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Abstract

We introduce Swan, a family of embedding
models centered on Arabic, designed for both
small-scale and large-scale applications. Swan
comprises two variants: Swan-Small, built on
ARBERTv2, and Swan-Large, based on ArMis-
tral, a pretrained Arabic large language model.
To evaluate our models, we propose a compre-
hensive benchmark suite, dubbed ArabicMTEB,
that assesses cross-lingual, multi-dialectal,
multi-domain, and multi-cultural Arabic text
embedding performance. ArabicMTEBcovers
eight diverse tasks sourced from 94 datasets.
Swan-Large achieves state-of-the-art results,
outperforming Multilingual-E5-large in most
Arabic tasks, while Swan-Small consistently
surpasses Multilingual-E5-base. Our exten-
sive evaluations show that Swan models are
both dialectally and culturally aware, achiev-
ing strong performance across diverse Arabic
domains while maintaining significant cost ef-
ficiency. This work significantly advances the
field of Arabic language modelling and pro-
vides valuable resources for future research and
applications in Arabic NLP. Our models and
benchmark are available at our GitHub page:
https://github.com/UBC-NLP/swan.

1 Introduction

NLP has seen rapid advancements in recent years,
driven by groundbreaking developments in deep
learning and the emergence of sophisticated dis-
tributed text representations such as word and sen-
tence embeddings (Devlin et al., 2018; Reimers
and Gurevych, 2019). These embeddings, which
transform text into dense vectors, enable effec-
tive semantic understanding and are pivotal for
enhancing performance across many downstream
applications, including text classification, semantic
search, and machine translation. Moreover, text
embeddings have become fundamental to the suc-
cess of large language models (LLMs) (Touvron
et al., 2023; Jiang et al., 2023; Gemma-Team et al.,

Figure 1: Overview of our ArabicMTEB benchmark
tasks, covering clustering, retrieval, reranking, clas-
sification, semantic similarity, pair classification, cross-
lingual retrieval, and bitext mining.

2024), which are increasingly integrated into a va-
riety of real-world systems and tools. One of the
most promising applications of these embeddings
is in the realm of Retrieval-Augmented Genera-
tion (RAG) (Shao et al., 2023; rag, 2023), where
LLMs are augmented with information retrieval
capabilities. In RAG-based systems, lightweight
embedding models retrieve relevant information
from large corpora, fed as context to models like
ChatGPT (OpenAI, 2023) or GPT-4 (OpenAI et al.,
2024). This synergy between embeddings and
LLMs has demonstrated significant improvements
in both general-purpose tasks such as question an-
swering (Lin et al., 2023; rag, 2023) and domain-
specific applications (Bhatia et al., 2024; Shi et al.,
2023; Lin et al., 2023).

Despite these advances, the predominant focus
of current embedding models has been on En-
glish and Chinese, which limits their applicabil-
ity to other languages. This is particularly true
for Arabic, a collection of languages, language
varieties, and diverse dialects with rich morphol-
ogy (Abdul-Mageed et al., 2023a, 2024a), making
it challenging to develop effective language rep-
resentations (Nagoudi et al., 2022; Huang et al.,
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2024). Existing multilingual models often fail to
capture these complexities, leading to a suboptimal
performance on Arabic NLP tasks (Abdul-Mageed
et al., 2020a; Elmadany et al., 2022). Addressing
this limitation requires the development of Arabic-
specific embedding models that are sensitive to the
linguistic and cultural nuances of Arabic.

In this work, we introduce Swan, a family
of dialect-aware, Arabic-centric, cross-lingual,
and cross-cultural embedding models designed to
bridge this gap and push the boundaries of Ara-
bic NLP. Our contributions are as follows:(1) We
introduce Swan, a cutting-edge family of Ara-
bic embedding models. This includes two vari-
ants: Swan-Small, based on ARBERTv2 (El-
madany et al., 2022), and Swan-Large, built
upon ArMistral, a further pretrained Arabic lan-
guage model. (2) We present ArabicMTEB, a
comprehensive evaluation benchmark for Arabic
text. ArabicMTEB is designed to assess cross-
lingual, multi-dialectal, multi-domain, and multi-
cultural performance, spanning eight tasks and
94 datasets. Figure 1 provides an overview of
ArabicMTEB. (3) Our larger model, Swan-Large,
showcases state-of-the-art text embedding capa-
bilities, surpassing Multilingual-E5-large (Wang
et al., 2024b) on most Arabic tasks. Similarly,
our smaller, Swan-Small, consistently outperforms
Multilingual-E5-base (Wang et al., 2024b) on most
Arabic tasks. (4) Through rigorous benchmarking,
we demonstrate that Swan models are not only di-
alectally and culturally aware, but also excel across
diverse Arabic domains while maintaining a signif-
icantly lower monetary cost.

The rest of the paper is organized as follows: In
Section 2, we review related work with a partic-
ular emphasis on Arabic text embedding models,
their applications and challenges. We present our
approach to model training of Swan models in Sec-
tion 3. Section 4 outlines how we built our bench-
mark dataset, ArabicMTEB. Section 5 is about our
experiments and model analysis. We conclude in
Section 6.

2 Related Work

In recent years, there have been remarkable ad-
vancements in text embedding models, with a shift
towards developing universal embeddings for di-
verse tasks and domains. Despite this, specialized
models and benchmarks for languages like Arabic
remain underexplored.

Multilingual Text Embedding Models. With
the need for language-agnostic embeddings grow-
ing, multilingual models such as LASER (Artetxe
and Schwenk, 2019) and LaBSE (Feng et al.,
2022) were developed using BiLSTM and Trans-
former encoders, respectively. Building on this, the
Multilingual-E5 (Wang et al., 2024c) series extends
the E5 architecture to support diverse languages us-
ing multilingual text pairs and synthetic data. GRIT
(Muennighoff et al., 2024) further unifies genera-
tive and embedding tasks within a single model.
Newer models such as ColBERT-XM (Louis et al.,
2024) and Gecko (Lee et al., 2024) refine multi-
lingual embeddings through modular and distilled
architectures.

