
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 6841–6858

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Evaluating and Mitigating Object Hallucination in Large Vision-Language
Models: Can They Still See Removed Objects?

Yixiao He, Haifeng Sun, Pengfei Ren, Jingyu Wang, Huazheng Wang,
Qi Qi, Zirui Zhuang†, Jing Wang†

State Key Laboratory of Networking and Switching Technology
Beijing University of Posts and Telecommunications

{heyixiao,hfsun,rpf,wangjingyu,wanghz,qiqi8266}@bupt.edu.cn
{zhuangzirui,wangjing}@bupt.edu.cn

Abstract

Large Vision-Language Models (LVLMs) have
a significant issue with object hallucinations,
where researchers have noted that LVLMs of-
ten mistakenly determine objects as present in
images where they do not actually exist. Some
recent studies evaluate the occurrence of ob-
ject hallucinations by asking LVLMs whether
they see objects that do not exist in input im-
ages. However, we observe that these evalu-
ation methods have some limitations, such as
the objects being questioned potentially having
little relevance to the image. In this paper, we
introduce a more challenging benchmark for
evaluating object hallucinations by removing
objects from images and then asking the model
whether it can still see the removed objects.
Our evaluation result reveals that LVLMs suffer
from severe hallucinations, as they often still
claim to see the removed objects. Through our
analysis, we find that biases in training result
in LVLMs lacking guidance on learning about
the absence of objects, which in turn leads to
a lack of ability to determine that objects do
not exist in images. To address this issue, we
further propose oDPO, a direct preference opti-
mization objective based on visual objects. By
guiding LVLMs to learn to determine the ex-
istence of objects, oDPO effectively alleviates
object hallucinations. It achieves more compet-
itive results than other hallucination mitigation
approaches across multiple object hallucination
benchmarks and enhances the performance of
LVLMs in various vision-language tasks.

1 Introduction

With the advancement of Large Language Models
(LLMs) (OpenAI, 2023; Anil et al., 2023; Tou-
vron et al., 2023) and the emergence of power-
ful pre-trained vision-language models (Radford
et al., 2021; Caron et al., 2021; Oquab et al., 2024;
Woo et al., 2023), several Large Vision-Language
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Figure 1: Comparison between existing evaluation
benchmarks and ROHE. This example is taken from
Fu et al. (2023). The non-existent objects sampled by
existing benchmarks may lack challenge for LVLMs
and fail to evaluate object hallucination. In contrast,
ROHE reveals potential object hallucination by remov-
ing existent object in the image.

Models (LVLMs) have achieved remarkable per-
formance in vision-language tasks such as visual
question answering and image captioning (Li et al.,
2023a; Dai et al., 2023; Chen et al., 2024a; Liu
et al., 2024c; Bai et al., 2023). Despite their im-
pressive performance across various tasks, LVLMs
still suffer from severe object hallucination issue,
which impedes their ability to describe image in-
formation at the object level, greatly reducing the
reliability of their responses (Rohrbach et al., 2018;
Li et al., 2023c; Zhou et al., 2024b).

Recent studies convert the evaluation of object
hallucination into a binary discrimination task (Li
et al., 2023c; Hu et al., 2023; Fu et al., 2023; Wang
et al., 2023a). These studies typically design vi-
sual questions about objects (e.g., “Is there a cat
in the image?”) and prompt LVLMs to provide
correct answers (“yes” or “no”). However, we
observed that the non-existent objects they choose
for questioning may not be significantly relevant
to the image, thereby failing to reveal object hal-
lucinations in LVLMs. As illustrated on the left
side of Figure 1, the non-existent horse being ques-
tioned is not relevant to the tennis-playing scene,
making it easy for the model to correctly determine
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the absence of a horse. Additionally, a “yes” re-
sponse from LVLMs does not necessarily indicate
the absence of hallucinations. As illustrated on the
right side of Figure 1, even when the sports ball is
removed from the image, the LVLM still responds
with “yes.” This suggests that the LVLM exhibits
hallucinations concerning the sports ball, which
existing methods have overlooked.

To uncover object hallucinations that existing
methods have neglected and to provide guid-
ance for mitigating them, we introduce ROHE
(Removed Object Hallucination Evaluation bench-
mark). As shown on the right side of Figure 1,
ROHE utilizes LaMa (Suvorov et al., 2022) to re-
move existent objects from images. These modi-
fied images typically retain other objects and vi-
sual backgrounds closely associated with the re-
moved objects, providing a highly challenging test
of LVLMs’ ability to determine object existence.
Furthermore, ROHE considers the model free of
hallucinations only if it correctly determines that
the object exists in the original image and does not
exist in the modified image. This approach uncov-
ers the hallucinations that have been overlooked
due to LVLMs’ tendency to answer “yes” (Li et al.,
2023c; Zhou et al., 2024b; Leng et al., 2024).

To ensure the quality of the evaluation, we man-
ually selected the constructed data. Specifically,
ROHE comprises 5,504 high-quality evaluation ex-
amples (examples in Appendix A), effectively as-
sessing LVLMs’ hallucinations across different ob-
ject categories. We evaluated several representative
LVLMs, and the results in Table 1 indicate that
LVLMs experience significant hallucinations when
confronted with removed objects. Although these
LVLMs effectively determine object exists in the
image, they struggle to determine the absence of
the same object after it has been removed.

In addition to addressing this, we further propose
the object-based Direct Preference Optimization
objective (oDPO), a multimodal direct prefer-
ence optimization (DPO) objective (Rafailov et al.,
2023). Unlike existing DPO approaches that con-
struct text-only preference responses (Yu et al.,
2024; Li et al., 2023b; Zhou et al., 2024a; Pi et al.,
2024; Sarkar et al., 2024), oDPO samples the most
important object in the conversation and removes
it from the image. oDPO encourages LVLMs to
prefer the original image, thereby enhancing their
ability to determine the absence of the removed
object and reducing associated hallucinations. Ex-
tensive experiments (as shown in Figure 2) show

Figure 2: Performance comparison between the model
optimized by our proposed approach oDPO and the base
model LLaVA-1.5-7B (Liu et al., 2024c) on multiple
various vision-language benchmarks. Our approach is
effective in improving the performance on various tasks.

that oDPO not only effectively reduces object hal-
lucinations but also improves the performance of
LVLMs across various vision-language tasks.

Our contributions can be summarized in three
key aspects. (1) We introduce a challenging object
hallucination evaluation benchmark called ROHE
and construct the evaluation data through manual
selection. (2) We evaluate several representative
LVLMs, revealing the severity of object hallucina-
tions. (3) We propose oDPO to mitigate object hal-
lucinations, and experimental results demonstrate
the effectiveness of our approach.

