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Abstract

Numerous adversarial defense methods have
been proposed to strengthen the robustness of
Natural Language Processing (NLP) models
against adversarial attacks. However, many of
these methods rely on predetermined linguistic
knowledge and assume that attackers’ synonym
candidates are known, which is often unreal-
istic. In this work, we investigate adversarial
training in the embedding space and introduce a
Fast Adversarial Training (FAT) method to im-
prove the model robustness without requiring
synonym awareness. FAT leverages single-step
perturbation generation and effective perturba-
tion initialization based on two key insights: (1)
adversarial perturbations generated by single-
step and multi-step gradient ascent are similar,
and (2) perturbations generated on the same
training sample across successive epochs ex-
hibit resemblance. By employing single-step
gradient ascent and leveraging historical pertur-
bation information, FAT not only expedites the
training process but also efficiently initializes
perturbations. Extensive experiments demon-
strate that FAT significantly enhances the ro-
bustness of popular NLP models under sce-
narios where synonyms are unknown, outper-
forming other defense baselines under various
character-level and word-level attacks.

1 Introduction

Deep neural networks have been demonstrated to
be vulnerable to adversarial examples (Szegedy
et al., 2014; Goodfellow et al., 2015; Papernot et al.,
2016), which are crafted by adding imperceptible
perturbations to the benign examples. For Natural
Language Processing (NLP) models, adversarial
attacks can be categorized into three types based
on the granularity of the perturbations: character-
level (Gao et al., 2018; Ebrahimi et al., 2018), word-
level (Ren et al., 2019; Alzantot et al., 2018; Zang
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et al., 2020; Li et al., 2020), and sentence-level
attacks (Wang et al., 2020). Among them, word-
level attacks based on synonym substitutions are
most commonly used, as they guarantee the correct
syntax, preserve unchanged semantics, and have
a high attack success rate. From another perspec-
tive of model visibility, adversarial attacks fall into
two categories: white-box attacks and black-box
attacks. White-box attacks (Papernot et al., 2016;
Guo et al., 2021) have direct access to the model
parameters, embeddings and gradients, while black-
box attacks (Jin et al., 2020; Li et al., 2020; Lv et al.,
2023) can only access the model outputs to gener-
ate adversarial examples, which are more practical.

Numerous defense methods have been proposed
to enhance the model’s robustness against adversar-
ial attacks based on synonym substitutions. How-
ever, we have observed that most of these methods
are synonym-aware, meaning they assume some
or all of the synonym substitutions used by the
attackers are known beforehand during training,
which is often unrealistic. Attackers have var-
ious approaches to obtain synonym candidates,
such as artificially formulating the embedding dis-
tance (Alzantot et al., 2018; Jin et al., 2020), retriev-
ing synonyms through the online thesaurus (Ren
et al., 2019; Zang et al., 2020), or inferring by
language models (Li et al., 2020). In this way,
they could obtain different synonyms and gener-
ate various adversarial texts. As exhibited in the
experiments of Li et al. (2021) and Wang et al.
(2023), the effectiveness of defense methods can
be significantly reduced if the defender’s synonym
candidates do not align with those used by the at-
tacker. Given the wide range of potential synonym
settings in textual adversarial attacks, it is prudent
to design defense methods that are independent of
the attacker’s specific synonym choices. Therefore,
we focus on a more practical scenario where the
defense method does not rely on predetermined
synonym information or any linguistic knowledge
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beyond the dataset.
We rethink the Adversarial Training (AT) meth-

ods in the synonym-unaware scenario. As a typical
kind of defense method to improve the model’s ro-
bustness, most AT methods, such as ATFL (Wang
et al., 2021c) and BFF (Ivgi and Berant, 2021),
work in the input space and utilize a specific adver-
sarial attack to generate adversarial texts for model
training. They require predetermined synonym in-
formation to craft adversarial texts. ASCC (Dong
et al., 2021) trains models using virtual adversar-
ial examples constructed by the combination of
the embedding representation of synonyms, which
still needs the synonym information. In contrast,
another type of AT methods (Miyato et al., 2017;
Zhu et al., 2020; Liu et al., 2020) works directly
in the embedding space and has no need to ac-
cess to synonyms. They perturb the embedding
representation directly and train the model using
the perturbed embedding representation. However,
their primary goal is to enhance model general-
ization on the original test dataset by serving as
a regularization technique, rather than specifically
improving adversarial robustness. Experiments by
Liu et al. (2022) and Li and Qiu (2021) have fur-
ther shown that this type of AT method has limited
effectiveness in bolstering robustness.