Arabic-Specific Models. Despite progress in Ara-
bic NLP, existing models are not optimized for Ara-
bic text embedding and retrieval. Efforts like AR-
BERT (Abdul-Mageed et al., 2021a) and AraMus
(Alghamdi et al., 2023) have focused on encoding
and generation but are not tailored for sentence-
level embeddings. While language-agnostic mod-
els such as LASER and Multilingual-E5 include
Arabic in their training data, they may not fully
capture its linguistic intricacies and diversity. To
address this, Nacar and Koubaa (2024) introduced
models and training datasets to improve semantic
similarity performance for Arabic.

Text Embedding Benchmarks. Most text embed-
ding evaluations rely on a narrow set of datasets,
limiting their generalisation ability. To address this,
the Massive Text Embedding Benchmark (MTEB)
(Muennighoff et al., 2023) introduced eight task cat-
egories with 58 datasets and 112 languages. How-
ever, it remains predominantly focused on English.
Similar benchmarks have been developed for other
languages, such as C-MTEB (Xiao et al., 2023) for
Chinese. For Arabic, evaluations have primarily
centred on Semantic Text Similarity (STS) tasks
(Nacar and Koubaa, 2024). However, excelling in
STS does not guarantee optimal performance in
tasks like clustering or reranking (Muennighoff
et al., 2023). Existing Arabic benchmarks like
ORCA (Elmadany et al., 2023) and ALUE (Seelawi
et al., 2021) focus on natural language understand-
ing (NLU), while Dolphin (Nagoudi et al., 2023a)
targets natural language generation (NLG). This
work is the first comprehensive benchmark for
evaluating Arabic text embeddings across multi-
ple tasks.
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Benchmark Lang Tasks Datasets Tasks CRTR Ar Cul/Dom

MTEB (Muennighoff et al., 2022) English RTR, STS, PairCLF, CLF, RRK, CLR, SUM 56 7 × ×
C-MTEB (Xiao et al., 2023) Chinese RTR, STS, PairCLF, CLF, RRK, CLR 35 6 × ×
De-MTEB (Sturua et al., 2024) German RTR, STS, PairCLF, CLF, RRK, CLR 17 6 × ×
F-MTEB (Ciancone et al., 2024) French RTR, STS, PairCLF, CLF, RRK, CLR, BTM 17 7 × ×
Es-MTEB(Mohr et al., 2024) Spanish RTR, STS, PairCLF, CLF, RRK, CLR 17 6 × ×
Polish (Poświata et al., 2024) Polish RTR, STS, PairCLF, CLF, CLR 26 5 × ×
Ru-MTEB (Poświata et al., 2024) Russian RTR, STS, PairCLF, CLF, RRK, CLR 23 6 × ×

Scand. (Enevoldsen et al., 2024)
Danish

RTR, CLF, BTM, CLR 26 4
× ×

Norweg. × ×
Swedish × ×

ArabicMTEB (Ours) Arabic RTR, STS, PairCLF, CLF, RRK, CLR, BTM, CRTR 94 8 ✓ ✓

Table 1: Comparison of various text embedding benchmarks proposed in the literature across the different covered
task clusters. RTR: retrieval, STS: semantic textual similarity, PairCLF: pair classification, CLF: classification,
CLR: clustering, RRK: reranking, BTM: bitext mining, CRTR: cross-lingual retrieval.

You have been assigned a retrieval task: {task}
Your mission is to write one text retrieval example for this task in
JSON format.
The JSON object must contain the following keys:

user_query: a string, a query specified by the retrieval task.
positive: a string, a relevant document for the user query.
hard_negative: a string, a document closely related to the

query.
Please adhere to the following guidelines:
The user_query should be paragraph-based, understandable with
some effort or ambiguity, and diverse in topic. The hard_negative
contains some useful information, but it should be less useful or
comprehensive than the positive.

Cohere

Figure 2: Methodology to generate our synthetic data.

3 Swan

3.1 Training Data

To train Swan, we develop the most extensive train-
ing corpus for Arabic embedding models, leverag-
ing a unique assembly of datasets to ensure com-
prehensive linguistic coverage and diversity. Our
training data covers paragraph-based and sentence-
based datasets curated from multiple sources. Ta-
ble 2 shows an overview of our training datasets.
MSA Datasets. We focus on two sources:
(i) Human-generated data: Composed
from ORCA (Elmadany et al., 2023) and
mMARCO (Bonifacio et al., 2021). ORCA is
a compilation of labelled datasets with tasks
such as semantic text similarity (STS), sentence
classification, text classification, natural language
inference (NLI), and question answering. We use

Family Language Type Dataset Level Size

Monoling Ar

Human
ORCA-MSA

Sent
378K

ORCA-DIA 122K
MMARCO-ar 8.1M

Synthetic
Synth-MSA

Parag
100K

Synth-DIA 15K
Synth-DOM 20K

Crossling Ar to 15 lg Human MMARCO Sent 3M
Ar to 6 lg XOR-TyDi 20.5K

Multiling 11 lg Human Mr-Tydi Sent 49K
16 lg Miracl 343K

Total 12.5M

Table 2: The diverse datasets employed for training
our Arabic embedding models. In the synthetic dataset,
we have three datasets: the MSA dataset, the dialectal
dataset (Egyptian and Moroccan), and domain-based
focusing on medical, financial, legal and news domains.

all the training sets from ORCA, encompassing 60
different datasets. mMARCO-ar is the translated
version of MARCO, which is a human-generated
dataset (Bajaj et al., 2018). Both of these datasets
are cleaned up and de-duplicated using Polydedupe
(Bhatia, 2023),1 which is further described in
Appendix C. (ii) Synthetically-generated data:
To augment our MSA training data for retrieval
tasks, we use Command R+ (Cohere For AI, 2024)
to generate high-quality synthetic data.2 The
generation methodology is inspired by Wang et al.
(2024a), and we employ the procedure shown in
Figure 2 to generate our synthetic dataset. We
generate 100k in general MSA data and 5k in
instances for specific domains such as finance,
news, medicine, and legal for a total of 120k MSA
instances.
Dialectal Arabic Datasets. Similar to the MSA

1https://github.com/gagan3012/PolyDeDupe
2We performed various in-house evaluations comparing

multiple models. Command R+ was chosen as it is open-
source and efficient in generating Arabic varieties (standard
and dialectal).