2 The Proposed ROHE Benchmark

In this section, we introduce ROHE (§2.1) and
the process of constructing the evaluation data
(§2.2). We then evaluate representative LVLMs
using ROHE (§2.3) and discuss the results (§2.4).

2.1 Overview of ROHE

Description. We devise ROHE to provide a more
challenging evaluation of object hallucinations.
ROHE utilizes LaMa (Suvorov et al., 2022) to re-
move existent objects from images. We refer to
the original image as the positive image and the
image with the object removed as the negative im-
age. To maintain consistency with existing meth-
ods (Li et al., 2023c; Fu et al., 2023; Wang et al.,
2023a), ROHE adopts a binary question-answering
approach to prompt LVLMs to answer “yes” or

“no”, such as “Is there a cat in the image?”. For
each pair of images, ROHE uses the same ques-
tion to ask the LVLM whether it sees the object
in the positive image or negative image. ROHE
requires the LVLM to determine not only objects in
the positive image (answering “yes”) but also their
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Figure 3: The pipeline of ROHE. Given an input im-
age with ground-truth objects and their corresponding
masks, ROHE sequentially removes unique objects us-
ing LaMa (Suvorov et al., 2022). Then, ROHE con-
structs the positive and negative VQA units using im-
ages with (w/) and without (w/o) the object, respectively.

absence in the negative image (answering “no”).

Definition. Given an input image v, an existent
object o, and the corresponding object mask m,
the image obtained by using LaMa (Suvorov et al.,
2022) to remove the object o is denoted as vro.
The images v and vro differ only in the content
within the mask m, while the content outside the
mask m remains unchanged. The evaluation unit
constructed by ROHE can be described as follows:

(⟨v, q(o), a⟩, ⟨vro, q(o), aro⟩) (1)

where q(o) is the question about the object o based
on the prompt template while a and aro represent
answers to the questions when given v and vro
respectively. Here, a is always “yes” and aro is al-
ways “no”. We refer to ⟨v, q(o), a⟩ as the positive
VQA unit and ⟨vro, q(o), aro⟩ as the negative one.

Pipeline. Figure 3 illustrates the ROHE pipeline.
First, ROHE selects objects that are uniquely
present in the image and then uses LaMa (Suvorov
et al., 2022) to remove these objects. Subsequently,
ROHE constructs positive VQA units using images
containing the objects and negative VQA units us-
ing images without the objects. Each VQA unit
comprises both a positive and a negative unit con-
cerning the same object. LVLMs are expected to
respond “yes” to the positive unit and “no” to the
negative one.

Metrics. ROHE reports two scores: acc and
acc+. The acc score represents the proportion of
correctly answered question in the positive VQA
unit; while the acc+ score reflects the proportion

Figure 4: Statistics of our evaluation data.

of correctly answered question in both the positive
VQA unit and negative VQA unit.

2.2 Evaluation Data Construction

Dataset. Since most LVLMs are trained using
the MSCOCO dataset (Lin et al., 2014), they are
expected to exhibit strong recognition capabilities
for objects within MSCOCO. However, differences
in data splits between the 2014 and 2017 versions
of MSCOCO may lead to potential data leakage is-
sues when using the validation set from MSCOCO
2014 for evaluation. To ensure that the evaluation is
not out-of-distribution (OOD) and to prevent data
leakage, we choose the MSCOCO 2017 validation
set to construct our evaluation data.

Manual Selection. We discover that the ROHE
evaluation data constructed using LaMa (Suvorov
et al., 2022) might still contain incomplete removal
of visual information about the objects. To ensure
a high-quality evaluation, we conducted manual
filtering based on two guidelines: first, to confirm
the complete removal of the object, ensuring no
visual traces remain in the areas filled by LaMa;
second, to verify that humans can determine the
object is absent from the negative image. We se-
lected 5,504 high-quality evaluation data units, and
Figure 4 provides statistics of our evaluation data.

2.3 Evaluation Settings

We investigate object existence hallucinations in
the following representative LVLMs: LLaVA-1.5
(Liu et al., 2024c), LLaVA-1.6 (Liu et al., 2024c),
InstructBlip (Dai et al., 2023), Qwen-VL-Chat (Bai
et al., 2023), LLaVA-MOF (Tong et al., 2024), VW-
LMM (Peng et al., 2024), Monkey-Chat (Li et al.,
2024), and SPHINX (Lin et al., 2023). To maintain
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acc+ 46.84 34.39 64.13 64.87 74.91 22.30 11.90 61.34 35.69 44.24 74.16 57.06 69.33vehicle acc 99.81 100.0 99.44 98.33 95.54 95.54 98.70 94.61 99.63 100.0 87.36 97.03 97.40
acc+ 25.51 8.73 42.97 33.29 47.75 4.37 1.36 35.74 9.96 19.65 56.34 11.05 36.56sports acc 99.86 99.86 99.45 99.18 98.23 99.32 99.86 97.68 99.86 100.0 93.45 99.59 99.18
acc+ 16.62 9.14 45.15 45.98 62.88 31.30 9.42 34.63 11.91 9.14 54.02 21.88 43.21accessory acc 100.0 100.0 96.12 96.40 89.20 86.43 95.57 93.63 100.0 100.0 91.97 99.45 95.84
acc+ 74.57 58.19 88.26 82.15 88.26 40.34 27.63 75.55 49.88 72.13 91.20 63.57 84.84animal acc 100.0 99.51 99.51 98.53 99.76 98.04 99.27 98.04 99.02 99.76 97.31 99.02 99.51
acc+ 53.39 36.20 69.23 70.14 75.57 36.65 16.29 68.78 37.10 45.70 75.11 48.87 57.47food acc 99.55 100.0 98.19 95.48 95.48 95.02 99.55 94.12 99.10 99.55 90.95 97.29 97.74
acc+ 22.79 15.81 55.88 50.37 70.59 15.44 1.47 45.22 19.49 12.13 73.53 31.62 56.62outdoor acc 100.0 100.0 97.43 100.0 95.22 95.22 100.0 95.96 100.0 100.0 89.71 98.16 99.63
acc+ 30.26 18.57 49.12 48.68 64.77 27.49 4.97 41.81 18.13 25.15 54.68 35.53 50.00kitchen acc 99.42 100.0 96.93 97.66 91.67 90.94 99.56 83.48 99.12 99.56 70.61 97.95 96.78
acc+ 26.34 13.28 49.46 43.47 62.10 22.91 5.78 39.40 13.70 18.20 66.81 30.84 46.25electronic acc 100.0 100.0 98.50 99.14 97.00 96.57 98.72 94.65 99.79 100.0 83.94 98.72 98.29
acc+ 36.91 28.41 57.05 54.14 65.55 19.02 5.15 54.14 30.65 29.75 62.86 43.85 55.93furniture acc 99.55 99.78 98.43 97.99 93.96 96.20 99.55 91.72 99.78 99.78 76.51 97.54 98.43
acc+ 28.66 14.95 51.40 57.63 61.99 25.23 7.79 45.48 15.58 19.31 65.42 28.97 46.73indoor acc 100.0 100.0 97.51 97.82 95.64 94.08 99.38 93.46 100.0 100.0 85.05 99.07 97.51
acc+ 12.50 8.33 37.88 33.71 43.56 11.36 3.03 36.36 9.47 8.71 55.30 21.97 29.92appliance acc 100.0 100.0 98.11 98.86 97.35 97.35 99.62 93.56 100.0 100.0 76.14 98.48 98.86
acc+ 70.39 61.75 83.99 80.94 83.23 47.65 16.65 60.23 58.58 70.78 86.66 52.60 62.52person acc 99.87 99.75 99.62 99.75 99.36 98.09 99.62 98.73 99.87 99.87 90.60 99.49 99.62
acc+ 39.21 27.53 58.81 55.89 67.13 25.78 9.25 49.58 27.40 34.08 68.15 37.59 53.67total acc 99.82 99.89 98.46 98.46 95.93 95.53 99.18 94.11 99.67 99.87 86.01 98.58 98.29

