitude of the EMG signal over a period of time.
Peak Amplitude: The maximum amplitude reached
during the recording. Frequency: Power Spectrum
Density (PSD): Analyzing the frequency content
of the EMG signal can provide insights into the
muscle’s activation patterns. Median Frequency
(MDF): The frequency below which 50Mean Fre-
quency (MNF): The average frequency of the
power spectrum. Time-Domain Features: Root
Mean Square (RMS): A measure of the magnitude
of the EMG signal over a period of time. Zero
Crossings (ZC): The number of times the EMG
signal crosses the zero line. Waveform Length
(WL): The cumulative length of the EMG signal
over a period of time. Slope Sign Changes (SSC):
The number of times the slope of the EMG sig-
nal changes sign. Frequency-Domain Features:
Fast Fourier Transform (FFT): Converts the time-
domain signal into its frequency components. Band
Power: The power in specific frequency bands
(e.g., low, medium, high). Non-Linear Features:
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Sample Entropy (SampEn): Measures the complex-
ity and regularity of the EMG signal. Approxi-
mate Entropy (ApEn): Another measure of sig-
nal complexity and regularity. Motor Unit Action
Potential (MUAP) Analysis: MUAP Shape and
Size: Characteristics of individual motor unit ac-
tion potentials. Firing Rate: The rate at which
motor units are activated. Spectral Moments: First
Spectral Moment (F1): The mean frequency. Sec-
ond Spectral Moment (F2): The variance of the
frequency distribution. Time-Frequency Analysis:
Short-Time Fourier Transform (STFT): Provides a
time-varying spectral representation of the EMG
signal. Wavelet Transform: Analyzes the signal in
both time and frequency domains, useful for non-
stationary signals. Statistical Features: Skewness:
Measures the asymmetry of the signal distribution.
Kurtosis: Measures the "tailedness" of the signal
distribution. Muscle Fatigue Indicators: Fatigue
Index (FI): The rate of change of the median fre-
quency over time, indicating muscle fatigue. Spec-
tral Shift: Changes in the frequency content of the
EMG signal as the muscle fatigues. By extracting
these features, you can build a comprehensive pro-
file of the EMG signal, which can then be used to
classify the type of the subject. For example, differ-
ent muscle conditions (e.g., healthy vs. pathologi-
cal), different levels of muscle activity (e.g., rest vs.
contraction), or different types of movements (e.g.,
voluntary vs. involuntary) can be distinguished
based on these features. Machine learning algo-
rithms can be trained on these features to automate
the classification process.

J.4.5 Qwen2-VL-72B
As an EMG analysis expert, I would extract the
following features or patterns from the input data
to determine the type of the subject:

Frequency content: The frequency content of the
EMG signal can provide information about the type
of muscle activity. For example, low-frequency
components may indicate slow muscle contractions,
while high-frequency components may indicate fast
muscle contractions. Amplitude: The amplitude
of the EMG signal can provide information about
the strength of the muscle contraction. Higher am-
plitudes may indicate stronger muscle contractions.
Duration: The duration of the EMG signal can pro-
vide information about the duration of the muscle
contraction. Longer durations may indicate sus-
tained muscle contractions. Shape: The shape of
the EMG signal can provide information about the

type of muscle activity. For example, a burst of
activity followed by a period of inactivity may in-
dicate a twitch, while a sustained period of activity
may indicate a tetanus. Coherence: The coherence
between different EMG signals can provide infor-
mation about the coordination of muscle activity.
High coherence may indicate coordinated muscle
activity, while low coherence may indicate unco-
ordinated muscle activity. Power spectral density:
The power spectral density of the EMG signal can
provide information about the distribution of power
across different frequency bands. This can be used
to identify specific muscle groups or types of mus-
cle activity. By analyzing these features or patterns,
I can determine the type of the subject based on the
EMG record.

J.5 CTU
J.5.1 Prompt
Given the task: Play as a computer energy con-
sumption analysis expert, please correctly deter-
mine whether this computer is a desktop or a lap-
top based on the 24-hour power consumption data.
Please tell me what features or patterns do you plan
to extract from input data to correctly complete this
task?