In this work, we empirically demonstrate that
AT in the embedding space could also improve
the model’s robustness without predetermined syn-
onym knowledge. Generally, the Projected Gradi-
ent Decent (PGD) method (Madry et al., 2018) is
adopted to generate adversarial perturbations on
the embedding representation. However, due to
its multi-step gradient ascent process, PGD-AT is
highly inefficient for commonly used large-scale
pre-trained NLP models such as BERT (Devlin
et al., 2019), leading to unsatisfactory performance
within a limited time. To address this issue, we
propose a Fast Adversarial Training (FAT) method
to boost the model’s robustness using single-step
perturbation generation and initialization based on
historical information.

Firstly, we observe that the adversarial perturba-
tions crafted by single-step and multi-step gradient
ascent are similar for NLP models. Based on this
observation, FAT employs single-step gradient as-
cent to create perturbations on the embedding repre-
sentation, rather than relying on multi-step gradient
ascent. It significantly accelerates the training pro-
cess, allowing the model to be trained over more
epochs and thereby achieving improved robustness

within a limited time. Secondly, we observe that
the direction of the perturbations generated on the
identical samples in two successive training epochs
is similar. To make full use of the historical in-
formation, FAT initializes the perturbation along
the direction of perturbation generated on the same
samples in the previous epoch.

Extensive experiments conducted on four popu-
lar benchmark datasets and two models show that
our proposed FAT achieves the best robustness un-
der various advanced adversarial attacks. Our main
contributions are as follows:

• We introduce Fast Adversarial Training (FAT),
informed by our observation on perturbation
generation in the embedding space of NLP
models. FAT employs single-step gradient as-
cent for faster training and leverages historical
training information to enhance robustness.

• Extensive experiments demonstrate that FAT
achieves the best robustness among the de-
fenses, handling attacks with varying model
visibility and perturbation granularity.

• Given the diverse settings of synonym candi-
dates and perturbation budgets in textual ad-
versarial attacks, FAT offers a valuable, easy-
to-apply, and effective solution for defense in
realistic, synonym-unaware scenarios.

2 Related Work

Many adversarial defense methods have been pro-
posed to boost the model’s robustness against ad-
versarial attacks based on synonym substitutions.
These methods can be classified into two cate-
gories, i.e., synonym-aware methods and synonym-
unaware methods.

Most defense methods need to be accessible
to the synonyms used by attackers or introduce
human-prescribed rules to determine synonyms.
Input transformation methods either encode the
synonyms to the same code (Wang et al., 2021b) or
adopt synonym substitutions (Mozes et al., 2021)
to eliminate perturbation in the input space. Ad-
ditionally Yang et al. (2022) embrace the triplet
metric learning to bring words closer to their syn-
onyms while distancing them from non-synonyms
in the embedding space. Interval bound propaga-
tion methods (Jia et al., 2019; Wang et al., 2023)
calculate the interval of all possible perturbed texts
based on a particular synonym definition and prop-
agate these interval bounds through the network
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layers to minimize loss in the worst case. Some
certified methods (Zhao et al., 2022; Ye et al., 2020)
utilize randomized smoothing to achieve provable
robustness. Adversarial training (AT) methods
working in the input space (Wang et al., 2021c; Ivgi
and Berant, 2021) craft adversarial texts based on
synonym substitutions and regard adversarial texts
as the training data. It is worth noting that while
some AT methods involve the embedding space to
generate adversarial perturbation, our work differs
from those AT methods. Specifically, ASCC (Dong
et al., 2021) trains models with the virtual adver-
sarial examples constructed by the combination of
embedding representations of synonyms. However,
the above AT methods still rely on the synonyms
and differ from our synonym-unaware approach.

Since synonym-unaware defense methods do not
rely on the synonyms used by attackers, they align
more closely with realistic scenarios and can be
easily applied to any language model, allowing for
a fairer evaluation of their robustness. Flooding-
X (Liu et al., 2022) leverages the Flooding method
to improve the model’s robustness through a simple
training strategy that avoids zero training loss and
guide the model into a smooth parameter landscape.
InfoBERT (Wang et al., 2021a) introduces two mu-
tual information based regularizers for model train-
ing. A series of works (Miyato et al., 2017; Zhu
et al., 2020; Li and Qiu, 2021) directly perturb the
word embeddings and utilize the perturbed embed-
ding representation to train the model. However,
these works regard AT as a regularization strat-
egy and aim to improve the model’s generaliza-
tion on the original dataset rather than adversarial
robustness. Li et al. (2021) utilize PGD without
projection operation to add a large magnitude of
perturbation to the embedding representations for
AT, which is the work most similar to ours. In
contrast, we utilize single-step gradient ascent to
generate adversarial perturbation. Besides, Li et al.
(2021) randomly initialize the adversarial perturba-
tion, while we introduce historical information in
perturbation initialization to achieve better model’s
robustness.