Table 1: Results of the ROHE evaluation. The results in bold and underlined represent the best and the second-best
results, respectively.

consistency with previous work (Fu et al., 2023;
Li et al., 2023c), we also use “Is there a/an {obj}
in the image?” as the prompt template. We leave
more details in Appendix B.

2.4 Evaluation Results

Table 1 presents the evaluation results, indicating
that while LVLMs effectively determine the pres-
ence of objects in positive VQA units, most of them
fail to determine the absence of the same objects
in negative VQA units. Instead, they still to claim
that they see those objects.

The overall results show that LVLMs with en-
hanced visual resolution performed better, suggest-
ing that inputting more detailed visual tokens pro-
vides these models with sufficient fine-grained vi-
sual information, aiding them in better learning
and perceiving visual objects. In contrast, Instruct-
BLIP (Dai et al., 2023) achieved the lowest acc+
score, possibly due to the limited visual informa-
tion extracted by Q-Former (Li et al., 2023a), which
restricts the language model’s access to sufficient
object-level visual details. Additionally, LVLMs
exhibit more hallucinations for categories such as
outdoor and appliance, while showing fewer hallu-

cinations for categories like person and animal.
Overall, the evaluated LVLMs still exhibit signif-

icant object hallucinations when confronted with
removed objects, suggesting that they significantly
lack the ability to determine the absence of ob-
jects. We observe that during training, LVLMs are
instructed to learn what objects are present in an
image, but there is considerably less focus on learn-
ing what objects are absent. This imbalance likely
leads to their inability to determine the absence of
objects, thereby resulting in severe hallucinations.

3 The Proposed oDPO Approach

To address the issue revealed in §2.4, we propose
oDPO, an object-based DPO objective designed to
enhance LVLM’ ability to determine the existence
of objects, thereby mitigating hallucinations.

3.1 Preliminaries
Preference optimization aims to align the model’s
behavior with human behavior through fine-tuning.
Typically, given a text input x, an image input v,
and an output text response y, a model πθ parame-
terized by θ can produce a conditional distribution
πθ(y | x, v). The model is encouraged to maximize
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Figure 5: Overview of oDPO. The oDPO process is divided into two steps: constructing rejected images and
performing preference optimization.

the average reward of output r(x, v, y). To avoid
over-optimization (Gao et al., 2023), it is necessary
to control the divergence between πθ and its ref-
erence model πref (πθ and πref are initialized from
the same checkpoint). Thus, the overall objective
loss is typically formulated as follows:

LPO = − log σ(r(x, v, y)− β log πθ(y|x,v)
πref(y|x,v)) (2)

where β is a hyperparameter that controls the diver-
gence between πθ and πref, and σ(·) is the sigmoid
function. Recently, DPO (Rafailov et al., 2023)
simplifies the above process by maximizing the
difference between the chosen reward r(x, v, yw)
and the rejected reward r(x, v, yl). Following the
Bradley-Terry model (Bradley and Terry, 1952),
the optimization objective becomes:

LDPO = − log σ(β log πθ(yw|x,v)
πref(yw|x,v) − β log πθ(yl|x,v)

πref(yl|x,v)) (3)

3.2 Object-based Optimization Objective

To mitigate the severe object hallucinations, we
propose oDPO (object-based Direct Preference
Optimization objective). Unlike previous work
(Zhao et al., 2023; Li et al., 2023b; Zhou et al.,
2024a), oDPO is a multimodal optimization ob-
jective based on visual objects. As illustrated in
Figure 5, given a text input x, an image input v, and
an output text response y, oDPO removes the most
frequently mentioned object o using its mask and
obtain the rejected image input vro. Here, r(x, v, y)
represents the chosen reward, and r(x, vro, y) rep-
resents the rejected reward. Then, the preference
optimization objective is formulated as:

LroDPO = − log σ(β log πθ(y|x,v)
πref(y|x,v) − β log πθ(y|x,vro)

πref(y|x,vro)
) (4)

Inspired by Wang et al. (2024a), we employ anchor
preference optimization to ensure that the chosen

reward consistently remains at a high value. The
anchored objective is formulated as follows:

LAncPO = − log σ(β log
πθ(y | x, v)
πref(y | x, v)) (5)

Then the total preference optimization objective is

LoDPO = LroDPO + γLAncPO (6)

where γ controls the influence of the anchored ob-
jective.

4 Experiment

4.1 Experimental Setups
Training Data. The Silkie dataset (Li et al.,
2023b) contains 80K preference data, from which
we selected 19K examples constructed by LLaVA-
Instruct-150K (Liu et al., 2024c) for training. It
is important to note that oDPO utilizes only the
chosen responses constructed by Silkie and does
not require the use of rejected responses.

Base Models. Following related work (Zhou
et al., 2024a), we applied oDPO on LLAVA-1.5 (7B
and 13B) (Liu et al., 2024c). To compare oDPO
with standard DPO (Rafailov et al., 2023), we also
implemented standard DPO using the same training
data. Apart from the differences in optimization
objectives, all other settings are identical.