J.5.2 GPT-4
To differentiate between a desktop and a laptop
based on 24-hour power consumption data, you
would focus on extracting and analyzing specific
features or patterns that can indicate the type of
device based on its energy usage profile. Here
are several key features and patterns you might
consider:

Total Daily Power Consumption:
Laptops typically consume less power than desk-

tops due to their more energy-efficient components.
Calculating the total power used over a 24-hour
period could give an initial indication of the device
type. Power Consumption Patterns Over Time:

Analyze hourly or segment-wise power con-
sumption. Laptops might show a more uniform
consumption pattern, especially if they’re left on
but are in sleep or hibernate modes. Desktops
might show a starker contrast between high con-
sumption during active use and low consumption
when turned off or in sleep mode. Frequency and
Duration of Power Spikes:

Desktops might exhibit higher power spikes dur-
ing usage due to more powerful processors and
peripherals compared to laptops. Observing how
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often and how long these spikes occur can be in-
dicative. Minimum Power Consumption Levels:

The minimum power levels (especially during in-
active periods like nighttime) can be telling. Desk-
tops might completely turn off (very low or zero
consumption) or remain on higher consumption
levels due to connected devices, whereas laptops
typically have lower baseline consumption levels
due to battery optimization features. Presence of
Battery Charging Patterns:

If data shows periodic drops and rises in power
consumption that could correspond to a battery
charging cycle, it’s likely a laptop. Desktops would
not show this pattern unless a UPS or similar device
is connected, which is less common. Variability in
Power Consumption:

Analyzing the variability and standard devia-
tion in power usage over 24 hours can help dis-
tinguish between the two. Laptops generally have
less variability in power consumption, while desk-
tops might have greater fluctuations due to different
modes of operation (idle, full power, sleep mode).
Response to Day and Night Cycles:

Depending on the usage patterns, if the device
shows a significant reduction in power usage during
typical sleeping hours, it might suggest a laptop
which is often put into sleep mode automatically.
Desktops might not show this pattern distinctly
if they are left on for processes like downloads,
updates, or backups during off-hours. By analyzing
these features and considering the context in which
the device is used (e.g., home, office), you can
infer with reasonable accuracy whether the device
is a desktop or a laptop. Statistical and machine
learning models can be applied to these features
to automate the classification process, especially if
you have a labeled dataset to train such models.

J.5.3 GPT-4o
To determine whether a computer is a desktop or
a laptop based on its 24-hour power consumption
data, I will extract the following features and pat-
terns:

1. Base Power Consumption (Idle Usage) Fea-
ture: Identify the minimum power level when the
computer is idle. Reason: Desktops typically have
higher idle consumption due to larger components
(e.g., GPUs, cooling systems). Laptops generally
consume lower power at idle. 2. Power Con-
sumption Peaks and Variability Feature: Extract
peak power usage and how frequently peaks occur
throughout the day. Reason: Desktops often have

higher peak power consumption during intensive
tasks (e.g., gaming, rendering). Laptops may ex-
hibit more frequent but lower peaks, depending on
workload. 3. Usage Patterns (On-Off Cycles) Fea-
ture: Identify the duration and frequency of usage
periods vs. idle or sleep periods. Reason: Laptops
tend to have more off/sleep cycles due to battery-
saving features, while desktops often remain on for
extended periods, especially if connected to UPS
or used as servers. 4. Power Spikes During Start-
Up (Boot Time) Feature: Detect significant power
increases indicating a system boot. Reason: Lap-
tops may exhibit small, brief spikes during start-
up, while desktops might have more noticeable
power jumps due to larger components. 5. Battery-
Induced Cycles (Power Drops) Feature: Look for
repeating low power levels or abrupt power drops
corresponding to battery-saving modes (if the sys-
tem is unplugged). Reason: Only laptops have bat-
tery discharge patterns, leading to identifiable low-
power modes (like Sleep or Hibernate). 6. Cooling
System Patterns (Fan Activity) Feature: Identify
fan activity or cooling-induced power surges. Rea-
son: Desktops typically have stronger fans or liquid
cooling systems, leading to regular power surges
when temperatures rise. Laptops have smaller fans,
with less significant fluctuations. 7. Day-Night
Power Trends (User Behavior) Feature: Observe
power usage during the night and early morning
hours. Reason: Desktops are sometimes left on
overnight for background processes (e.g., down-
loads, backups), while laptops are more likely to
enter sleep mode overnight. 8. Power Consumption
Range Feature: Compute the range of power con-
sumption (Max - Min) throughout the day. Reason:
Desktops generally exhibit a broader power range
(e.g., 50-200W or higher). Laptops have a narrower
range (e.g., 5-50W). These features and patterns
will allow us to distinguish between desktop and
laptop behaviors effectively. With proper statisti-
cal or machine learning models, these extracted
features can be combined for a final classification.

