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Abstract

Current intent detection work experiments with
minor intent categories. However, in real-world
scenarios of data analysis dialogue systems,
intents are composed of combinations of nu-
merous metrics and dimensions, resulting in
countless intents and posing challenges for the
language model. The retrieval-augmented gen-
eration (RAG) method efficiently retrieves key
intents. However, the single retrieval route
sometimes fails to recall target intents and
causes incorrect results. To alleviate the above
challenges, we introduce the DSRAG frame-
work combining query-to-query (Q2Q) and
query-to-metadata (Q2M) double-stream RAG
approaches. Specifically, we build a reposi-
tory of query statements for Q2Q using the
query templates with the key intents. When a
user’s query comes, it rapidly matches repos-
itory statements. Once the relevant query is
retrieved, the results can be quickly returned.
In contrast, Q2M retrieves the relevant intents
from the metadata and utilizes large language
models to choose the answer. Experimental re-
sults show that DSRAG achieves significant
improvements compared with merely using
prompt engineering and a single retrieval route.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Hoffmann et al., 2022; OpenAI, 2022; Tou-
vron et al., 2023) have significantly transformed
the landscape of natural language processing tasks.
With their robust understanding and generation ca-
pabilities, task-oriented data analysis dialogue sys-
tems have garnered widespread attention. These
systems can intelligently assist data analysts (de-
fined as users) in inquiring, analyzing, and visu-
alizing data. One crucial aspect of these systems
is intent detection (Liu et al., 2019a; Mou et al.,
2022a,b; Song et al., 2023), identifying which of

* Equal Contribution
† Corresponding Author

Query：How many daily active 

male users of Tencent Video 

were there in the past week?
Metadata with multiple 

metrics and dimensions

Intent: the metric “daily active 

user” and its dimension “gender” 

(enum: male)

Support

Figure 1: The intent detection example of extracting the
metric and dimensions based on the user query.

a fixed set of actions to take based on the user’s
queries. Current intent detection work typically
experiments with minor intent categories (e.g.,
CLINC (Larson et al., 2019) datasets with 150 in-
tents, BANKING (Casanueva et al., 2020) with 77
intents). However, in the scenario of data analysis
dialogue systems, an intent consists of the metrics
and dimensions that the user wishes to analyze. For
example, as shown in Figure 1, we need to detect
the metric daily active user and the dimension
gender from the metadata based on the user’s
query (more descriptions of metadata, metric,
and dimension are shown in Section 3.1). The ap-
plication has numerous metrics, each with multiple
dimensions, resulting in countless combinations.
Therefore, traditional classification methods (Liu
et al., 2019a; Bunk et al., 2020) are inapplicable.
Besides, detecting the intent from countless com-
binations of metrics and dimensions will create a
significant challenge for the model because of the
limitation of long text modeling and input length.

To alleviate this challenge, we introduce the
RAG (Lewis et al., 2020) method to retrieve key in-
tents from the extensive pool, thereby filtering out
the irrelevant intents and reducing the complexity
of the problem. However, for each query, employ-
ing a single retrieval route to directly retrieve the in-
formation from the metadata that stores numerous
metrics and dimensions, sometimes can’t recall the
target intents, causes incorrect results, and impacts
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user experience. To further improve the accuracy
of intent detection, we propose the comprehensive
double-stream RAG (DSRAG) framework that in-
tegrates two retrieval approaches, namely query
to query (Q2Q) and query to metadata (Q2M). 1)
Q2Q: We create a series of query templates and
infill different structured metadata to build a query
statement repository that simulates potential user
queries. When the user’s query comes, Q2Q rapidly
matches it with repository statements. Once the
most similar query statement is retrieved, there
is no need to execute Q2M, which significantly
decreases response time and error feedback prob-
ability. 2) Q2M: We employ common retrieval
methods, including indexing, re-rank, etc. to ob-
tain relevant metrics and dimensions from metadata.
After that, we innovatively propose two approaches
based on closed and open sourced LLMs to select
the most relevant metrics and dimensions.