4671

https://github.com/gagan3012/PolyDeDupe


datasets, we focus on two sources: (i) Human-
generated data: We use publicly available di-
alectal Arabic data, which primarily covers Gulf,
Egyptian, Moroccan, and Levantine varieties of
Arabic (Elmadany et al., 2022; Nagoudi et al.,
2023b; Alwajih et al., 2024; Abdul-Mageed et al.,
2020b, 2021c, 2022, 2023b, 2018, 2020c; Ke-
leg et al., 2023; Keleg and Magdy, 2023; Zaidan
and Callison-Burch, 2014; Bouamor et al., 2018).
The total number of samples is 122K. (ii)
Synthetically-generated data: As most human-
generated dialectal data comes from noisy envi-
ronments such as social media, it often results in
short texts of low quality. Thus, we use Command-
R+ to generate paragraph-based synthetic data for
Egyptian and Moroccan dialects to improve the per-
formance of our models on dialectal Arabic. We
generated 15k dialectal instances using the same
methodology as our synthetic MSA datasets de-
scribed above.
Cross-Lingual & Multilingual Datasets. To adapt
our model for cross-lingual and multilingual scenar-
ios, we incorporate the mMARCO dataset, which
provides translations of the MS MARCO dataset
into 15 languages (Bonifacio et al., 2021). To
ensure that documents correspond accurately to
their queries in different languages, we utilize spe-
cific IDs. We create 100k samples for each cross-
lingual pair and shuffle the IDs to prevent repeti-
tion, thus guaranteeing that unique data samples
are used for each language. We utilize the MIR-
ACL (Zhang et al., 2022), XOR-TyDI (Asai et al.,
2021), and Mr.TyDi (Zhang et al., 2021) datasets
as our crosslingual and multilingual resources.

3.2 Training Strategy
For Swan, we consider two models:
Swan-Small and Swan-Large. The choice
of training two models with different sizes is
driven by the need to balance performance and
computational efficiency. Swan-Small is designed
to cater to scenarios where lower computational
resources are available or when a lightweight
model is preferred for deployment on edge devices.
In contrast, Swan-Large is intended for settings
where achieving SoTA performance is paramount,
leveraging a larger parameter size to better capture
the nuances of Arabic.
Data Preprocessing. We incorporate human-
generated and synthetic datasets into our training
pipeline to ensure robust performance across vari-
ous dialects and cultural contexts. We first train on

MSA datasets, followedby fine-tuning on dialec-
tal datasets. This two-step approach ensures that
both MSA and dialectal varieties are well repre-
sented, promoting better generalization across the
full spectrum of Arabic varieties. Our dataset is
constructed with a query format, including positive
and negative samples.
Swan-Small. Built upon ARBERTv2 (Abdul-
Mageed et al., 2021b), a powerful BERT-based
model for the Arabic language. Here, our model
is trained using the InfoNCE loss (van den Oord
et al., 2019), which maximizes the similarity be-
tween related sentences while minimizing the simi-
larity between unrelated sentences. The model is
trained for five epochs on the entire dataset with
a learning rate of 5e−6 and a batch size of 128,
incorporating 15 hard negatives. Swan-Small has
164M parameters and a dimension size of 768.
Swan-Large. Swan-Large is based on ArMistral-
7B, an in-house further pretrained version of
Mistral-7B (Jiang et al., 2023)3. To train
Swan-Large, we use LoRA (Hu et al., 2021) for
parameter efficient training and InfoNCE loss for
optimization. We train the model for three epochs
on the entire dataset with a learning rate of 5e−6

and a batch size of 128, incorporating seven hard
negatives. Swan-Large has 7.2B parameters and a
dimension size of 4, 096.

3.3 Training Methodology
Given a relevant query-document pair (q+, d+),
we modify the query by appending an instructional
template to it. This process transforms the original
query q+ into a new form q+inst as defined below:

q+inst = Instruction: {task_instruction} Query:{q+}
Here, “{task_instruction}” refers to a one-

sentence description of the embedding task taken
from Table 12, which outlines the instructions for
different tasks. Using a pretrained LLM, we ap-
pend an [EOS] token at the end of both the modi-
fied query and the document. These are then fed
into the LLM to extract embeddings hq+inst

and hd+

from the vector at the last [EOS] layer. Again, train-
ing of the embedding model is conducted using the
InfoNCE loss function, which is widely recognized
for its effectiveness in learning high-quality em-
beddings. The objective is minimized using the
following formulation:

3Further details about ArMistral can be found in Ap-
pendix A.
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min

(
− log

ϕ(q+inst, d
+)

ϕ(q+inst, d
+) +

∑
ni∈N ϕ(q+inst, ni)

)

In the equation above, N denotes the set of nega-
tive samples, and ϕ(q, d) is the similarity scoring
function between a query q and a document d.