Implementation Details. We set the learning
rate to 1e-7, used a cosine learning rate scheduler
with a warmup ratio of 0.03, and set the default
value of γ to 1. All models were trained for only
one epoch, and all experiments were conducted on
one A100 80GB GPU. More details can be found
in Appendix C.

4.2 Main Results
Performance on ROHE. We compare oDPO
with other approaches (Leng et al., 2024; Yue et al.,
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vehicle sports accessory animal food outdoor kitchen electronic furniture indoor appliance person total

LLaVA-1.5-7B (Liu et al., 2024c) 46.84 25.51 16.62 74.57 53.39 22.79 30.26 26.34 36.91 28.66 12.50 70.39 39.21
+ VCD (Leng et al., 2024) 39.96 19.65 17.45 75.55 51.13 23.90 27.05 23.34 33.78 27.73 12.50 74.46 37.46
+ EOS (Yue et al., 2024) 48.33 25.65 13.02 71.39 50.23 19.49 26.17 25.70 35.12 23.36 12.12 75.10 38.24
+ DPO (Rafailov et al., 2023) 49.07 27.29 15.51 75.06 55.66 20.59 28.80 23.77 36.47 27.10 12.12 69.50 38.94
+ oDPO (ours) 69.89 50.61 48.48 86.80 72.40 55.88 52.78 53.96 59.28 54.21 38.64 82.59 61.65

LLaVA-1.5-13B (Liu et al., 2024c) 34.39 8.73 9.14 58.19 36.20 15.81 18.57 13.28 28.41 14.95 8.33 61.75 27.53
+ VCD (Leng et al., 2024) 26.77 7.64 11.36 58.68 33.48 18.38 20.03 11.99 27.74 16.82 9.47 65.18 27.51
+ DPO (Rafailov et al., 2023) 35.50 9.96 8.86 60.88 36.20 14.34 19.30 14.13 28.86 16.20 9.85 62.39 28.34
+ oDPO (ours) 58.74 24.97 24.65 77.02 52.94 34.19 37.28 31.05 42.73 33.02 20.45 75.86 44.71

Table 2: Results on ROHE. We report acc+ scores and provide the complete results in Appendix D. The best results
are shown in bold.

Object HalBench MME-Hall AMBER MMHalBench

CHAIRs ↓ CHAIRi ↓ Score ↑ CHAIR ↓ Cover ↑ HalRate ↓ Cog ↓ Acc ↑ F1 ↑ Score ↑ HalRate ↓

LLaVA-1.5-7B (Liu et al., 2024c) 53.3 15.6 648.3 7.6 51.8 35.6 4.3 71.5 74.1 2.02 0.61
+ VCD (Leng et al., 2024) 53.3 15.7 604.7 6.9 50.6 32.2 3.7 72.0 74.8 2.12 0.54
+ EOS (Yue et al., 2024) 41.7 12.7 606.7 5.3 49.1 23.5 2.0 71.4 73.1 2.03 0.59
+ HA-DPO (Zhao et al., 2023) 43.7 12.0 618.3 6.5 49.8 30.1 3.2 74.2 78.0 1.97 0.60
+ POVID (Zhou et al., 2024a) 40.7 10.2 591.7 5.2 50.2 27.9 3.0 78.5 81.9 2.23 0.54
+ HALVA† (Sarkar et al., 2024) 41.4 11.7 665.0 6.6 53.0 32.2 3.4 - 83.4 2.25 0.54
+ RLHF-V‡ (Yu et al., 2024) - - - 5.7 49.7 27.3 2.6 - 80.9 2.08 0.60
+ V-DPO† (Xie et al., 2024) - - - 5.6 49.7 27.3 2.7 - 81.6 2.16 0.56
+ mDPO† (Wang et al., 2024a) 35.7 9.8 - 4.4 52.4 24.5 2.4 - - 2.39 0.54
+ DPO (Rafailov et al., 2023) 50.7 14.9 641.7 7.3 54.1 38.5 4.1 70.7 73.1 2.23 0.58
+ oDPO (ours) 34.3 9.5 653.3 4.6 53.4 25.1 2.4 80.2 84.1 2.50 0.49

LLaVA-1.5-13B (Liu et al., 2024c) 49.3 14.6 643.3 6.8 52.0 31.7 3.5 71.3 73.1 2.38 0.53
+ VCD (Leng et al., 2024) 47.7 13.2 601.7 6.7 51.3 31.0 3.5 71.5 73.5 2.40 0.51
+ DPO (Rafailov et al., 2023) 51.7 13.3 646.7 7.1 54.1 36.0 3.9 71.7 73.7 2.48 0.52
+ oDPO (ours) 34.7 9.8 660.0 4.3 52.1 23.1 2.2 79.3 82.2 2.74 0.45

Table 3: Results on object hallucination. We report sentence-level and object-level scores (CHAIRs and CHAIRi)
on Object HalBench (Rohrbach et al., 2018), overall score on MME-Hall (Fu et al., 2023). For AMBER (Wang
et al., 2023a), we report CHAIR scores, object coverage (Cover), hallucination rate (HalRate) and cognition (Cog)
in generation task, along with Acc and F1 scores of discrimination task. We also report the overall score and
hallucination rate (HalRate) on MMHalBench (Sun et al., 2024). The best and second-best results are shown in bold
and underlined, respectively. †: We directly report the results from their papers. ‡: results are from Xie et al. (2024).

2024; Rafailov et al., 2023). Table 2 and Table 11
(provided in Appendix D) present the evaluation
results. Although other approaches aim to reduce
object hallucinations in LVLMs, they struggle to
improve LVLMs’ ability to determine the absence
of removed objects. In contrast, oDPO effectively
enhances their ability to determine the existence
of visual objects through preference optimization
based on visual objects, significantly mitigating
hallucinations on ROHE.

Performance on Object Hallucination. To en-
sure that oDPO effectively mitigates object halluci-
nations in LVLMs, we conduct evaluations on four
widely used object hallucination benchmarks: Ob-
ject HalBench (Rohrbach et al., 2018), MME-Hall
(Fu et al., 2023), AMBER (Wang et al., 2023a) and
MMHalBench (Sun et al., 2024). Please refer to
Appendix E for details. Table 3 demonstrates the
effectiveness of oDPO in reducing hallucinations.
Compared to other approaches, oDPO consistently
exhibits stable and superior performance in various

object hallucination tasks. It is worth noting that
some approaches reduce the object coverage in im-
age descriptions generated by LVLMs, which while
potentially alleviating object hallucinations, also
diminish the richness of descriptions. In contrast,
oDPO reduces hallucinated objects while ensuring
that LVLMs can richly describe the image content.