To validate the effectiveness of DSRAG, we con-
duct experiments based on real online user queries.
The results show that DSRAG significantly im-
proves accuracy from 24.7% to 78.7% compared
with directly using GPT-3.5-Turbo to choose the
correct intents, and from 58.7% to 78.7% and
82.7% to 90.3% compared to a single retrieval route
with GPT3.5-Turbo and fine-tuned open-sourced
LLMs. Our contributions are listed below:

• We show the limitations of current intent de-
tection and a single retrieval route in data anal-
ysis dialogue systems with countless intents.

• We develop the DSRAG framework, which
adopts a double-stream retrieval strategy. For
a query, DSRAG first employs Q2Q to look
for a similar query in the library of query state-
ments. If it doesn’t work, Q2M is employed
to retrieve the relevant intents from metadata.

• The experiments on the actual online user
queries show that DSRAG achieves significant
improvements compared with using prompt
engineering and a single retrieval route.

2 Related Work

2.1 Intent Detection & Discovery

Intent detection (Liu et al., 2019a; Bunk et al.,
2020), which needs to classify the user’s query
into in-domain (IND) intents, plays a vital role in
task-oriented dialogue (TOD) systems. Lin et al.
(2023) leverage the in-context learning ability of

LLMs to generate synthetic training data and pre-
serve quality and diversity. In real-world settings,
it’s necessary to identify out-of-distribution (OOD)
intents that are not in the pre-defined intents pool.
OOD intent discovery (Lin et al., 2020; Mou et al.,
2022a,b) clusters OOD intents into multi-group
new intents using prior knowledge of pre-defined
intents. Song et al. (2023) evaluate ChatGPT on
ODD discovery tasks and provide a valuable anal-
ysis. However, in this paper, we aim to improve
the accuracy of detecting the intents from countless
combinations of metrics and dimensions.

2.2 LLMs for Structured Knowledge

A few works (Modarressi et al., 2023; Hao et al.,
2023; He et al., 2024; Xue et al., 2024) have stud-
ied to augment LLMs with knowledge from the
external structured knowledge bases (KBs), usu-
ally by designing the interfaces to obtain the rele-
vant information from KBs and guiding LLMs to
answer the results. For example, for the knowl-
edge graph (KG) based question answering tasks,
Ret-LLM (Modarressi et al., 2023) is designed to
extract relational triples from user inputs and subse-
quently store them in a symbolic Knowledge Graph
(KG) memory. This functionality is akin to the KG
memory framework utilized by LangChain (Chase,
2022) and LlamaIndex (Liu, 2022). With the fact
retriever injects only the relevant knowledge, KAP-
ING (Baek et al., 2023) enhances the knowledge
for the input question from KG directly in the in-
put prompt of LLMs. KnowledGPT (Wang et al.,
2023) employs the program of thought prompting
as the retrieval process and can store knowledge
in personalized KBs. In the context of databases
(DB), PrivateGPT (Toro et al., 2023) is all about
ensuring the security and privacy of LLM-based
database applications. ChatDB (Hu et al., 2023),
a framework that enhances LLMs with symbolic
memory in databases, improves complex reasoning,
and prevents error accumulation. DB-GPT (Xue
et al., 2024) can provide context-aware responses
and generate complex SQL queries built upon the
RAG methods. The above works adopt the single
retrieval route, but DSRAG uses a double-stream
retrieval strategy to further improve performance.