3.4 Inclusion of Hard-Negatives

To enhance the model’s performance, it is crucial
to use negative documents closely aligned with the
query’s context (Karpukhin et al., 2020; Khondaker
et al., 2022). This method allows us to observe the
impact of introducing more challenging or "hard"
negatives into the training process. We only gen-
erate hard negatives for the Arabic subset of our
training data from Section 3.1. We found that us-
ing 15 hard negatives for Swan-Small yields the
best performance, whereas for our bigger model,
Swan-Large, the model overfits a more significant
number of hard negatives, and 7 gives us the best
performance.
Impact of Hard Negatives. Hard negatives in
contrastive learning are examples that closely re-
semble correct instances but are ultimately incor-
rect. Their inclusion encourages the model to learn
finer-grained distinctions, improving its ability to
differentiate between similar but distinct classes.
The process involves converting all documents into
a vector form within the embedding space. Sub-
sequently, these document embeddings are com-
pared using the cosine similarity score to establish
their relevance to the query. Once all documents
are scored, they are sorted by their similarity to
the query. The top-ranked document is typically
the positive example, while the rest are potential
negatives. Our experiments assess the impact of
varying the hard negatives used while training our
models, Swan-Large and Swan-Small. We train
each model with different quantities of hard neg-
atives. Namely, we experiment with using hard
negatives values from the set {1, 3, 7, 15, 31}
per training instance. Swan-Small achieves its
highest performance of 56.25 with 15 hard neg-
atives. The model exhibits a general upward trend
as the number of hard negatives increases, peaking
at 15 before slightly declining at 31. This pat-
tern suggests that while additional hard negatives
initially enhance learning by introducing valuable
challenges, excessive complexity may lead to di-
minishing returns, ultimately hindering further im-

Model (HN) 1 3 7 15 31

Swan-Small 48.84 52.19 54.13 56.25 51.93

Swan-Large 59.48 59.35 60.42 59.44 59.83

Table 3: Impact of number of Hard Negatives (HN).

Task Datasets Langs Dialects Metric

RTR 36 1 4 nDCG@10
CRTR 12 7 0 nDCG@10
CLF 18 1 6 AP
BTM 11 5 8 F1
RRK 5 2 0 MAP
STS 5 1 3 Spearman Corr
CLR 4 1 0 v-measure
PairCLF 3 1 0 AP

Total 94 9 11

Table 4: Overview of our Tasks in ArabicMTEB. ∗Total
represents the unique languages.

provement. Swan-Large achieves its peak perfor-
mance of 60.42 when trained with seven hard nega-
tives, suggesting an optimal balance that enhances
learning without overloading the model. Notably,
increasing the number of hard negatives beyond
this point does not lead to further gains, indicating
a threshold where additional complexity ceases to
improve learning outcomes.

4 ArabicMTEB Benchmark

In this section, we present ArabicMTEB, a com-
prehensive Arabic-centric text embedding bench-
mark designed to evaluate text embeddings across a
wide range of tasks and scenarios. ArabicMTEB ad-
dresses the limitations of existing benchmarks that
either exclude Arabic or lack coverage of diverse
Arabic language varieties, dialects, and cultural
nuances. Our benchmark includes 94 datasets
spanning 8 distinct tasks, as summarized in Ta-
ble 4. Further details about the datasets used
in benchmark can be found in Appendix B.
ArabicMTEB was developed to provide comprehen-
sive coverage of Arabic text embedding capabili-
ties, ensuring the inclusion of MSA and other vari-
eties. It offers diverse task types, such as retrieval,
classification, and semantic similarity, to evalu-
ate embeddings holistically across different sce-
narios by incorporating novel domain-specific, di-
alectal, and country-level culturally aware datasets,
ArabicMTEB represents a more applicable and real-
istic assessment of Arabic text embeddings.
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4.1 Task Categories

ArabicMTEB categorizes evaluation datasets into
the following key task categories, with each type
providing a unique perspective on the capabilities
of text embeddings. The corresponding metadata
for each task, covering the considered number of
datasets, number of languages, number of dialects,
and evaluation metric, is presented in Table 4.
Arabic Text Retrieval. This task uses Arabic
queries to retrieve Top-k relevant documents from
a large Arabic corpus. ArabicMTEB includes 35
retrieval datasets such as XPDA (Shen et al., 2023)
and Dolphin’s long-form QA datasets (Nagoudi
et al., 2023b). Including these datasets helps evalu-
ate complex information retrieval scenarios in Ara-
bic.
Bitext Mining. This task identifies sentence-level
translations between different languages and di-
alects. ArabicMTEB includes 12 datasets spanning
various language pairs like Arabic to French and
English. This task is crucial for understanding text
embeddings’ cross-lingual and dialectal translation
capabilities.
Cross-Lingual Retrieval. This task uses Arabic
queries to retrieve documents in other languages,
such as English, German, Spanish, and Chinese.
ArabicMTEB employs the mMarco Dev set (Boni-
facio et al., 2021) and includes 11 language pairs.
Re-Ranking. This task reorders candidate doc-
uments for a query based on embedding similar-
ity scores. ArabicMTEB features five re-ranking
datasets such as MIRACL (Zhang et al., 2023),
enabling the evaluation of embeddings’ ability to
refine search results.
Semantic Textual Similarity (STS). STS mea-
sures the correlation between the embeddings of
two sentences, assessing their semantic similarity.
ArabicMTEB includes five STS datasets like STS17
and STS22 (Cer et al., 2017), along with two syn-
thetic datasets generated using GPT-4 (Details of
the creation of these datasets can be found in Ap-
pendix G).
Classification. Classification predicts labels for in-
put texts using text embeddings. ArabicMTEB com-
prises 18 multi-domain datasets, from ORCA (El-
madany et al., 2022). This task evaluates models’
ability to categorize Arabic text accurately, making
it a valuable benchmark for downstream tasks such
as sentiment analysis.
Pair Classification. This task predicts the relation-
ship between two sentences based on their embed-

dings. ArabicMTEB includes three datasets, such as
XNLI (Conneau et al., 2018).
Clustering. Clustering groups sentences into clus-
ters based on embedding similarity, evaluating un-
supervised learning performance. ArabicMTEB in-
cludes four clustering datasets, such as Arabic
News Articles and stance detection datasets from
(Baly et al., 2018).