With the development of Large Language Mod-
els (LLMs) in recent years, there have been some re-
searches on adversarial attacks to manipulate them.
These adversarial attacks on the generative LLMs
differ from those on BERT models, primarily man-
ifesting as jailbreak attacks through prompt injec-
tion (Zhou et al., 2024) and prompt rewriting (Deng
et al., 2024; Guo et al., 2024). Therefore, we do not

evaluate the effectiveness of our FAT and baseline
methods on LLMs.

3 Methodology

This section investigates adversarial training in the
embedding space and presents two observations.
Based on the two observations, we propose a Fast
Adversarial Training (FAT) method to boost the
model’s robustness.

3.1 Rethinking Adversarial Training
According to the placement of perturbations, AT for
NLP models can be classified into two categories,
i.e., discrete AT (Ivgi and Berant, 2021; Wang et al.,
2021c) and continuous AT (Li et al., 2021; Li and
Qiu, 2021). Discrete AT generates adversarial texts
within the discrete input space, while continuous
AT adds adversarial perturbations to the embedding
representation in the continuous embedding space.

Given a dataset D and a classification model
fθ(·) parameterized by θ, the training objective of
the discrete AT could be formulated as:

min
θ

∑

(x,y)∈D
L(fθ(att(x)), y), (1)

where x denotes an input text with true label y,
att(x) is the adversarial text generated by a cer-
tain attack method att(·), and L(·, ·) is the cross-
entropy loss. The predetermined human-prescribed
linguistic knowledge about synonyms needs to
be introduced when generating adversarial texts.
When the synonym candidates used in AT and the
adversarial attack for evaluation are inconsistent,
the performance of AT will decline significantly (Li
et al., 2021).

In contrast, continuous AT needs no predeter-
mined linguistic knowledge, and the training objec-
tive is:

min
θ

∑

(x,y)∈D

[
max
∥δ∥p≤ϵ

L(fθ(v(x) + δ), y)

]
, (2)

where v(x) denotes the embedding representation
of text x, and δ is the adversarial perturbation
added to the embedding representation. ∥·∥p de-
notes lp-norm, and ϵ controls the perturbation mag-
nitude. Li et al. (2021) adopt l2-norm PGD to
solve the inner maximization in Eq. (2) for train-
ing, which we call PGD-AT for simplicity. For
the specific implementation, they remove the pro-
jection operation and iteratively conduct multiple
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Figure 1: (a) The perturbation similarity between single-step and multi-step gradient ascent. (b) The perturbation
similarity between the previous and current epochs.

steps of gradient ascent to generate the adversarial
perturbation as follows:

δ0 = U(−ϵ0, ϵ0)/
√
n · d, (3)

δt+1 = δt+α · ∇δtL(f(v(x) + δt), y)∥∥∇δtL(f(v(x) + δt), y)
∥∥
2

, (4)

where n is the number of words in the input text
x and d is the dimension of word embedding.
U(−ϵ0, ϵ0) ∈ Rn×d denotes a matrix whose el-
ements are uniformly sampled in range (−ϵ0, ϵ0).
t denotes the current step. ϵ0 and α are hyper-
parameters for controlling the magnitude of initial
perturbation and step size, respectively.

However, since the current commonly used NLP
models are large-scale pre-trained models, such
as BERT (Devlin et al., 2019), using PGD attack
to generate adversarial examples for AT is ineffi-
cient. For instance, PGD-AT with ten attack steps
takes about two hours to train a BERT model of
the base version for one epoch in the IMDB dataset
on a single TITAN RTX GPU. Worse still, adver-
sarial examples tend to be more diverse than be-
nign samples. The accuracy of the original testing
dataset quickly converges after several epochs of
fine-tuning, whereas the robustness of the model
requires more epochs.

3.2 Fast Adversarial Training

We propose a Fast Adversarial Training (FAT)
method to enhance the defense performance of
continuous AT from the perspective of single-step
perturbation generation and initialization with his-
torical information.

3.2.1 Single-Step Perturbation Generation
We speculate that it is redundant to adopt multi-step
gradient ascent to generate adversarial perturbation
for AT on NLP models. For validation, given 1000
random testing samples from the IMDB dataset
and two trained models of standard fine-tuning and
PGD-AT, we use single-step gradient ascent and
multi-step gradient ascent, respectively, to generate
adversarial perturbations of the random samples on
the model checkpoints. We apply the element-wise
sign function to the two perturbations as their direc-
tions. The direction similarity could be defined as
the ratio of the number of dimensions with the same
value between the two directions to the total num-
ber of dimensions. As illustrated in Figure 1(a), for
models trained by standard fine-tuning or PGD-AT,
the direction similarity between the perturbations
generated by multi-step and single-step gradient as-
cents is the same over 90% across most dimensions,
indicating the redundancy of multi-step generation
for NLP adversarial training.