4.3 Analysis and Discussion

How does oDPO perform on general vision-
language tasks? We further evaluate oDPO on
four popular general vision-language benchmarks:
MME (Fu et al., 2023), LLaVA-Wild (Chen et al.,
2024a), SQA-Img (Lu et al., 2022), and MMStar
(Chen et al., 2024b). The results in Figure 6 show
that oDPO outperforms the base model across these
general benchmarks, suggesting that oDPO miti-
gates hallucinations without deteriorating the per-
formance of LVLMs on other tasks.

How does oDPO perform when using different
training data? As shown in Table 4, we explore
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ROHE MME-Hall Object HalBench AMBER MMHalBench

acc+ ↑ acc ↑ Score ↑ CHAIRs ↓ CHAIRi ↓ CHAIR ↓ Cover ↑ HalRate ↓ Cog ↓ Acc ↑ F1 ↑ Score ↑ HalRate ↓

LLaVA-1.5-7B (Liu et al., 2024c) 39.21 99.82 648.3 53.3 15.6 7.6 51.8 35.6 4.3 71.5 74.1 2.02 0.61
+ oDPO (Silkie-19K) 61.65 98.49 653.3 34.3 9.5 4.6 53.4 25.1 2.4 80.2 84.1 2.50 0.49
+ oDPO (LLaVA-17K) 63.70 98.42 661.7 43.0 12.1 5.0 51.0 24.8 2.7 80.5 84.5 2.48 0.51

LLaVA-1.5-13B (Liu et al., 2024c) 27.53 99.89 643.3 49.3 14.6 6.8 52.0 31.7 3.5 71.3 73.1 2.38 0.53
+ oDPO (Silkie-19K) 44.71 99.58 660.0 34.7 9.8 4.3 52.1 23.1 2.2 79.3 82.2 2.74 0.45
+ oDPO (LLaVA-17K) 47.15 99.53 660.0 42.7 11.6 5.0 51.4 24.4 2.6 80.0 83.0 2.70 0.46

Table 4: The results of oDPO using different training data. LLaVA-17K: 17K examples randomly sampled from
LLaVA-Instruct-150K (Liu et al., 2024c); Silkie-19K: 19K examples sampled from Silkie (Li et al., 2023b). The
best results are denoted in bold.

ROHE MME-Hall Object HalBench AMBER MMHalBench

acc+ ↑ acc ↑ Score ↑ CHAIRs ↓ CHAIRi ↓ CHAIR ↓ Cover ↑ HalRate ↓ Cog ↓ Acc ↑ F1 ↑ Score ↑ HalRate ↓

LLaVA-1.6-13B (Liu et al., 2024d) 55.89 98.46 660.0 30.0 10.3 8.6 62.0 50.5 4.2 81.2 84.9 3.09 0.46
+ DPO (Rafailov et al., 2023) 43.95 98.13 648.3 40.3 8.8 7.6 63.1 49.2 4.5 69.9 71.1 3.40 0.42
+ oDPO (ours) 63.06 90.75 650.0 27.7 7.2 5.7 59.0 33.9 2.9 82.7 86.8 3.42 0.33

Table 5: Results on LLaVA-1.6-13B. The best results are shown in bold.

Figure 6: Results on general vision-language tasks. We
report the scores of base models (Base) and oDPO-
enhanced models (oDPO) on four benchmarks: MME
(Fu et al., 2023), LLaVA-Wild (Chen et al., 2024a),
SQA-Img (Lu et al., 2022), and MMStar (Chen et al.,
2024b).

Figure 7: Impact of different γ values. We report the
results of two primary metrics specific to each of the
four benchmarks: ROHE, MME (Fu et al., 2023), Object
HalBench (Rohrbach et al., 2018), and AMBER (Wang
et al., 2023a). The base model is LLaVA-1.5-7B.

the performance of oDPO with different training
data. oDPO is effective in different training data.

How does oDPO perform on LVLM that support
high resolution? Table 5 shows the performance
of oDPO on LLaVA-1.6-13B (Liu et al., 2024d),
which compared to LLaVA-1.5 (Liu et al., 2024c),
supports dynamic high resolution. Although oDPO
slightly reduces object coverage and MME-Hal
scores, it effectively mitigates object hallucination
across different benchmarks. In contrast, the stan-

dard DPO not only fails to reduce object hallucina-
tion but also exacerbates it in some aspects.

How does γ affect the performance of oDPO?
As shown in Figure 7, we investigate the impact
of different γ values on the performance of oDPO.
It is observed that a small γ value significantly
reduces object hallucinations. However, this reduc-
tion is accompanied by a decline in performance on
other tasks and a suppression of response diversity.
To balance these effects, we set the γ value to 1,
aiming to mitigate object hallucinations without
compromising performance in other areas.

Why oDPO performs better than standard DPO
and other baselines? During the pre-training
process, there is little direct guidance for model
to learn how to determine the existence of an ob-
ject. Although RLHF methods based on textual
preferences construct fine-grained preference pairs,
they do not directly guide the model to learn why
the chosen response aligns with the input image and
why the preference for the rejected response should
be reduced. In contrast, oDPO directly guides the
model to increase its preference when the input
image contains the key object, and to decrease it
when the object is absent.

4.4 Fine-grained Results

We further provide fine-grained results on MMHal-
Bench (Sun et al., 2024) in Table 6. Although
oDPO slightly decreases scores in the relation and
other categories, it surpasses standard DPO in all
other categories. Notably, in the adversarial cat-
egory, oDPO boosts the base model’s score by
163%. These findings highlight the benefits of
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overall attribute adversarial comparison counting relation environment holistic other

LLaVA-1.5-7B (Liu et al., 2024c) 2.02 3.00 1.17 1.83 2.25 2.00 3.08 1.75 1.08
+ DPO (Rafailov et al., 2023) 2.23 3.25 1.67 2.17 2.00 1.83 3.17 2.17 1.58
+ oDPO (ours) 2.50 3.33 3.08 2.42 2.33 1.75 4.00 2.17 0.92

Table 6: Fine-grained results on MMHalBench (Sun et al., 2024). The best results are denoted in bold.

[QUESTION] Is there a cat in the 

image?

[LLaVA-1.5-7B]  Yes, there is a 

cat in the image.

[ODPO] Yes, there is a cat in the 

image. It is lying on a bed.

[QUESTION] Is there a cat in the 

image?