4.2 Dialectal ArabicMTEB
Dialectal ArabicMTEB is a specialized fork of the
original ArabicMTEB, focusing exclusively on Ara-
bic dialectal datasets. This extension addresses
the unique challenges posed by the significant vari-
ations in Arabic dialects across different regions,
which have been underrepresented in NLP research.
While research on dialectal Arabic text embed-
ding has been limited, dialectal ArabicMTEB fills
this gap by providing a comprehensive collection
of 19 datasets specifically curated to evaluate em-
beddings’ performance on diverse Arabic dialects.
These datasets span multiple tasks, offering a ro-
bust framework for assessing model performance
across various dialectal contexts: (1) Bitext Min-
ing. Eight datasets covering dialects such as Al-
gerian, Egyptian, Jordanian, Lebanese, Moroccan,
Saudi, and Yemeni (Nagoudi et al., 2022; Bouamor
et al., 2014). (2) Retrieval. Five datasets focusing
on dialects from Algeria, Egypt, Morocco, and the
Gulf regions (Nagoudi et al., 2023b). (3) Classi-
fication: Five datasets for binary, regional, and
country-level dialect identification (Abdul-Mageed
et al., 2021d, 2024b; Elmadany et al., 2022; Abdul-
Mageed et al., 2021b; Ahmed et al., 2024). (4)
STS. A novel synthetic dataset for Egyptian text
similarity generated using Command-R+.

4.3 Domain-Specific ArabicMTEB
Arabic Text retrieval tasks are currently trend-
ing in real-world applications. They are utilized
across multiple fields, including healthcare, finance,
and legal sectors. Having specialized evaluation
datasets is crucial for building text embeddings
tailored to these domains. To meet this need, we
introduce domain-specific ArabicMTEB, a special-
ized fork of the broader ArabicMTEB benchmark.
Domain-specific ArabicMTEB focuses on the news,
finance, legal, medical, and general knowledge
domains, offering a closer approximation to real-
world scenarios. The creation of this benchmark in-
volves collecting Arabic documents from these spe-
cialized sources and from Arabic Wikipedia. We
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ArabicMTEB

Figure 3: Generation pipeline for our domain spe-
cific ArabicMTEB.

then segment and chunk the documents into texts
of 1, 024 tokens each. Subsequently, we randomly
select chunks and employ GPT4-Turbo (OpenAI
et al., 2024) to generate five different styles of
queries for each chunk. We filter out duplicate
and repeated queries using GPT3.5 (OpenAI et al.,
2024) to ensure a high-quality evaluation dataset.
Our evaluation data creation pipeline is visualized
in Figure 2. The resulting benchmark, which we
call ArabicMTEB-Lite, contains 10k queries and
100k documents spanning the domains described
above.

4.4 Cultural ArabicMTEB

To show that our models are culturally aware, we
have introduced Cultural ArabicMTEB, a collection
of datasets from 20 different Arab countries where
we focus on specific cultural aspects like their ge-
ography, history, etc. To construct the Cultural
ArabicMTEB, we use Arabic Wikipedia as our pri-
mary data source. For each included Arab country,
we extract articles related to that country from its
corresponding Wikipedia portal. The portal covers
multiple categories (e.g., geography, economy, his-
tory) with subcategories (e.g., local movies, food
items). This process resulted in 5K to 55K ar-
ticles per country. Next, we generate retrieval
questions and passages for each country. For this,
we use GPT-4o-mini to develop, for each passage
(from an article), a corresponding question whose
specific answer is available within the passage it-
self. Following the same methodology, but applied
to Egyptian and Moroccan dialectal versions of
Wikipedia, we generate dialectal queries and their
corresponding passages using Command-R+. Cul-
tural ArabicMTEB contains 1k queries and an av-
erage of 15k documents from various countries as
described above.

5 Evaluation

We evaluate the performance of our models,
Swan-Small and Swan-Large, across the multi-
ple proposed ArabicMTEB benchmarks and com-

pare them with existing SoTA models, including
MARBERT (Abdul-Mageed et al., 2020a), AR-
BERTv2 (Elmadany et al., 2022), CamelBERT (In-
oue et al., 2021), multilingual E5 models (Wang
et al., 2024b), and Arabic-triplet-Matryoshka-V2
(ATM-V2) (Nacar and Koubaa, 2024). Our evalua-
tion results encompasses overall ArabicMTEB (Ta-
ble 5), dialectal ArabicMTEB (Table 6), domain-
specific ArabicMTEB tasks (Table 7), and cultural
ArabicMTEB (Table 8). In these tables, the tasks
will be referred to as RTR: Retrieval, STS: Seman-
tic Textual Similarity, PairCLF: Pair Classifica-
tion, CLF: Classification, CLR: Clustering, RRK:
Reranking, and BTM: BiText Mining.
ArabicMTEB Results. Table 5 presents the overall
results of our models on the ArabicMTEB bench-
mark. Our models demonstrate top-tier
performance across a variety of NLP tasks.
Swan-Small achieves an average score of 57.33,
surpassing its main competitors, Me5-base
(55.29) and Me5-small (55.06), by a significant
margin. This model performs exceptionally
well in retrieval (58.42), classification (57.34),
and pair classification (74.93), outperforming
ATM-V2, which only scores 45.24 on average.
Similarly, Swan-Large sets a new state-of-the-art
performance with an average score of 62.45,
beating Me5-large (61.65) and even the massive
e5-mistral-7b model (59.00). The model excels
particularly in retrieval (65.63), classification
(54.89), and bitext mining (71.24), indicating
its robustness across both cross-lingual and
Arabic-centric tasks. These results validate our
training strategy of using diverse training data
covering multiple languages, where Swan-Large
outperforms its counterparts by more than five
points in cross-lingual tasks such as bitext mining.
Dialectal ArabicMTEB Results. Table 6 shows the
dialectal ArabicMTEBresults. Swan-Small scores
an average of 63.41, considerably higher than Me5-
small (45.27) and AlcLaM (30.44), showing strong
performance across retrieval (63.16) and classifica-
tion (54.52). Swan-Large achieves an impressive
average score of 70.45, leading all tasks and out-
performing the e5-mistral-7b model, which scores
60.81. The standout result is in bitext mining,
which achieves 72.10, showcasing a substantial
14-point improvement over AlcLaM (59.38). Our
models’ significant advantage in dialectal retrieval
and bitext mining is their unique training with a
combination of synthetic and human-generated di-
alectal datasets, which is absent in many competi-
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Model Size Dim. RTR STS PairCLF CLF RRK CLR BTM Avg.