J.5.4 Qwen2.5-72B
To determine whether a computer is a desktop or a
laptop based on 24-hour power consumption data,
I would focus on several key features and patterns
that typically differentiate the two types of comput-
ers. Here’s how I would approach the analysis:

1. Average Power Consumption Desktops gener-
ally have higher average power consumption com-
pared to laptops because they have more powerful
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components and larger power supplies. Laptops
are designed for portability and efficiency, so their
average power consumption is typically lower. 2.
Peak Power Consumption Desktops can have very
high peak power consumption, especially during
resource-intensive tasks like gaming, video ren-
dering, or running multiple applications simulta-
neously. Laptops have more limited peak power
consumption due to their smaller form factor and
battery constraints. 3. Power Consumption Vari-
ability Desktops often show more variability in
power consumption throughout the day, as they
are more likely to be used for a wide range of
tasks with varying power demands. Laptops tend
to have more consistent power consumption, es-
pecially when running on battery power, but can
show variability when plugged in and performing
intensive tasks. 4. Idle Power Consumption Desk-
tops usually have a higher idle power consumption
because they have more components (e.g., multiple
fans, larger power supplies) that consume power
even when the system is not under load. Laptops
have lower idle power consumption due to their
energy-efficient design and power-saving features.
5. Power Consumption Patterns During Sleep or
Hibernate Desktops may not enter deep sleep or
hibernate states as frequently as laptops, leading to
higher power consumption even when not in use.
Laptops are more likely to enter low-power states
(sleep or hibernate) to conserve battery, resulting in
very low power consumption during these periods.
6. Daily Usage Patterns Desktops are often left
on for extended periods, even overnight, leading
to a more continuous power consumption pattern.
Laptops are more likely to be turned off or put
into sleep mode when not in use, resulting in more
frequent drops in power consumption. 7. Battery
Cycles (if applicable) If the data includes infor-
mation about battery cycles, this can be a clear
indicator: Laptops will show battery charge and
discharge cycles. Desktops do not have batteries,
so there will be no such cycles. 8. Time of Day
Analysis Desktops might show higher power con-
sumption during typical working hours (9 AM to
5 PM) and lower consumption during nighttime.
Laptops might show more varied usage patterns,
including evening and late-night usage, depending
on the user’s habits. Example Analysis Steps: Cal-
culate Average Power Consumption: Compute the
mean power consumption over the 24-hour period.
Identify Peak Power Consumption: Find the high-
est power consumption value and note the time it

occurs. Analyze Power Consumption Variability:
Calculate the standard deviation of power consump-
tion to understand how much it fluctuates. Examine
Idle Power Consumption: Look at the lowest power
consumption values to estimate idle power. Check
for Low-Power States: Identify periods of very
low power consumption (e.g., <10W) that might
indicate sleep or hibernate states. Review Daily
Usage Patterns: Plot the power consumption over
the 24-hour period to visualize usage patterns and
identify any regular cycles. By combining these
features and patterns, you can make an informed
decision about whether the computer is a desktop
or a laptop.