[LLaVA-1.5-7B]  Yes, there is a 

cat in the image, sitting on a bed 

in a bedroom.

[ODPO] No, there is no cat in the 

image. The image features a bed 

with a plaid blanket and a laptop on 

it.

[QUESTION] Which cat (left, 

right or middle) in the image 

opens its mouth?

[LLaVA-1.5-7B] The middle 

cat in the image opens its 

mouth.

[ODPO] The cat on the right 

is opening its mouth.

[QUESTION]  How many 

mobile phones are there in 

the image?

[LLaVA-1.5-7B] There are 

two mobile phones in the 

image.

[ODPO] There is only one 

mobile phone in the image.

[LLaVA-1.5-7B]  The image 

features a woman standing in 

a room, painting a green wall 

with a roller brush. She is 

focused on her task, and her 

smile suggests that she is 

enjoying the process. The room 

appears to be a living space, 

with a couch located in the 

background.

There are two other people in 

the room, one standing near 

the left side of the image and 

another person closer to the 

right side. A chair can also be 

seen in the room, positioned 

near the couch.

[ODPO] The image features a woman 

wearing glasses, smiling as she 

applies green paint to a wall. She is 

using a roller brush to paint the 

wall, which is covered in a pattern of 

green and white. The woman appears 

to be enjoying the process of painting, 

and her smile suggests that she is 

having a good time. The scene is set in 

a room with a white wall, and the 

woman is the main focus of the image.

[ Q U E S T I O N ]  Describe this 

image.

Figure 8: Qualitative results of oDPO. The left, middle and right figures are from ROHE, MMHalBench (Sun
et al., 2024) and AMBER (Wang et al., 2023a), respectively. It can be observed that oDPO significantly reduces
hallucination and enhances the model’s ability to describe detailed information in images across different tasks.

O v e r a l l  A c c O v e r a l l  A c c .
( S y n t h e t i c )

O v e r a l l  A c c .
( R e a l - w o r l d )

E x i .  A c c .   
( S y n t h e t i c )

E x i .  A c c .
( R e a l - w o r l d )

3 0

4 5

6 0

 L L a V A - 1 . 5 - 7 B          +  D P O          +  o D P O

Figure 9: Results of oDPO on AutoHallusion (Wu et al.,
2024b).

oDPO across various fine-grained scenarios.

4.5 Qualitative Study

Figure 8 presents qualitative examples. oDPO
effectively mitigates hallucinations across differ-
ent tasks. Furthermore, compared to the base
model, the oDPO-enhanced model generally pro-
vides more detailed descriptions of the images, sug-
gesting that oDPO effectively enhances LVLMs’
visual understanding and reasoning capabilities.

4.6 Results on More Complex Scenarios

To further evaluate oDPO’s performance on more
complex scenarios, we conduct additional exper-
iments on AutoHallusion (Wu et al., 2024b) and
ROPE (Chen et al., 2024c). The results in Figure
9 and Table 7 demonstrate that oDPO effectively
alleviates hallucination issues of the base model
across different scenarios.

Seen Unseen

Wild ↑ Hom. ↑ Het. ↑ Wild ↑ Hom. ↑ Het. ↑

Default Multi-Object

LLaVA-1.5-7B (Liu et al., 2024c) 24.94 58.05 7.76 16.35 37.71 4.72
+ DPO (Rafailov et al., 2023) 23.69 54.88 8.00 14.40 33.40 4.70
+ oDPO (ours) 25.89 61.25 9.49 19.45 46.92 5.45

Single-Object

LLaVA-1.5-7B (Liu et al., 2024c) 30.28 61.15 13.08 25.32 52.49 10.24
+ DPO (Rafailov et al., 2023) 30.66 62.00 13.01 25.84 52.78 10.41
+ oDPO (ours) 31.25 63.75 13.21 26.04 54.57 10.65

Student-Forcing

LLaVA-1.5-7B (Liu et al., 2024c) 2.50 5.98 0.95 2.22 3.77 1.25
+ DPO (Rafailov et al., 2023) 3.30 7.74 1.43 2.84 4.63 1.56
+ oDPO (ours) 3.84 8.84 1.80 3.49 6.72 1.30

Teacher-Forcing

LLaVA-1.5-7B (Liu et al., 2024c) 3.32 7.89 1.68 3.32 6.63 1.56
+ DPO (Rafailov et al., 2023) 4.24 10.31 1.97 3.51 7.38 1.61
+ oDPO (ours) 4.65 10.37 2.30 4.28 9.06 1.81

Table 7: Results of oDPO on ROPE (Chen et al., 2024c).
The best results are denoted in bold.

5 Related Work

Evaluations of Object Hallucinations in LVLMs.
Currently, the evaluation methods for object hal-
lucinations are primarily divided into two cate-
gories (Liu et al., 2024b): evaluation in genera-
tion task and in discrimination task. Evaluation
in generation task, typically uses hand-designed
pipelines (Rohrbach et al., 2018; Zhai et al., 2023;
Lee et al., 2024) or LLM-based methods (Liu et al.,
2024a; Sun et al., 2024; Gunjal et al., 2024; Wang
et al., 2023b) to locate the hallucinatory parts in
the LVLM’s responses and calculate the proportion
and score of hallucinations. Evaluation in discrim-
ination task aims to evaluate the performance of
LVLMs in judging objects. They usually design
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visual questions about objects (e.g., “Is there a cat
in the image?”) and prompt LVLMs, expecting
them to provide correct answers (“yes” or “no”).
They usually employ three different approaches to
choose the objects for questioning: manual design
(Fu et al., 2023), handcrafted pipelines (Li et al.,
2023c; Wang et al., 2023a), or GPT generation (Hu
et al., 2023; Lovenia et al., 2023). ROHE also eval-
uates object hallucinations in discrimination task.
It not only evaluates the ability of LVLMs to deter-
mine an object exists in the image but also assesses
their ability to determine the absence of the same
object after it has been removed.