We thereby adopt the single-step gradient ascent
to generate adversarial perturbation to boost the
efficiency of AT. Specifically, with the initial adver-
sarial perturbation δ0, the training objective could
be formulated as follows:

δ = δ0 + ϵ · ∇δ0L(f(v(x) + δ0), y)∥∥∇δ0L(f(v(x) + δ0), y)
∥∥
2

, (5)

min
θ

∑

(x,y)∈D
L(fθ(v(x) + δ), y). (6)

In the AT process of large-scale NLP models
such as BERT, most of the time cost is caused by
the gradient back-propagation. Assuming that the
number of training samples is N , the number of
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training epochs is E, and the step of adversary gen-
eration is T , PGD-AT requires NE(T + 1) back-
propagation, in which each training sample needs
T back-propagation to generate adversarial pertur-
bation in each epoch, and one back propagation to
update model parameters. In contrast, FAT requires
only 2NE back-propagation. Therefore, within a
given limited time, FAT can conduct more training
epochs and achieve higher robustness.

3.2.2 Perturbation Initialization
As in Eq. (3), previous AT methods (Li and Qiu,
2021; Li et al., 2021) introduce randomness into
training data by initializing the perturbation with
a small random noise. We argue that introducing
useful information for initialization could help craft
the adversarial examples from a good point for
training and enhance the model’s robustness.

For validation, we randomly choose 1000 testing
samples from the IMDB dataset and use single-
step gradient ascent to generate adversarial pertur-
bations for each epoch of FAT. As illustrated in
Figure 1(b), we observe that the direction of adver-
sarial perturbation generated on the same training
sample in two successive epochs is identical in
77%-97% of the dimensions in the training process
of FAT. It indicates that the adversarial perturbation
generated in the previous epoch contains helpful
information for the current epoch.

To fully use historical perturbation, we propose
a new initialization approach for adversary genera-
tion. Specifically, we limit the initial perturbation
δ0 to the perturbation direction corresponding to
the identical sample in the previous epoch, and
the magnitude on each dimension is generated ran-
domly, which could be formulated as follows:

δ0 = U(0, ϵ0)⊙ sign(δ′)/
√
n · d, (7)

where ⊙ denotes element-wise multiplication, and
sign(·) denotes the element-wise sign function. δ′

is the perturbation of the identical training sample
in the previous epoch.

By incorporating information from previous per-
turbations into the current epoch, we achieve a
momentum-like effect that helps stabilize the gen-
eration of adversarial examples and enhances the
model’s robustness. The overall FAT method is
summarized in Algorithm 1.

4 Experiments

This section evaluates the robustness of the pro-
posed FAT and typical defense baselines against

Algorithm 1 The FAT Method
Input: Training data D, model fθ, initial per-
turbation size ϵ0, perturbation size ϵ, number of
training epochs E, number of words n, dimen-
sion of word embedding d
Output: Robust model fθ
for i = 1, 2, · · · , |D| do

δi ← U(−ϵ0, ϵ0)/
√
n · d

end for
for e = 0, 1, · · · , E − 1 do

for {(xi, yi)} ⊂ D do
# Update adversarial perturbations
δ0i ← U(0, ϵ0)⊙ sign(δi)/

√
n · d

δi ← δ0i + ϵ ·
∇

δ0
i
L(f(v(xi)+δ0i ),yi)∥∥∥∥∇δ0

i
L(f(v(xi)+δ0i ),yi)

∥∥∥∥
2

Compute loss L(fθ(v(xi) + δi), yi)
Update model parameters θ

end for
end for
return fθ

various adversarial attacks on two typical NLP
models across four datasets. Then the correlation
between training cost and defense performance of
PGD-AT and FAT is further investigated. We pro-
vide more analysis in Appendix. Code is available
at https://github.com/JHL-HUST/FAT.

4.1 Experimental Setup

4.1.1 Datasets and Models
To thoroughly evaluate the effectiveness of the pro-
posed method, we conduct experiments on three
text classification datasets, including IMDB (Maas
et al., 2011), AGNEWS (Zhang et al., 2015), and
DBPEDIA (Zhang et al., 2015), and a natural lan-
guage inference dataset of QNLI (Wang et al.,
2019). The four standard benchmark datasets have
various text lengths, number of classes, and sam-
ple sizes. Their specific information is shown
in Table 1. We train the BERT model (Devlin
et al., 2019) of the uncased base version and the
RoBERTa (Liu et al., 2019) model of the base ver-
sion on the four datasets.