Arabert-v2-base 160M 768 8.62 39.77 66.30 55.77 60.03 41.74 0.70 38.99
CamelBERT 163M 768 9.21 47.69 67.43 55.66 60.20 39.89 1.85 40.28
ARBERTv2 164M 768 15.12 47.88 68.87 56.85 62.21 39.25 1.99 41.74
ATM-V2 135M 768 37.45 55.90 70.12 46.42 61.45 32.35 12.98 45.24
text2vec 118M 384 27.69 59.37 71.41 47.94 57.76 37.26 38.32 48.54
LaBSE 471M 768 34.98 54.15 70.60 49.57 62.17 41.42 33.28 49.45
Me5-small 118M 384 55.14 56.73 73.97 50.85 67.92 42.37 38.47 55.06
Me5-base 278M 768 56.91 57.99 74.30 52.30 69.07 42.56 33.90 55.29

Swan-Small 164M 768 58.42 59.34 74.93 57.34 68.43 40.43 42.45 57.33

e5-mistral-7b 7110M 4096 56.34 57.02 70.24 53.21 66.24 39.44 70.5 59.00
Me5-large 560M 1024 64.01 59.45 75.06 53.43 70.79 42.49 66.33 61.65

Swan-Large 7230M 4096 65.63 59.10 75.62 54.89 69.42 41.24 71.24 62.45

Table 5: Overall ArabicMTEB results.

Model RTR STS CLF BTM Avg.

Arabert-v2-b 8.67 41.64 47.97 0.99 24.82
MARBERT 5.45 50.06 53.46 2.34 27.83
ARBERTv2 7.52 49.36 54.31 2.51 28.43
CamelBERT 6.92 59.48 50.69 2.65 29.93
AlcLaM 8.56 50.90 54.74 7.54 30.44
ATM-V2 36.23 74.13 34.39 11.67 39.10
Me5-base 61.60 74.84 34.87 3.30 43.65
Me5-small 57.61 76.35 34.78 12.35 45.27
Me5-large 66.88 77.02 35.47 51.08 57.61
e5-mistral-7b 72.35 77.37 35.91 57.62 60.81

Swan-Small 63.16 76.57 54.52 59.38 63.41
Swan-Large 77.03 79.22 53.46 72.10 70.45

Table 6: Dialectal ArabicMTEB results.

Model News Legal Med Fin Wiki Avg Cost ↓
Swan-Large 90.42 89.96 81.64 57.34 93.10 82.49 0.75$
Openai-3-lg 88.1 89.68 80.24 61.46 91.52 82.20 9.88$
Cohere-v3.0 85.23 86.52 63.27 42.80 90.96 73.76 7.54$

Swan-Small 81.55 78.86 70.97 42.48 80.46 70.86 0.44$
Openai-3-small 71.42 85.23 71.50 32.90 82.20 68.65 3.75$
Cohere-light-v3.0 70.32 86.83 67.68 22.68 90.34 67.57 2.55$
Openai-ada-002 65.34 81.83 71.76 39.62 76.79 67.07 1.66$

Table 7: Domain-specific ArabicMTEB results.

Model MSA-Cult Egy-DIA Mor-DIA Avg.

Swan-Large 82.19 83.55 65.35 77.03
Cohere-v3.0 81.86 82.90 65.23 76.66
OpenAI-3-large 81.49 78.45 64.90 74.95
Cohere-light-v3.0 80.75 64.82 56.84 67.47
Me5-large 78.65 61.34 60.66 66.88
OpenAI-3-Small 74.55 65.89 54.13 64.86

Swan-Small 75.56 60.35 53.56 63.16
Me5-base 74.56 56.34 53.91 61.60
Me5-small 73.81 53.56 45.45 57.61
ATM-V2 63.78 23.45 21.45 36.23
ARBERTv2 9.34 8.55 4.67 7.52
MARBERT 2.73 0.44 0.19 1.12

Table 8: Cultural ArabicMTEB results.

tive models.
Domain-Specific ArabicMTEB Results. As seen
from Table 7, Swan-Small performs exceptionally
well, with an average score of 70.86, surpassing
OpenAI’s text-embedding-3-small model (68.65)
and Cohere-light-v3.0 (67.57). Its best perfor-
mance is in the legal domain, where it scores 78.86.
Swan-Large sets a new standard in domain-specific
tasks, scoring 82.49 on average, surpassing Ope-
nAI’s text-embedding-3-large (82.20) and Cohere’s
multilingual model (73.76). The model excels
particularly in the news domain (90.42), medical
(81.64), and Wikipedia (93.10), indicating its supe-
rior generalization across varied Arabic domains.
Moreover, the cost-effectiveness of our models is
evident: using Swan-Large costs only 0.75 for 10k
documents compared to 9.88 for OpenAI’s model,
making it a more efficient solution for large-scale
deployments.
Cultural ArabicMTEB Results. Cultural
ArabicMTEB is designed to capture culturally sen-
sitive aspects of the Arabic language, such as re-
gional dialects, local idiomatic expressions, and
culturally specific knowledge. We generated
queries from country-specific Wikipedia articles,
including questions about local cuisine, traditional
practices, and historical events, which challenge
the models to capture more than just linguistic in-
formation. For example, Swan-Large achieved the
highest performance on tasks related to Egyptian
cultural queries, outperforming other models on
retrieval tasks by 1.5%. However, we observed
slightly lower performance on Moroccan dialect
queries, where cultural nuances (such as regional
vocabulary) presented a more significant challenge.
Synthetic Data Analysis. We systematically an-
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Model ArRTR DOM-RTR DIA-RTR STS PairCLF CLF RRK CLK BTM Avg.