J.5.5 Qwen2-VL-72B

To determine whether a computer is a desktop or a
laptop based on 24-hour power consumption data,
I would extract the following features or patterns
from the input data:

Average power consumption: I would calculate
the average power consumption of the computer
over the 24-hour period. Desktop computers typi-
cally consume more power than laptops, so a higher
average power consumption would suggest that the
computer is a desktop. Power consumption during
peak hours: I would also look at the power con-
sumption during peak hours, such as during the
day when the computer is in use. Desktop comput-
ers tend to have higher power consumption during
peak hours, while laptops may have lower power
consumption during these times. Power consump-
tion during idle periods: I would also examine the
power consumption during idle periods, such as
overnight when the computer is not in use. Desk-
top computers may have higher power consump-
tion during idle periods due to their larger size
and more powerful components, while laptops may
have lower power consumption during these times.
Power consumption spikes: I would look for any
power consumption spikes in the data, which could
indicate that the computer is performing a power-
intensive task. Desktop computers may have more
frequent and larger power consumption spikes due
to their more powerful components, while laptops
may have fewer and smaller spikes. By analyzing
these features and patterns in the power consump-
tion data, I would be able to determine whether the
computer is a desktop or a laptop.
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J.6 HAR

J.6.1 Prompt
Given the task: As a human activity recognition
expert, you are tasked with determining the type
of activity performed by the subject based on the
accelerometer record series along the x, y, and z
axes over time . Please tell me what features or
patterns do you plan to extract from input data to
correctly complete this task?

J.6.2 GPT-4
For the task of human activity recognition based
on accelerometer data along the x, y, and z axes,
the extraction of relevant features is crucial for
accurately classifying the type of activity. Here
are some typical features and patterns you might
consider extracting from the accelerometer data:

Statistical Features:
Mean: Average value of acceleration for each

axis. Standard Deviation: Measure of the amount
of variation or dispersion in the acceleration values.
Variance: Squared deviation of each point from
the mean, indicating the spread of the acceleration
data. Median: The middle value of the data which
divides the probability distribution into two equal
halves. Range: Difference between the maximum
and minimum values in the acceleration data. In-
terquartile Range (IQR): Measures the statistical
dispersion as the difference between 25th and 75th
percentiles. Time-domain Features:

Root Mean Square (RMS): Indicates the magni-
tude of acceleration, computed as the square root
of the average of the squares of the values. Zero
Crossing Rate (ZCR): Number of times the signal
changes from positive to negative and vice versa,
which can indicate the frequency of the activity.
Signal Magnitude Area (SMA): Integration of the
magnitude of the acceleration over a window, giv-
ing a sense of the energy expenditure. Time be-
tween Peaks: Interval time between local maxima
in the acceleration data. Frequency-domain Fea-
tures:

Fast Fourier Transform (FFT): Transforming the
data from time domain to frequency domain to
analyze the frequency components. Power Spec-
tral Density (PSD): Indicates the power present
in various frequency components. Spectral En-
tropy: Measures the regularity and complexity of
the frequency distribution. Peak Frequency: The
frequency with the maximum power, indicating
the dominant frequency of movement. Correlation-

based Features:
Correlation between Axes: Measures how re-

lated the movements in different axes are, which
can indicate coordinated motion patterns. Geomet-
rical Features:

Angles between Axes: Can help in understand-
ing the orientation of the body in space. Magnitude
of Acceleration Vector: Calculated as the square
root of the sum of the squares of x, y, and z compo-
nents. It provides a holistic view of the acceleration
independent of the direction. Entropy-based Fea-
tures:

Signal Entropy: Indicates the unpredictability
or complexity of the acceleration signal. By ex-
tracting these features from the accelerometer data,
you can capture a comprehensive profile of the
movements, which can then be fed into a machine
learning model to classify different types of human
activities such as walking, running, sitting, stand-
ing, etc.

J.6.3 GPT-4o
To determine the type of activity performed by a
subject using accelerometer data, I would focus
on extracting both statistical features and domain-
specific patterns that capture relevant aspects of the
movements. Below is a structured approach to the
features I plan to extract:

1. Time-Domain Features These features capture
statistical properties directly from the raw time
series data along the x, y, and z axes:

Mean: Average value of the accelerometer data
for each axis. Standard Deviation (STD): Mea-
sures variability in the signal. Variance: Quantifies
how much the data varies. Min, Max, and Range:
Captures the spread of the data values. Skewness:
Measures the asymmetry of the data distribution.
Kurtosis: Measures the "tailedness" of the data
distribution. Signal Magnitude Area (SMA):

Energy: Sum of squared values for each axis
divided by the series length. Root Mean Square
(RMS): Useful to measure overall signal inten-
sity. 2. Frequency-Domain Features Using Fourier
Transform (or Wavelet Transform) to analyze the
signal in the frequency domain helps identify peri-
odic activities (e.g., walking, running).