4.1.2 Attack Methods
Since we focus on the defense without any ad-
ditional predetermined linguistic knowledge and
synonym information, we utilize four adversar-
ial attacks, namely TextFooler (Jin et al., 2020),
BERT-Attack (Li et al., 2020), TextBugger (Li
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Dataset #Training #Testing #Class Avg. words

IMDB 25,000 25,000 2 268
AGNEWS 120,000 7,600 4 40
QNLI 105,000 5,400 2 11 / 31*

DBPEDIA 560,000 70,000 14 53

Table 1: Statistics of datasets. ∗ denotes the average
words of premise and hypothesis.

et al., 2019), and GBDA (Guo et al., 2021), involv-
ing character-level perturbations and word-level
perturbations based on different synonym candi-
dates. TextFooler defines synonyms based on the
cosine distance between the word vectors, then
identifies important words in the input text and
performs synonym substitutions. BERT-Attack uti-
lizes pre-trained masked language models to mine
for synonym candidates. TextBugger mixes the
character-level and word-level perturbations to at-
tack the model. GBDA is a challenging white-box
attack, which searches for a distribution of adver-
sarial examples parameterized by a continuous val-
ued matrix and utilizes gradient-based optimiza-
tion to craft adversarial examples. For the first
three attacks, we use the default implementation
in TEXTATTACK1. For GBDA attack, we use the
implementation of the paper. For the natural lan-
guage inference dataset, each sample consists of
two sentences: the premise and the hypothesis, and
typically, only the hypothesis is perturbed to keep
the true label unchanged. We randomly choose 800
test samples from each dataset to generate adver-
sarial examples.

4.1.3 Defense Baselines

Following Liu et al. (2022), we compare our
method with standard fine-tuning (Devlin et al.,
2019) and four defense baselines, PGD-AT (Madry
et al., 2018; Li et al., 2021), TAVAT (Li and
Qiu, 2021), InfoBERT (Wang et al., 2021a), and
Flooding-X (Liu et al., 2022). All the baselines and
our proposed method require no predetermined lin-
guistic knowledge, ensuring a fair evaluation. We
also discuss our methods with the synonym-aware
defenses in Appendix D.

4.1.4 Training Details

Our implementations are based on Liu et al. (2022)
2. Since Liu et al. (2022) run baseline methods with

1https://github.com/QData/TextAttack
2https://github.com/qinliu9/Flooding-X

5 attack steps for 10 epochs, according to the analy-
sis in Section 3.2, we run our proposed FAT for 30
epochs to achieve the same time consumption as
PGD-AT, among which the last epoch is selected
for evaluation. For hyper-parameters in Eq. (7) and
Eq. (5), we set ϵ0 = 0.05 and ϵ = 0.2. The detail
hyper-parameter study is provided in Appendix E.

4.2 Main Results
We compare FAT with standard fine-tuning and
typical defense baselines concerning the robust-
ness against various attacks. The comparisonal re-
sults, using three evaluation metrics, on BERT and
RoBERTa models are shown in Table 2 and Table 3,
respectively. Clean% denotes the classification ac-
curacy on the entire original test set. Aua% is short
for the accuracy under attacks. #Query denotes the
average number of queries to attack each sample.
The more effective the defense method, the higher
the metrics of Aua% and #Query. Meanwhile, we
also need to ensure that Clean% does not decline
much compared to the standard fine-tuning.

The results indicate that FAT has substantially
enhanced the model’s robustness, surpassing the
defense baselines with a prominent margin on all
four datasets and two models under various attacks.
For instance, FAT outperforms the best defense
baseline by 30.3%, 22.8%, and 12.7% with BERT
model on the IMDB dataset under the three attacks,
respectively. Especially on the large-scale DB-
PEDIA dataset, FAT exhibits 92.0%, 81.3%, and
92.9% accuracy under the three attacks, respec-
tively. Besides, FAT achieves the same or even im-
proved accuracy on the original test set compared
to standard fine-tuning.

Under the same time limit, FAT using single-
step gradient ascent to generate perturbation per-
forms better than PGD-AT using multi-step gra-
dient ascent, probably due to the following rea-
sons. First, the difference between the perturba-
tions generated by single-step and multi-step gra-
dient ascent is trivial for AT on NLP models. Sec-
ond, with much fewer calculations, FAT runs more
epochs to achieve better robustness within a lim-
ited time. Specifically, Appendix C shows that even
FAT trained with only 10 epochs can achieve com-
petitive adversarial robustness. FAT significantly
outperforms baselines if allowed to train for 30
epochs while maintaining the same overall train-
ing time as PGD-AT. Besides, Appendix D shows
that the defense effect of FAT is consistently higher
than that of ASCC within the same time limits.
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Dataset Defense Clean%
TextFooler BERT-Attack TextBugger