Swan-Small 15.12 8.46 7.52 37.88 62.87 56.85 62.21 39.25 1.99 32.46
+ Arabic 28.39 39.34 15.23 41.49 70.25 51.89 68.57 39.12 18.74 41.45
+ Synthetic-MSA 31.07 40.45 53.45 55.78 74.23 54.27 68.88 39.43 18.19 48.42
+ Synthetic-DOM 32.01 49.02 49.34 52.90 75.45 54.43 67.45 40.56 17.35 48.72
+ Synthetic-DIA 31.20 38.66 59.43 51.23 72.86 57.56 66.67 37.34 19.90 48.32

Swan-Large 44.46 64.52 66.23 48.63 72.34 50.43 69.39 38.28 44.20 55.39
+ Arabic 54.53 66.43 70.34 52.93 75.24 52.54 70.49 40.21 48.35 59.01
+ Synthetic-MSA 56.34 67.90 72.89 57.89 76.90 50.21 70.92 41.76 62.34 61.91
+ Synthetic-DOM 58.42 76.54 71.65 55.92 75.19 50.19 70.21 39.33 51.23 60.96
+ Synthetic-DIA 57.09 65.06 77.03 56.90 76.42 54.89 69.32 39.41 65.56 62.41

Table 9: The impact of Synthetic Data on Swan performance. ArRTR: Arabic retrieval, DOM-RTR: Domain-
specific retrieval, and DIA-RTR: Dialectal Retrieval.

alyze the impact of synthetic data on the perfor-
mance of Swan-Small and Swan-Large using dif-
ferent combinations of training datasets. Table 9
presents the results for the base models, models
trained with additional human-generated Arabic
data, and models enhanced using synthetic sub-
sets such as MSA, domain-specific, and dialectal
data. When comparing the initial Swan-Small (av-
erage score of 32.46) to its version trained with syn-
thetic MSA data, we observe a significant increase
in average performance to 48.42, representing an
improvement of more than 16 points. Similarly,
Swan-Large benefits from a 6.52-point boost in
average performance (from 55.39 to 61.91) with
the inclusion of synthetic MSA data.

6 Conclusion

In this paper, we introduced Swan-Small and
Swan-Large, along with the comprehensive
ArabicMTEB benchmark for evaluating Arabic text
embeddings. Our models demonstrate outstand-
ing performance, benefiting from the strategic use
of hard negatives and synthetic data in training.
The evaluation across multiple benchmarks demon-
strates that both Swan-Small and Swan-Large set
new standards in Arabic-centric NLP tasks. They
outperform existing SoTA models in both cross-
lingual and Arabic-specific tasks while being cost-
effective and capable of understanding cultural con-
text—making them ideal for real-world applica-
tions in diverse Arabic language settings.

7 Limitations

While the development of the Swan models and the
introduction of ArabicMTEB mark significant ad-
vancements in Arabic text embeddings, there are
a number of limitations to consider. For exam-
ple, although synthetic data significantly enhances

model performance, it can introduce biases due to
the reliance on specific patterns in the generated
content. We ensured our synthetic data generation
diversity by varying the data sources and generat-
ing dialectal data for multiple regions, including
Egypt, Morocco, and the Gulf states, to mitigate
this. We also analyzed our models by examining
whether MSA data received higher accuracies in re-
trieval tasks in Table 9. Further, our synthetic data
generation pipeline was subjected to human verifi-
cation for correctness and balance across cultural
contexts.

8 Ethical Statement

The societal implications of deploying dialect-
aware models, such as Swan, require careful con-
sideration. While these models can bridge gaps in
NLP for Arabic-speaking regions, there is a risk of
inadvertently reinforcing biases or language hierar-
chies, particularly in areas where particular dialects
are stigmatized or underrepresented. For instance,
users in communities with dialects associated with
lower socioeconomic status may feel marginalized
if their dialect is not adequately supported. To
mitigate these concerns, we have prioritized the
inclusion of low-resource dialects and ensured that
our synthetic data generation pipeline accounts for
dialectal diversity. Additionally, future versions of
models should include further dialectal balancing,
specifically focusing on underrepresented commu-
nities.

Importantly, all research and development activ-
ities for the Swan models and ArabicMTEB bench-
mark were conducted with a commitment to ethi-
cal standards. Data collection and usage adhered
to privacy and confidentiality norms, ensuring no
sensitive information was utilized without proper
anonymization and consent.
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A ArMistral Training

ArMistral, is an autoregressive pretrained language
model based on Mistral-7B.
Pretraining data We further pretrain it on a large
and diverse Arabic dataset, including all categories
of Arabic, namely Classical Arabic (CA), Dialectal
Arabic (DA), and MSA. This data is aggregated
from various sources: AraNewsv2 (Nagoudi et al.,
2020), El-Khair (El-Khair, 2016), Gigaword,6 OS-
CAR (Suárez et al., 2019), OSIAN (Zeroual et al.,
2019), 101 Billion arabic words (Aloui et al.,
2024a), Wikipedia Arabic, and Hindawi Books.7

We also derived ArabicWeb22 (A) and (B) from
the open source Arabic text 2022.8 This pretrain-
ing dataset was cleaned, filtered and deduplicated
using Bhatia (2023). We have also ensured that the
model is pretrained in multiple domains, enhancing
its results as seen in Table 10.
Instruction Finetuning. To enhance the capa-
bilities of our ArMistral, we instruct-tuning it

6LDC Catalog Link
7OpenITI corpus (v1.6).
8ArabicText-2022 data
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on three datasets: Alpaca-GPT4, Evol-instruct,
and ShareGPT extracted from MultilingualSIFT
datasets (Chen et al., 2023).
Alignment Dataset. We collected an alignment
dataset from Quora and Mawdoo websites and then
we took the gold answers as the choosen and we
generated the rejected using AceGPT-7B (Huang
et al., 2024).
Results. As seen from Table 10, Our ArMistral-
Chat model outperforms all existing Arabic LLMs.