Mitigation of Object Hallucinations in LVLMs.
To mitigate object hallucinations in LVLMs, some
studies have focused on constructing more robust
datasets or designing specific training strategies
during the pre-training stage (Sun et al., 2024; Jiang
et al., 2024; Liu et al., 2024a; Yue et al., 2024).
Other approaches have utilized specific decoding
strategies (Leng et al., 2024; Zhu et al., 2024; Wang
et al., 2024b) or directly corrected the responses
of LVLMs (Zhou et al., 2024b; Wu et al., 2024a).
Recently, researchers have performed preference
alignment in LVLMs by collecting human pref-
erence data (Sun et al., 2024; Yu et al., 2024) or
collecting the preferences from advanced LLMs
(Zhao et al., 2023; Li et al., 2023b; Zhou et al.,
2024a; Sarkar et al., 2024). Wang et al. (2024a)
introduces a multimodal direct preference optimiza-
tion objective that constructs the rejected image by
cropping the original image. oDPO also uses the
multimodal DPO objective, but it constructs the
rejected image by removing objects from the orig-
inal image. Additionally, oDPO does not use the
rejected responses from the preference dataset; in-
stead, it focuses on preference optimization based
on visual objects and aims for LVLMs to learn to
prefer the original image. This enhances their abil-
ity to determine the absence of removed objects
and reduces hallucinations related to them.

6 Conclusion

In this paper, we introduce ROHE, which designed
to evaluate object hallucinations by removing ob-
jects from images. Our evaluation results reveal
that LVLMs still suffer from severe hallucinations,
as they often struggle to determine the absence
of removed objects. To address this, we propose
oDPO, an object-based DPO objective designed to
guide LVLMs to learn to determine the existence

of objects. We conducted extensive experiments
and the results demonstrate that oDPO not only en-
hances LVLMs’ ability to determine the existence
of objects but also improves their performance on
various vision-language tasks, particularly in reduc-
ing object hallucinations.

Limitations

Although we have conducted extensive exploration
and experiments, this work still has many limita-
tions. First, we only evaluated object hallucina-
tions through binary question-answering, it does
not allow us to assess the overall hallucination per-
formance of LVLMs. Second, due to budget and
resource constraints, we developed the benchmark
only on the MSCOCO 2017 validation dataset (Lin
et al., 2014). Third, we have evaluated only some
open-source LVLMs and have not yet assessed
closed-source LVLMs or the latest LVLMs. In addi-
tion, due to the limitations of LaMa (Suvorov et al.,
2022), the synthesized images may contain unre-
alistic artifacts. Finally, owing to computational
resource constraints, although we have conducted
experiments on several baseline LVLMs and train-
ing datasets, it is challenging for us to explore the
performance of oDPO on larger-scale LVLMs, e.g.,
LLaVA-1.6-34B (Liu et al., 2024d).

Ethics Statement

In this work, we use LaMa (Suvorov et al., 2022)
to generate images based on the MSCOCO dataset
(Lin et al., 2014). It is important to acknowledge
that the generated images may contain counterfac-
tual or fake information. Researchers can employ
ROHE to evaluate object hallucination in LVLMs,
but should be cautious about applying the fake im-
ages in the benchmark to other purposes to avoid
causing social interference.
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A Examples of ROHE

Figure 10 and 11 show some examples of ROHE.

B Details of the Evaluation on ROHE

All experiments in this work were conducted us-
ing the PyTorch framework (Paszke et al., 2019)
and incorporated capabilities from HuggingFace’s
Transformers library (Wolf et al., 2019). The ex-
periments were conducted using an NVIDIA A100
GPU and an Intel Xeon Silver 4210R CPU. We
used the settings in Table 8. Here are the details of
the LVLMs we evaluated:

Hyperparameters

do_sample False
num_beams 1
top_p 1
top_k None
temperature 0

Table 8: Hyperparameter settings of ROHE.
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• LLaVA (Chen et al., 2024a; Liu et al., 2024c,d):
We evaluated LLaVA-1.5-7B, LLaVA-1.5-13B,
LLaVA-1.6-7B, LLaVA-1.6-13B, and LLaVA-
1.6-34B. Notably, LLaVA-1.6 supports dynamic
high-resolution capabilities for higher image res-
olutions. LLaVA-1.6-34B is based on Hermes-
Yi-34B (Young et al., 2024), and the other models
are based on Vicuna (Chiang et al., 2023).

• InstructBlip (Dai et al., 2023): We evaluated
InstructBlip-7B and InstructBlip-13B which are
based on Vicuna (Chiang et al., 2023).

• Qwen-VL-Chat (Bai et al., 2023): We evaluated
Qwen-VL-Chat which is based on Qwen-7B (Bai
et al., 2023).

• LLaVA-MOF (Tong et al., 2024): This model
is an improved version of LLaVA-1.5-13B (Liu
et al., 2024c), enhancing the visual perception
by mixing CLIP-VIT (Radford et al., 2021) and
DINOv2-VIT (Oquab et al., 2024).

• VW-LMM (Peng et al., 2024): VW-LMM uses
the same training dataset as LLaVA-1.5 (Liu
et al., 2024c), but constructs visual words to in-
troduce visual supervisory information. To com-
pare results with LLaVA-1.5, we evaluated VW-
LMM-Vicuna-7B.

• Monkey-Chat (Li et al., 2024): Monkey-Chat
uses Qwen-7B (Bai et al., 2023) as its founda-
tional model and is capable of processing images
with resolutions up to 1344 × 896 pixels through
a super-resolution method.

• SPHINX (Lin et al., 2023): SPHINX em-
ploys four visual encoders, CLIP-VIT (Radford
et al., 2021), CLIP-ConvNext (Woo et al., 2023),
DINOv2-VIT (Oquab et al., 2024), and Q-former
(Li et al., 2023a), to extract visual features,
thereby enhancing visual perception by combin-
ing visual features. We evaluated two versions,
SPHINX and SPHINX-1k, where SPHINX takes
a low-resolution image of 224 × 224 as input
while SPHINX-1k handles an image resolution
of 448 × 448 by averaging four sub-images into
1,445 visual tokens by cropping the images.

C More Implementation Details of oDPO

All experiments were conducted using the PyTorch
framework (Paszke et al., 2019) and incorporated
capabilities from HuggingFace’s Transformers li-
brary (Wolf et al., 2019). The experiments were

Hyperparameters

lora rank 128
lora alpha 256
mm projector lr 1e-5
batch size 1
learning rate 1e-7
warmup decay 0.
warmup ratio 0.03
learning rate scheduler Cosine
max length 1024

Table 9: Training hyperparameters used in oDPO.

conducted using an NVIDIA A100 GPU and an
Intel Xeon Silver 4210R CPU. We adapted LoRA
fine-tuning (Hu et al., 2022). The details of train-
ing hyperparameters used in oDPO is presented in
Table 9.

D Complete Results on ROHE

Table 11 provides the complete results on ROHE.