Aua% #Query Aua% #Query Aua% #Query

IMDB

Finetune* 95.0 24.5 1533.15 20.3 2237.38 48.7 1160.35
PGD-AT* 95.0 26.3 1194.08 21.3 1465.83 52.3 982.02
TAVAT* 95.5 27.6 1205.80 23.1 2244.77 54.1 1022.56
InfoBERT * 96.3 27.4 1094.55 20.8 1428.67 49.8 1215.39
Flooding-X* 97.5 40.5 2315.35 32.3 2248.71 62.3 2987.95
FAT (w/o) 94.9 67.3 2550.85 49.8 3503.30 70.4 1650.51
FAT 95.0 70.8 2574.45 55.1 3636.75 75.0 1687.15

AGNEWS

Finetune* 94.9 20.5 372.14 6.5 477.34 42.7 192.75
PGD-AT* 94.8 37.2 428.13 32.8 704.78 58.2 252.87
TAVAT* 95.2 39.7 441.11 23.7 672.52 55.9 234.01
InfoBERT* 94.6 29.2 406.32 15.6 598.25 50.7 201.66
Flooding-X* 94.9 42.4 451.35 27.4 690.27 62.2 222.49
FAT (w/o) 95.2 60.8 500.62 48.6 764.88 65.9 306.94
FAT 95.1 62.3 505.86 48.0 754.63 63.6 301.91

QNLI

Finetune* 90.6 5.3 161.88 3.5 216.46 10.9 98.39
PGD-AT* 90.6 28.1 269.38 24.0 399.91 33.8 154.55
TAVAT 91.6 32.3 243.71 16.3 302.17 30.6 140.97
InfoBERT* 90.4 23.1 250.87 11.1 268.91 12.8 127.93
Flooding-X* 91.8 27.9 251.17 26.2 364.06 29.5 137.12
FAT (w/o) 91.4 44.8 271.69 28.1 384.83 39.4 172.35
FAT 91.1 48.3 280.07 33.0 414.37 44.3 184.29

DBPEDIA

Finetune 99.3 19.0 444.05 28.4 607.01 53.3 312.20
PGD-AT 99.4 66.5 645.82 51.8 912.57 79.9 411.62
Flooding-X 99.3 28.6 548.02 36.5 687.55 69.5 339.22
FAT (w/o) 99.3 90.8 716.78 77.1 1271.52 92.3 513.76
FAT 99.4 92.0 720.35 81.3 1277.14 92.9 515.76

Table 2: The comparison results of FAT and baselines under various adversarial attacks on BERT model. FAT (w/o)
denotes FAT using random perturbation initialization rather than our proposed initialization method. ∗ indicates
results reported in Liu et al. (2022). The best performance is highlighted in bold.

Dataset Defense Clean%
TextFooler BERT-Attack TextBugger

Aua% #Query Aua% #Query Aua% #Query

IMDB

Finetune 95.5 14.5 1246.30 5.6 1366.54 25.5 881.95
PGD-AT 95.6 49.4 1839.47 36.5 2414.39 46.8 1173.59
TAVAT 95.6 66.8 2224.31 51.1 3422.95 71.1 1437.07
InfoBERT 95.7 59.0 2182.16 47.5 2916.40 65.9 1340.95
Flooding-X 95.5 44.8 1947.40 26.8 2381.76 58.0 1239.55
FAT (w/o) 95.7 71.0 2347.62 52.4 3451.97 73.6 1578.73
FAT 95.6 74.4 2461.05 55.1 3512.07 76.8 1597.55

Table 3: The comparison results of FAT and baselines under various adversarial attacks on RoBERTa model.
FAT (w/o) denotes FAT using random perturbation initialization rather than our proposed initialization method. The
best performance is highlighted in bold.

In Table 2 and Table 3, FAT (w/o) uses random
perturbation initialization rather than the historical
perturbation. The ablation comparison between
FAT and FAT (w/o) reveals that the initialization

utilizing previous information is crucial for crafting
adversarial examples. For instance, when we initial-
ize the perturbation along the direction of the previ-
ously generated perturbation, FAT performs better
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Figure 2: The training time (h) and robust accuracy (%)
of BERT models trained by different defense methods
on the IMDB dataset. The points on the curve represent
the models trained with 10, 20, and 30 epochs.

than FAT (w/o) under the TextFooler attack on the
four datasets with BERT model, with the improve-
ment of 3.5%, 1.5%, 3.5%, and 1.2% respectively.
The same phenomenon holds for RoBERTa models,
which verifies the generation of our method.

We further verify the defense effectiveness of
FAT on the more challenging white-box attack,
GBDA (Guo et al., 2021), and the sentence-level
attack, MAYA (Chen et al., 2021), respectively.
As detailed in Appendix A and B, FAT can also
provide an essential defense against the white-box
attack and sentence-level attack.