3 Method

3.1 Problem Definition

Given the metadata, which consists of a set of de-
fined IND metrics M = {mi}ni=1, each metric con-

319



User 

Query

Query Rewrite Query Retrieval

Business video

Metric daily active user

Dimensions
gender (enum:[male,

female])

DataBaseQ2Q

Q2M

Query Rerank Application Strategy Query DataBase Construction

Metadata

Y

N

Intent Retrieval Intent Rerank Filter Strategy LLMs Selection

Figure 2: The overview of our DSRAG framework, comprises three parts: (i) Metadata, which consists of multiple
metrics and their dimensions with enums, and we sample them to construct the query database. (ii) Q2Q, which first
retrieves similar queries from the query database and returns the results with the application strategy. (iii) Q2M
executes the retrieval and re-rank process based on the metadata, then utilizes LLMs to choose the most relevant
metric and its dimensions with enums.

tains multiple dimensions D = {djmi}zj=1 and ev-
ery dimension also contains zero to multiple enums
E = {ek

djmi

}yk=0, we need to accurately identify

the user’s intent, specifically determining which
metrics, dimensions and even enums are involved
when a query is received. For example, as shown
in Figure 2, the metric "daily active user" contains
the dimension "gender", and the enums of "gen-
der" are "male" and "female". Because the number
of combinations of metrics and dimensions with
different enums is multitudinous, for our experi-
ments below, we simplify the problem by stating
that each query contains one metric and zero to
three potential dimensions and enums.

3.2 DSRAG Framework

As shown in Figure 2, DSRAG comprises the con-
struction of the query database and the relevant
process of Q2Q and Q2M.

3.2.1 Construction of Query Database

Based on the constructed metadata, which consists
of multiple metrics and dimensions with enums,
we selected 310 key metrics and 675 dimensions.
Following the real online scenarios, we artificially
created 132 query templates. Subsequently, we
generate 1.65 million meta-samples by combining
one metric with zero to two dimensions and their
enums. Finally, we matched the meta-samples with
the corresponding template to generate 43.25 mil-
lion queries. A specific example of the construction
process is shown in Appendix A.2.

3.2.2 Query to Query (Q2Q)

Based on the query database, Q2Q converts intent
detection into retrieving the most similar queries.

Query Rewrite User’s query statements are usu-
ally colloquial, such as "Which TV show has been
the most popular in the past week?" To reduce
the difficulty of retrieving similar queries from the
query database, we need to rewrite it as "Which
TV show had the highest view counts in the past
week?" Therefore, we have defined some regu-
lar expressions to professionalize the user’s query
statements based on our scenario.

Query Retrieval To efficiently retrieve the
relevant query statements from 43.25 million
queries, we compute the relevance of the user’s
query and each query statement by utilizing the
BM25 (Robertson and Zaragoza, 2009), which is
based on weighted term frequency, and extract the
top 200 highest-scoring query statements for the
next stages.

Query Rerank To more accurately score the
relevance between the retrieved query statements
and the user’s queries, we employ the cross-
encoder1 (Reimers and Gurevych, 2019), which
has been proven an effective reranking approach.
During training, we define a query with similar
semantics to a user’s query q as a positive sam-
ple qpos, and vice versa as a negative sample qneg.
To reduce redundant information, we directly ex-
tract the metric and its dimensions from qpos and
qneg and format them as inputmd = "[metric] met-
ric name [dim_name] list of dimensions (enums)",
such as "[metric] daily active user [dim_name]
gender (male)". Therefore, the input format of
cross-encoder is "q [SEP] inputmd", where [SEP]
is a special division token. The classification labels

1https://github.com/UKPLab/
sentence-transformers/tree/master

320

https://github.com/UKPLab/sentence-transformers/tree/master
https://github.com/UKPLab/sentence-transformers/tree/master


Instruction: 

Based on the user's query, select the metric and dimensions that meet the query requirements from the candidate answers: 

(1) If the answer only contains an metric, output the position of the metric, for example, m1

(2) If the answer contains both an metric and dimensions, output the position of the metric_dimension ID, split with “,” if 
multiple dimensions are needed, such as m1_1001 or m1_1001,m1_1002

(3) If there is no suitable metric or dimension, output 'no answer’.

Input: 

User query: How many daily active devices do male users of  Tencent Video have? 