Spectral Entropy: Measures randomness in the
frequency spectrum. Dominant Frequency: The
frequency with the highest magnitude. Power Spec-
tral Density (PSD): Helps measure power in vari-
ous frequency bands. Peak Frequencies and Their
Amplitudes: To identify key frequencies related to
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the activity. 3. Time-Frequency Features Using
short-time Fourier transform (STFT) or wavelet
decomposition to extract:

Wavelet coefficients: Capture both time-
localized frequency content. Instantaneous fre-
quency: Measures how frequency content changes
over time. 4. Magnitude and Orientation Features
Some activities are better identified through the
magnitude or orientation of movement:

Acceleration Magnitude: Magnitude

Mean and Variance of Magnitude: Stability of
the signal magnitude over time. Tilt Angles: An-
gles between the gravity vector and each axis. Roll
and Pitch Angles: Describe the subject’s orienta-
tion. 5. Temporal and Statistical Patterns These
features capture the dynamics of the signal over
time.

Zero Crossing Rate: Counts the number of times
the signal crosses zero, indicating changes in di-
rection. Autocorrelation: Measures similarity of
the signal with a delayed version of itself. Number
of Peaks: Useful for repetitive activities like walk-
ing or jogging. Signal Peaks and Valleys: Identify
critical motion events. 6. Segment-Level Features
Segmenting the data into windows (e.g., sliding
windows of 1-3 seconds) ensures more granular
feature extraction.

Features within sliding windows: Mean, STD,
etc., within each window. Window Overlap: To
smooth transitions between activities. 7. Cross-
Axis Features These features capture interactions
between the x, y, and z axes:

Correlation between axes: Helps detect synchro-
nized movements along different directions. Co-
variance between axes: Measures joint variability
of axes. 8. Activity-Specific Patterns Gait Cycle
Detection: For walking and running patterns. Step
Detection: Counting steps to differentiate walking
from running. Stationarity Detection: Helps iden-
tify stationary periods, such as sitting or standing.
9. Feature Engineering with Domain Knowledge
Tilt thresholding: To detect specific postures like
sitting, lying down, or standing. Jerk computation:
Time derivative of acceleration to detect sudden
changes (e.g., jumping). This diverse set of fea-
tures—statistical, frequency-based, temporal, and
activity-specific—helps build a robust model ca-
pable of accurately classifying activities such as
walking, running, sitting, standing, and more com-
plex activities.

J.6.4 Qwen2.5-72B

To accurately determine the type of activity per-
formed by a subject based on accelerometer data,
it’s crucial to extract meaningful features that can
capture the essence of the movements. Here are
some key features and patterns you might consider
extracting from the accelerometer record series
along the x, y, and z axes:

1. Statistical Features Mean: The average value
of the acceleration in each axis. Standard Devi-
ation: Measures the variability or spread of the
acceleration values. Variance: Another measure of
the spread of the data. Maximum and Minimum
Values: The highest and lowest values of accelera-
tion in each axis. Range: The difference between
the maximum and minimum values. Median: The
middle value of the sorted acceleration data. In-
terquartile Range (IQR): The range between the
first quartile (25th percentile) and the third quartile
(75th percentile). 2. Frequency Domain Features
Fast Fourier Transform (FFT): Converts the time-
domain signal into the frequency domain to iden-
tify dominant frequencies. Spectral Energy: The
total energy in the frequency domain. Spectral En-
tropy: Measures the disorder or randomness in the
frequency domain. Spectral Centroid: The center
of mass of the spectrum. Spectral Roll-off: The
frequency below which a certain percentage (e.g.,
853. Time-Domain Features Zero Crossing Rate:
The rate at which the signal crosses zero. Mean
Absolute Value (MAV): The average of the abso-
lute values of the acceleration. Root Mean Square
(RMS): The square root of the mean of the squared
values of the acceleration. Signal Magnitude Area
(SMA): The sum of the absolute values of the accel-
eration in all three axes. Jerk: The rate of change of
acceleration, calculated as the difference between
consecutive acceleration values. 4. Correlation
and Covariance Cross-Correlation: Measures the
similarity between the acceleration signals in dif-
ferent axes. Covariance: Measures how much two
signals vary together. 5. Temporal Patterns Auto-
correlation: Measures the correlation of the signal
with a delayed copy of itself. Lag: The time delay
at which the autocorrelation is maximized. Peak
Detection: Identifies the peaks in the acceleration
signal, which can be indicative of specific activi-
ties. 6. Energy Features Total Energy: The sum
of the squared values of the acceleration. Band
Energy: The energy in specific frequency bands.
7. Complexity and Entropy Sample Entropy: Mea-
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sures the complexity of the signal. Approximate
Entropy: Another measure of signal complexity.
8. Shape Features Skewness: Measures the asym-
metry of the distribution of the acceleration values.
Kurtosis: Measures the "tailedness" of the distri-
bution. 9. Activity-Specific Features Step Count:
For walking or running, the number of steps can
be a useful feature. Stride Length: The distance
covered in one step. Cadence: The number of
steps per minute. 10. Machine Learning Features
Principal Component Analysis (PCA): Reduces the
dimensionality of the data while retaining most
of the variance. Feature Selection: Techniques
like mutual information, chi-squared test, or recur-
sive feature elimination can help select the most
relevant features. Example Feature Extraction Pro-
cess: Preprocessing: Filtering: Apply low-pass or
band-pass filters to remove noise. Segmentation:
Divide the continuous data into fixed-length win-
dows (e.g., 2 seconds). Feature Calculation: For
each window, compute the statistical, frequency,
time-domain, and other features mentioned above.
Feature Normalization: Normalize the features to
ensure they are on a similar scale, which can im-
prove the performance of machine learning mod-
els. Model Training: Use the extracted features
to train a machine learning model (e.g., Random
Forest, SVM, Neural Networks) to classify the ac-
tivities. By carefully selecting and combining these
features, you can build a robust model for human
activity recognition using accelerometer data.

J.6.5 Qwen2-VL-72B
To determine the type of activity performed by the
subject based on the accelerometer record series
along the x, y, and z axes over time, I would extract
the following features or patterns from the input
data:

Mean and standard deviation of the accelera-
tion values along each axis: These features can
help identify the overall movement and intensity of
the activity. Frequency domain features: I would
perform a Fourier transform on the acceleration
data to extract frequency domain features such as
the dominant frequency, frequency bandwidth, and
spectral entropy. These features can help identify
the periodicity and complexity of the activity. Time
domain features: I would extract time domain fea-
tures such as the root mean square (RMS), zero
crossing rate, and autocorrelation. These features
can help identify the smoothness and regularity of
the activity. Activity-specific features: Depending

on the type of activity being performed, I would
extract activity-specific features such as the num-
ber of steps taken, the duration of the activity, and
the intensity of the activity. Contextual features:
I would also consider contextual features such as
the location of the subject, the time of day, and
the duration of the activity. These features can
help identify the context in which the activity is
being performed. By combining these features, I
can create a comprehensive representation of the
activity being performed and use machine learning
algorithms to classify the activity accurately.

Figure 12: Frequency-Domain Visualization Demo of
RCW Task.

Figure 13: Time-Domain Visualization Demo of HAR
Task.
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Cost for Traditional Method Per Sample Cost for Proposed Method Per Sample
RCW 0.15$ 0.000657$
TEE 0.0112$ 0.000213$
ECG 0.0638$ 0.000213$
EMG 0.0638$ 0.000213$
CTU 0.027$ 0.000213$
HAR 0.0185$ 0.000213$

Table 4: Results of Cost Comparison based on GPT-4o. RCW leverages frequency-domain visualizations and
requires an automatic resolution option. The remaining datasets use the same plot size and resolution, so they have
consistent token usage.

Tokens Per Sample for Numerical Modeling Tokens Per Sample for Proposed Solution
RCW 60,000 262
TEE 4,466 85
ECG 25,500 85
EMG 25,500 85
CTU 10,800 85
HAR 7,416 85

Table 5: Details of Token Usage Comparison based on GPT-4o. The remaining datasets use the same plot size and
resolution, so they have consistent token usage.
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