4.3 Training Efficiency
Since adversarial training is time-consuming for
large-scale pre-trained models such as BERT, Liu
et al. (2022) and Li et al. (2021) run PGD-AT for
ten epochs in their experiments for a trade-off be-
tween training cost and model performance. How-
ever, we speculate that inadequate training signif-
icantly limits the performance of PGD-AT. It is
observed that the clean accuracy on the original
test data easily converges after several epochs of
fine-tuning, whereas the robustness of the model
requires more training epochs. Our proposed FAT
method unleashes the robustness of the adversar-
ial training for NLP models due to the efficient
training. In this section, we explore the correlation
between training time and the model’s robustness
of FAT and PGD-AT.

Specifically, we record the training time and eval-
uate the robustness of models trained with three
defense methods for 10, 20, and 30 epochs on
the IMDB dataset, respectively. We utilize the

TextFooler attack to evaluate the robustness. The
results are depicted in Figure 2.

Consistent with the analysis in Section 3.2.1,
the time consumed for training 10 epochs of PGD-
AT is the same as that of 30 epochs of FAT (w/o).
Since FAT adds operations to record and exploit
historical perturbations, the training efficiency is
slightly lower than FAT (w/o) but still much faster
than PGD-AT. In the same time limit, FAT and FAT
(w/o) show significant superiority over PGD-AT.

After training all the three defense models for 30
epochs, PGD-AT slightly outperforms FAT (w/o).
This could be attributed to the fact that PGD-AT
uses more sophisticated adversarial perturbation for
training. Note that at this point, PGD-AT has spent
three times as much training time as FAT (w/o).
In addition, combined with our proposed initializa-
tion using historical perturbations, FAT still slightly
outperforms PGD-AT.

5 Conclusion

Continuous adversarial training (AT), which in-
volves directly adding perturbations to the embed-
ding representation during training, can enhance
the robustness of NLP models in scenarios where
synonyms are unknown. In this work, we proposed
Fast Adversarial Training (FAT), a continuous AT
method designed to boost adversarial robustness.
FAT leverages insights into perturbation generation
in the embedding space, employing single-step gra-
dient ascent to generate adversarial perturbations.
It also utilizes historical training information by
initializing perturbations along the direction from
the previous epoch. Extensive experiments demon-
strate that FAT significantly outperforms existing
defense baselines against various adversarial at-
tacks with different perturbation granularities and
model visibility. Notably, FAT achieves these re-
sults without relying on human-prescribed linguis-
tic rules or access to attackers’ synonyms, making
it practical and easy to use in diverse real-world
scenarios with varying synonym candidates and
perturbation budgets.

In contrast to the image domain, continuous AT
has been largely overlooked as a potent approach
for textual adversarial defense. Our work demon-
strates its efficacy as a synonym-unaware defense
method. We encourage future research to consider
continuous AT as a strong baseline in relevant stud-
ies. Furthermore, since continuous AT helps bridge
the gap between image and text AT, we plan to
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explore and adapt various advanced AT methods
from the image domain for application in the text
domain in future work.

Limitations

Since word-level attacks based on synonym sub-
stitutions and character-level attacks are the most
commonly used methods and generally ensure se-
mantic consistency, this paper focuses on enhanc-
ing the model’s robustness against these types of
attacks. However, we do not explore robustness
against sentence-level attacks. Additionally, our
method can also be applied to large language mod-
els to improve adversarial robustness. Due to the
huge cost of adversarial training, we have not yet
conducted relevant experiments. We will continue
to investigate the potential of FAT in our future
work.
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A Evaluation with White-box Attack

To further verify the defense effectiveness, we
compare FAT with standard fine-tuning and the
best baseline method Flooding-X on the GBDA at-
tack (Guo et al., 2021), which is a more challenging
white-box attack method.

As shown in Table 4, the GBDA attack severely
degrades the accuracy of fine-tuned models. FAT
has enhanced the model’s robustness by a clear
margin of 46.4%, 26.1%, and 26.0% on the three
datasets, respectively, indicating that not only in the
black-box scenario but also in the white-box sce-
nario, FAT can provide an essential defense against
adversarial examples.

B Evaluation with Sentence-level Attack

MAYA (Chen et al., 2021) is a black-box attack
that mixes multi-granularity textual perturbations,
including sentence-level rephrasing and word sub-
stitutions. We randomly choose 600 test samples
for the MAYA attack, as it takes a longer time to
generate adversarial examples. As shown in Ta-
ble 5, the accuracy on FAT is only 0.5% less than
Flooding-X under the MAYA attack, but around
180 more model queries are required for attack-
ing each sample on average, indicating that FAT is
more difficult to attack.