Optional answers:

metric m1: average active days (dimension 18: active user type | dimension 110: gender [enum: male])

metric m2: DAU, known as: daily active user (dimension 110: gender [enum: male] | dimension 20: third-level terminal 

name [enum: PC])

metric m3: active device distribution (dimension 12: city | dimension 16: education)

no anwer

Output:

m2_110

Figure 3: An example of instruction tuning for open-source LLMs.

are 1 and 0 for the samples from qpos and qneg re-
spectively. Besides, we select some queries from
the query database and retrieve the top 100 relevant
metadata for each. If the metadata matches the
user’s query, it’s a positive sample; otherwise, it’s
a negative sample. Finally, we construct 2.88 mil-
lion training samples based on the above approach.
The triplet loss function (Schroff et al., 2015) is em-
ployed to train our cross-encoder. During inference,
we follow the format inputmd to combine q and
the metadata retrieved from the previous process
and compute the reranking scores.

Application Strategy After the above processes,
we filter out the queries whose confidence is lower
than a threshold α and the final strategies are the
following: 1) If all queries are filtered out, we turn
to the Q2M process. 2) If only one query remains,
we extract its metric and dimensions with enums
to the user. 3) If multiple queries remain, we offer
the top 3 options for users to choose from.

3.2.3 Query to Metadata (Q2M)
Because it is impossible to enumerate all metadata
combinations, Q2M utilizes the RAG methods to
retrieve multiple sets of the relevant intent and em-
ploys LLMs to choose one set.

Intent Retrieval & Rerank We first split users’
queries into words with the IK Analysis plugin2,
and adopt the BM25 algorithm to calculate the rel-
evant score between users’ queries and each metric
and its dimension. After that, we select the top 100

2https://github.com/infinilabs/analysis-ik

intents and rerank them using the cross-encoder
introduced in 3.2.2.

Filter Strategy We design some strategies to fil-
ter irrelevant metadata. 1) Top 10 metadata are
selected based on the BM25 and reranking scores,
respectively. 2) Metadata with the BM25 score be-
low β is filtered. β is set to 100 in our experiments.

LLMs Selection After the above processes,
LLMs as the selectors, aim to select the most suit-
able metric with dimensions from the remaining
candidates. We innovatively designed two meth-
ods: one approach is applying closed-source LLMs
based on prompt engineering, while another is train-
ing open-source LLMs. For the first approach, we
adopt the dual-step strategy, LLMs take the lead in
selecting the most relevant metric, and choose the
dimensions mentioned in the query (both examples
of the prompts are presented in Appendix A.3 re-
spectively). However, when the correct metric with
dimensions is not in the candidates, LLMs tend
to output an incorrect intent rather than answering
’There is no correct answer’. Besides, consider-
ing enterprise data privacy and security, as well as
the challenge that LLMs suffer from understand-
ing specific domain data, it’s necessary to train
open-source LLMs with special domain data to al-
leviate these challenges. Therefore, for the second
method, we train an open-source LLM with LoRA
tuning (Hu et al., 2022), and the training and infer-
ence sample is presented in Figure 3. Specifically,
to mitigate potential hallucinations, such as out-
putting the unknown metric and dimension names,
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Type Ratio (Training - Test)

No Answer 18.2% - 13.3%
One m 41.5% - 7.3%

One m with one d 28.1% - 46.3%
One m with two or more d 12.2% - 33.0%

Table 1: The ratios of different types of samples for the
training and test sets. m and d denote the metric and
dimension respectively.

we require LLMs to output metric position and di-
mension ID. What’s more, LLMs are trained to
return ’No Answer’ when there is no correct intent
in the candidates.