E Details of Evaluation Benchmarks

• Object HalBench (Rohrbach et al., 2018): Ob-
ject HalBench is a widely used method for eval-
uating object hallucination in image descrip-
tions. It typically reports two object hallucination
scores: sentence-level and object-level CHAIR
scores, referred to as CHAIRs and CHAIRi, re-
spectively. They can be formulated as:

CHAIRs =
|{captions with hallucinated objects}|

|{all captions}| , (7)

CHAIRi =
|{hallucinated objects}|
|{all mentioned objects}| . (8)

We use 300 images randomly sampled by Yu
et al. (2024) from MSCOCO (Lin et al., 2014)
along with their corresponding prompts as the
evaluation examples. The detection of objects
in the LVLMs’ responses is conducted using an
exact match approach.

• MME-Hall (Fu et al., 2023): MME-Hall is the
hallucination subset of the MME benchmark (Fu
et al., 2023), including four object-related sub-
tasks: existence, count, position, and color. It
effectively evaluates the hallucination in LVLMs
on discrimination tasks. Each subtask has a to-
tal score of 200, making the overall score for
MME-Hall is 800.
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• AMBER (Wang et al., 2023a): AMBER is an
LLM-free object hallucination benchmark that ef-
fectively evaluates the hallucination performance
of LVLMs on both generative and discrimination
tasks. For generative tasks, we report CHAIR
scores, object coverage (Cover), hallucination
rate (HalRate), and cognition (Cog). For discrim-
ination tasks, we report accuracy (Acc) and F1
scores.

• MMHalBench (Sun et al., 2024): MMHalBench
is an object hallucination evaluation benchmark
that utilizes GPT-4 (OpenAI, 2023) to assist in
scoring. It effectively evaluates the quality and
degree of hallucination in LVLMs’ responses.
MMHalBench reports the overall score (with a
maximum of 6) and the hallucination rate (Hal-
Rate). It is important to note that the default
evaluation GPT model, gpt-4-0314, is currently
inaccessible, so we use gpt-4-0613 for the evalu-
ation.

F Evaluation of Closed-Source Models
and Grounding LVLMs

Apart from the grounding LVLMs like SPHINX,
SPHINX-1k, and Qwen-VL-Chat already reported
in Table 1, we have conducted further evaluations
of GLaMM (Rasheed et al., 2024) (an open-source
Grounding LVLM) and Qwen-VL-Plus (Bai et al.,
2023) (a leading closed-source model known for
its strong performance on grounding tasks). The

supercategory
GLaMM Qwen-VL-Plus

acc acc+ acc acc+

vehicle 100.0 5.58 92.94 71.38
sports 100.0 0.00 92.77 55.39

accessory 100.0 0.00 95.01 58.17
animal 100.0 3.91 99.27 86.80
food 100.0 2.26 95.48 61.54

outdoor 100.0 2.21 95.96 66.18
kitchen 100.0 0.00 82.75 65.64

electronic 100.0 2.57 88.65 67.67
furniture 99.11 12.30 84.12 61.74
indoor 100.0 2.49 85.36 61.37

appliance 98.86 11.74 89.02 52.27
person 99.75 21.47 97.20 82.59

total 99.84 6.03 91.41 67.17

Table 10: Evaluation results of leading closed-source
models and grounding LVLMs on ROHE.

results are shown in Table 10. It is important to
note that for a fair comparison, we do not provide
GLaMM with additional Region Input, which may
be the reason for its suboptimal performance on
ROHE. Although GLaMM performs excellently on
grounding tasks, its performance on ROHE is not
satisfactory. In contrast, Qwen-VL-Plus achieves
remarkable performance.
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LLaVA-1.5-7B LLaVA-1.5-13B

base VCD EOS DPO oDPO base VCD DPO oDPO

acc+ 46.84 39.96 48.33 49.07 69.89 34.39 26.77 35.50 58.74
vehicle

acc 99.81 93.87 100.0 100.0 99.44 100.0 94.42 100.0 99.81
acc+ 25.51 19.65 25.65 27.29 50.61 8.73 7.64 9.96 24.97

sports
acc 99.86 97.14 99.86 99.86 98.77 99.86 98.77 99.73 99.73

acc+ 16.62 17.45 13.02 15.51 48.48 9.14 11.36 8.86 24.65
accessory

acc 100.0 98.34 100.0 100.0 99.45 100.0 99.17 100.0 99.72
acc+ 74.57 75.55 71.39 75.06 86.80 58.19 58.68 60.88 77.02

animal
acc 100.0 97.80 99.76 100.0 99.76 99.51 98.29 99.51 99.51

acc+ 53.39 51.13 50.23 55.66 72.40 36.20 33.48 36.20 52.94
food

acc 99.55 98.19 99.55 99.55 97.29 100.0 98.19 100.0 99.10
acc+ 22.79 23.90 19.49 20.59 55.88 15.81 18.38 14.34 34.19

outdoor
acc 100.0 98.90 100.0 100.0 98.90 100.0 99.63 100.0 100.0

acc+ 30.26 27.05 26.17 28.80 52.78 18.57 20.03 19.30 37.28
kitchen

acc 99.42 93.13 99.56 99.56 96.20 100.0 94.30 100.0 99.12
acc+ 26.34 23.34 25.70 23.77 53.96 13.28 11.99 14.13 31.05

electronic
acc 100.0 97.00 99.79 100.0 98.50 100.0 97.64 100.0 100.0

acc+ 36.91 33.78 35.12 36.47 59.28 28.41 27.74 28.86 42.73
furniture

acc 99.55 94.18 99.78 99.78 98.21 99.78 95.08 100.0 98.66
acc+ 28.66 27.73 23.36 27.10 54.21 14.95 16.82 16.20 33.02

indoor
acc 100.0 97.20 100.0 100.0 99.07 100.0 98.75 100.0 100.0

acc+ 12.50 12.50 12.12 12.12 38.64 8.33 9.47 9.85 20.45
appliance

acc 100.0 97.73 100.0 100.0 97.73 100.0 99.24 100.0 99.62
acc+ 70.39 74.46 75.10 69.50 82.59 61.75 65.18 62.39 75.86

person
acc 99.87 95.93 99.62 100.0 98.86 99.75 96.19 99.87 99.75

acc+ 39.21 37.46 38.24 38.94 61.65 27.53 27.51 28.34 44.71total
acc 99.82 96.18 99.80 99.89 98.49 99.89 97.06 99.91 99.58

Table 11: Complete results on ROHE. The best results are shown in bold.
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Figure 10: Examples of ROHE (Part I). The positive images (with objects) are labeled as w and the negative images
(without objects) are labeled as w/o.
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Figure 11: Examples of ROHE (Part II). The positive images (with objects) are labeled as w and the negative images
(without objects) are labeled as w/o.

6858