C Impact of Training Epoch

In Table 2 and Table 3, we follow the work of Liu
et al. (2022) to run baseline methods for 10 epochs.
According to the analysis in Section 3.2, we run
our FAT for 30 epochs to achieve the same time
consumption as PGD-AT does.

Actually, as shown in Table 6, even FAT trained
with only 10 epochs can achieve competitive ad-
versarial robustness. FAT significantly outperforms
the baselines if allowed to train for 30 epochs while
keeping the same overall training time as the PGD-
AT does.

D Comparison with Synonym-aware AT

Experiments by Li et al. (2021) have shown that
PGD-AT is already superior to many competitive
synonym-aware methods on the BERT model. We
further take ASCC (Dong et al., 2021), an adver-
sarial training method relying on synonyms, as an
example to compare FAT with synonym-aware AT
on the RoBERTa model. We use the same syn-
onyms and hyper-parameters of the original paper

Defense IMDB AGNEWS QNLI

Finetune 0.4 0.4 16.3
Flooding-X 40.0 16.3 47.8
FAT 46.8 26.5 42.3

Table 4: The accuracy (Aua%) of FAT and Flooding-X
with BERT models under the GBDA attack.

Defense Aua% #Query

Finetune 4.3 514.29
Flooding-X 9.3 498.01
FAT 8.8 681.82

Table 5: The defense performance of FAT and Flooding-
X with BERT models under the MAYA attack on IMDB
dataset.

Defense IMDB AGNEWS QNLI

PGD-AT 26.3 37.2 28.1
Flooding-X 40.5 42.4 27.9
FAT (10 epochs) 37.8 37.1 29.1
FAT (30 epochs) 70.8 62.3 48.3

Table 6: The accuracy (Aua%) of FAT and Flooding-X
with BERT models under the TextFooler attack.

to re-implement ASCC on RoBERTa model. As
shown in Table 7, the robustness of FAT is also
better than ASCC on the RoBERTa model.

We further evaluate the training efficiency be-
tween FAT and ASCC. Table 8 shows the training
time (h) and robust accuracy (%) of RoBERTa mod-
els trained by ASCC and our FAT methods on the
IMDB dataset. The defense effect of FAT is consis-
tently higher than that of ASCC within the same
training time limits.

E Hyper-parameter Study

This subsection evaluates the impact of hyper-
parameters on the performance of FAT. We focus
on two metrics, the accuracy on the original test set,
denoted by Clean%, and the robust accuracy un-
der the TextFooler attack, denoted by Aua%. The
hyper-parameter ϵ in Eq. (5) controls the perturba-
tion magnitude. To study the effect of ϵ on FAT,
we train the model with ϵ = 0.1, 0.2, 0.3, 0.4, 0.6,
0.8, 1.0, respectively. Figure 3 indicates that FAT
is not sensitive to the hyper-parameter ϵ, especially
when ϵ is between 0.1 and 0.4. With the extensive
range of ϵ = 0.1 to 1.0, even the worst-case robust
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Defense Clean%
TextFooler BERT-Attack TextBugger

Aua% #Query Aua% #Query Aua% #Query

ASCC 95.4 51.9 1860.10 48.1 2875.21 53.3 1221.58
FAT 95.6 74.4 2461.05 55.1 3512.07 76.8 1597.55

Table 7: The comparison results of FAT and ASCC under various adversarial attacks on RoBERTa model.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.020
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Clean%
Aua%

(a) IMDB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.020
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Clean%
Aua%

(b) AGNEWS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Clean%
Aua%

(c) QNLI

Figure 3: The impact of hyper-parameter ϵ on the performance of FAT across the three datasets with the BERT
model.

Training time ≈ 5h ≈ 7h ≈ 10h

ASCC 2.3 18.3 51.9
FAT 30.9 64.9 74.4

Table 8: The accuracy (Aua%) of FAT and ASCC with
BERT models under the same training time (h) on the
IMDB dataset.

accuracy is higher than all defense baselines.
When ϵ is set between 0.1 and 0.4, the clean accu-

racy remains almost constant on the three datasets.
When ϵ = 0.3 or 0.4, the clean accuracy of the
model is still more than 90.0% on the QNLI dataset,
which is not significantly weakened compared with
90.6% of standard training. The robust accuracy
fluctuates within a small range, reaching a maxi-
mum when ϵ = 0.2. With the increase of ϵ, the
clean accuracy decreases on the three datasets, es-
pecially on the QNLI dataset, and the robust ac-
curacy also decreases significantly. In summary,
when ϵ is between 0.1 and 0.4, FAT achieves a
proper trade-off between clean accuracy and ro-
bustness.

739