4 Experiments

4.1 Experimental Settings
Datasets To effectively train open-sourced
LLMs, we collect 1592 real users’ online queries
about the video domain from our data analysis dia-
logue system. Q2M process is employed to obtain
the relevant intent candidates, including intent re-
trieval, rerank, and filter strategy. After that, we an-
notate the target intents artificially based on the can-
didates. To improve the robustness of LLMs, we
randomly shuffle the order of candidates, thereby
expanding each sample to 4. Finally, there are 6368
samples in the training set. To evaluate the DSRAG
framework, we also collect 300 samples from on-
line user requests as the test set. The specific ratios
of different types of samples for the training and
test sets are shown in Table 1. It’s noticed that ’No
Answer’ indicates no metrics and dimensions are
related to the query in the intent candidates. There-
fore, DSRAG should respond with ’No Answer’ for
these samples as unknown intents.

Evaluation Metrics We adopt two ranking met-
rics, namely the Hit Ratio (HR@N) and Normal-
ized Discounted Cumulative Gain (NDCG@N) (He
et al., 2017b,a) to evaluate the performance of in-
tent retrieval and reranking. N is set to 1 to 10
for comparison. Accuracy, which means selecting
the correct metrics and dimensions, is employed to
assess the general performance of all processes.

Implementation For the thresholds α in Sec-
tion 3.2.2 Application Strategy, we set it to 0.85
based on online scenarios. Besides, RoBERTa (Liu
et al., 2019b) is employed as the reranking cross-
encoder backbone. In Section 3.2.3 LLMs Selec-
tion, we utilize GPT3.5-Turbo as the selector for

Methods Selectors Accuracy (%)

Prompt Engineering GPT3.5-Turbo 24.7
DSRAG

- 38.7
w/o Q2M

Without Training
DSRAG

GPT3.5-Turbo
78.7

w/o Q2Q 58.7

With Training
DSRAG

Qwen2-7B-SFT
90.0

w/o Q2Q 82.3
DSRAG

LLama3-8B-SFT
90.3

w/o Q2Q 82.7

Table 2: The accuracy of different methods with two
selectors on the intent detection test set.

the first approach and open-source LLMs (LLama3-
8B-IT 3 (AI@Meta, 2024) and Qwen2-7B 4 (Yang
et al., 2024)) with supervised fine-tuning (SFT)
for the second. The details of training hyper-
parameters about cross-encoder and open-source
LLMs are shown in Appendix A.1.

4.2 Baselines

To evaluate the necessity to filter out the irrelevant
intents, we choose the target intent with 29 non-
relevant intents to form the candidates and utilize
GPT3.5-Turbo to select the label intent. The rel-
evant prompts are presented in Appendix A.3.
Because the application has numerous metrics with
multiple dimensions, resulting in countless com-
binations, traditional classification methods (Liu
et al., 2019a; Bunk et al., 2020) are inapplicable.

4.3 Main Results

The experimental results are listed in Table 2 and
can be summarized as follows: 1) It’s challeng-
ing for LLMs to select the correct intents from
the numerous candidate intents based on prompt
engineering, which merely achieves an accuracy
rate of 24.7%. Combined with the Q2M method,
GPT3.5-Turbo achieves a 34% accuracy improve-
ment (58.7% vs. 24.7%), demonstrating the ef-
fectiveness of the Q2M process in filtering out ir-
relevant intents. 2) Compared with prompt engi-
neering, tuning open-source LLMs significantly im-
proves performance, respectively achieving 82.3%
and 82.7% for Qwen2-7B-SFT and LLama3-8B-

3https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

4https://huggingface.co/Qwen/
Qwen2-7B-Instruct
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Figure 4: Comparison of GPT3.5-Turbo and LLama3-
8B-SFT on the accuracy of different types of samples.
m and d denote the metric and dimension respectively.

SFT. This denotes that adopting domain-specific
data instruction tuning is an effective method to
alleviate LLMs’ insufficient understanding of do-
main data. 3) The complete DSRAG with different
selectors achieves the best performance but signifi-
cantly drops without the Q2Q process. We further
statistic the coverage ratio of the Q2Q on the test
set and find that Q2Q answers 39.3% samples with
an accuracy of 97.4%. The above statistical results
demonstrate the benefits of using DSRAG with a
double-stream retrieval strategy. 4) To evaluate the
efficiency of Q2M and Q2Q processes, we tested
them on 40-core CPUs and an A10 GPU and found
that they only require an average calculation time of
1s and 12ms respectively. Consequently, Q2Q con-
sumed a very short time, yet brought a significant
performance improvement. Overall, the DSRAG
can maintain great effectiveness and efficiency.

4.4 Ablation Study

Accuracy of Different Types of Samples We
further analyze the accuracy of two LLMs selection
strategies employed by the Q2M module on differ-
ent types of samples. As shown in Figure 4, the
accuracy of prompt engineering (GPT3.5-Turbo) is
only 15% on ’No answer’ samples, indicating that
LLM struggles to effectively determine whether a
correct answer exists and tends to output one of
the intents. At the same time, the accuracy on diffi-
cult samples, which contain one metric and two or
more dimensions, is only 27%. For LLama3-8B-
SFT, it can effectively determine whether a correct
answer exists (the performance of No answer sam-
ple reaches 93%) and can achieve close to 70%
accuracy even on difficult samples.

Module Metrics
HR@1 HR@5 NDCG@5 HR@10 NDCG@10

Intent Rerank 0.637 0.790 0.721 0.847 0.739

Table 3: Performance of reranker in Q2M process.

Performance of Reranking In the Q2M process,
the metrics with dimensions retrieval provide mas-
sive potential intents, and the ranker is employed to
reorder them further. To evaluate the performance
of the ranker, we adopt HR@N and NDCG@N
(N is set to 1, 5, and 10) to test it. As shown in
Table 3, the ranker achieves excellent performance
across all metrics, which is beneficial to filter out
numerous irrelevant intents, allowing LLMs to pay
more attention to the top N intents.

Extensibility of Q2M To evaluate the extensibil-
ity of Q2M with the fine-tuned LLM, we conducted
experiments on a news domain dataset, which com-
prised 100 test samples collected from our dialogue
system. It’s noteworthy that the metrics and dimen-
sions in these samples never appear in the training
set. We also perform intent retrieval and rerank-
ing processes and LLama3-8B-SFT is employed to
select the final intent. The results show that Q2M
module achieves an 87% accuracy, demonstrating
its adaptability in intent retrieval and reranking, as
well as the LLM’s strong understanding of intent
detection tasks and its ability to generalize.

5 Conclusion

In this paper, we outline the challenges of current
intent detection methods. Specifically, in data anal-
ysis dialogue systems, intents are formed by com-
bining various metrics and dimensions, resulting
in countless intents and posing challenges for cur-
rent works. Besides, although employing RAG ap-
proaches is effective in retrieving key intents, some-
times it can’t recall the target intent. Therefore, to
further improve the accuracy of intent detection,
we have developed the DSRAG framework, which
uses a double-stream retrieval strategy. When the
query comes, Q2Q are implements to look for a
similar query in the library of query statements con-
structed by the key metrics and dimensions with the
query templates. If it doesn’t find a relevant query,
Q2M is employed to retrieve the relevant metrics
and dimensions from metadata. The experiments
on real user queries confirm that Q2Q can address a
large portion of the queries with high accuracy and
low latency. Additionally, the DSRAG shows sig-
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nificant improvements compared to merely using
prompt engineering and RAG methods.

6 Limitation

In this section, we present several of the limita-
tions of this paper. Firstly, as shown in Table 3 of
the paper, we find that HR@10 and NDCG@10
achieve 0.847 and 0.739 respectively, which means
that a few correct intents are not retrieved, how to
retrieve intents more accurately from metadata is
one of the optimization directions. Moreover, as
shown in Figure 3, we design the metric position
with dimension ID or ’no answer’ as the outputs,
which may cause LLMs not to understand why the
metric and dimension were selected, or why the
output is ’no answer’. Adding explanations like the
CoT approach to assist LLMs is another direction
to improve performance further.
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A Appendix

A.1 Experiment Details
We list the main training hyper-parameters about
the ranker and selector which are shown in Table 4.

Model (Role) Cross-Encoder (ranker) open-source LLMs (selector)

learning rate 2e-5 1e-5
batch size 64 8
LoRA dim - 16
scheduler WarmupLinear Cosine
optimizer AdamW AdamW
warmup 288k 100
epochs 1 6
GPUs (A100) 1 2

Table 4: The details of experimental settings.

A.2 Query Database Construction
The construction process of the query database is
shown in Figure 5, which combines the intents with
query templates.

A.3 Prompts for intent detection
The specific prompts for GPT-3.5-Turbo to intent
detection are shown in Figure 6 and 7.
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metric: daily active user
dimensions: gender (enum: male, female); is_vip (enum: vip, non-vip); 
content format (enum: longvideo, short video; …)

Please help me analyze [metric] of [enum].

metric: daily active user
dimensions: gender (enum: female);

metric: daily active user
dimensions: content format (enum: long video);

Which [enum] has the most [metric]?
……

Templates (132)

……

DataBase (310 metrics and 675 dimensions)

Sample from DataBase (1.65 million combinations)

Please help me analyze daily active user 
of female.

Which long video has the highest daily 
active user?……

Queries (43.25 million)

Figure 5: The process of query database construction.

Prompt: 

You are a natural language processing expert and data analysis expert, you need to complete a task: receive 

user queries, understand the metrics and dimensions that users want, and then choose from multiple candidate 

answers to find one that meets the requirements correct answer. 

The correct answer judging standard: the metric is consistent, and for the dimensions that the user wants, there 

is zero to three dimensions that can satisfy the optional dimension.

### Please follow the rules: Just output one json, and then stop the output immediately.

### Following is an example of user needs:

User query: How many active devices do male users of  Tencent Video have last Wednesday? 

Optional answers (in no particular order): 

Candidate 1: metric: average active days; dimensions: ["active user type", "gender"] 

Candidate 2: metric: DAU, known as: daily active user; dimensions: ["gender", "third-level terminal name 

(enum: PC)"] 

Candidate 3: metric: active device distribution; dimensions: ["city", "education"]

Output: {"The metric that user wants": ["number of active devices"], "The dimension that user wants": ["male 

users"], "Final choice of answer group": 2}

### Real user’s query:

User query: {query}

Optional answers (in no particular order): {List of metadata} 

Output:

Figure 6: The prompt for GPT3.5-Turbo to choose the correct metric following the user’s query.
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Prompt:

You are a data analysis assistant. You need to carefully and accurately analyze user queries, first extract the 

dimensions that users want to view, then judge whether there are dimensions that can meet the needs in the 

selectable dimensions, and then return the corresponding dimensions.

### Please be sure to follow the guidelines below:

1. Only output one json, then stop output immediately.

2. The dimension is the user's limitation on the value of the metric: if the user's needs limit certain value 

ranges for the metric, then this value range is the dimension, but do not extract time and business name.

3. For each dimension of the user's question, only answer one most matching dimension.

4. Only answer the dimension name, no need to answer the explanation of the dimension

### Following are some examples of user queries:

Available dimensions: ["gender: male, female, unknown", "third-level terminal name: PC”]

User query: How many active devices do male users of  Tencent Video have last Wednesday? 

Metric: DAU

Output: {"The dimension that user wants": ["male"], "Is there an optional dimension to meet": true, 

"Selected dimensions": ["gender"]}

### Real user’s query:

Available dimensions: {list of dimension with enums}

User query: {query}

Metric: {metric}

Output:

Figure 7: The prompt for GPT3.5-Turbo to choose the correct dimensions with enums following the user’s query
and chosen metric.
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