B Datasets overview

The Table 11 provides a comprehensive summary
of the various datasets utilized in the study. It
categorizes datasets based on their type, such as
Reranking, Bitext Mining, Retrieval, Crosslingual
Retrieval, STS, Pair Classification, Clustering, and
Classification. Each entry specifies the dataset
name, language, citation, and category, reflecting
the diversity and scope of data sources for evaluat-
ing the model’s performance across different tasks
and linguistic contexts.

C Polydedupe: versatile cleaning Pipeline

PolyDeDupe is a Python package designed for effi-
cient and effective data deduplication across over
100 languages. It supports syntactic and seman-
tic deduplication, making it a versatile tool for
high-quality data preprocessing in NLP tasks. Key
features include customizable Jaccard similarity
thresholds, a performance speed twice that of other
tools like SlimPajama, and support for deduplicat-
ing instruction tuning data. It can be easily installed
via pip to deduplicate datasets, display original and
filtered dataset sizes, and identify duplicate clus-
ters. Supported languages span Western, Central,
and Eastern European languages, Slavic languages
using Cyrillic script, Greek, various Arabic and
Devanagari script languages, and more.

D Prompts for evaluation

Table 12 provides an overview of the prompts used
for evaluating various tasks. It includes instructions
for Reranking, Bitext Mining, Retrieval, Crosslin-
gual Retrieval, Semantic Textual Similarity (STS),
Pair Classification, Clustering, and Classification.
Each entry outlines the specific task and the cor-
responding instruction used to guide the model’s
evaluation process.

Figure 4: Latency vs Performance.

E Full Leaderboard

Table 13 presents the performance comparison
of various models on different tasks within the
ArabicMTEB benchmark. It includes metrics for
Retrieval, Semantic Textual Similarity (STS), Pair
Classification (PairCLF), Classification (CLF), Re-
ranking, Clustering, and Bitext Mining (BTM). The
table lists each model, its dimensionality, and the
scores for each task, along with an overall aver-
age score. The results highlight the strengths and
weaknesses of each model across a range of tasks,
providing a comprehensive overview of their per-
formance.

F Inference Latency.

Inference latency is very critical in deploying ma-
chine learning models, especially in real-time ap-
plications with crucial response time. It refers to
the time taken by a model to predict received in-
put. In the context of text embedding models such
as Swan-Small and Swan-Large, lower latency is
particularly valuable for user-facing services that
rely on fast processing of natural language input,
such as chatbots and search engines. From Fig-
ure 4, we find that Swan-Large, despite its larger
size indicated by a larger bubble, has optimized in-
ference times due to architectural efficiencies, and
Swan-Small strikes the perfect balance between
size, performance, and latency. We compare the
performance of the models from Table 5.

G STS Dataset Creation:

The Arabic Semantic Textual Similarity (Arabic-
STS) datasets was developed to facilitate research
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Model ARC Hellaswag Exams MMLU Truthfulqa ACVA AlGhafa Average

ArMistral-7B-Chat 43.20 55.53 45.54 43.50 52.44 77.06 35.57 50.41
Jais-13b-chat 41.10 57.70 46.74 42.80 47.48 72.56 34.42 48.97
AceGPT-13B-chat 43.80 52.70 42.09 41.10 49.96 78.42 31.95 48.57
AceGPT-13B-base 39.90 51.30 39.48 40.50 46.73 75.29 30.37 46.22
AraLLama-7B-Chat 39.45 50.23 38.24 41.03 50.44 70.45 32.54 46.05
ArMistral-7B-Base 41.50 52.50 38.92 37.50 51.27 69.64 30.24 45.94
Jais-13b-base 39.60 50.30 39.29 36.90 50.59 68.09 30.07 44.98
AceGPT-7B-chat 38.50 49.80 37.62 34.30 49.85 71.81 31.83 44.81
AraLLama-7B-Base 38.40 50.12 38.43 40.23 45.32 69.42 31.52 44.78
AceGPT-7B-base 37.50 48.90 35.75 29.70 43.04 68.96 33.11 42.42

Table 10: Comparison of ArMistral with other Arabic LLMs.

in semantic similarity for the Arabic language. The
dataset is derived from the Arabic Billion Words
(Aloui et al., 2024b) corpus, which serves as a
foundation for extracting a diverse collection of
sentence pairs. Each pair is annotated with a sim-
ilarity score that captures the degree of semantic
equivalence between the sentences. The dataset
generation process was guided by the capabilities
of the GPT-4 model developed by OpenAI, ensur-
ing that the resulting sentence pairs are of high
quality and reflect nuanced linguistic characteris-
tics. The creation involved several steps, including
selecting representative sentences from the corpus,
generating semantically varied sentence pairs, and
annotating similarity scores using both automated
methods and human reviewers to maintain consis-
tency and reliability.

H Country level Cultural Evaluation
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Task Dataset Type Language Citation Size

BitextMining Darija S2S Moroccan Arabic Dialect to English (Nagoudi et al., 2023b) 2000
BitextMining Narabizi S2S Arabizi to French (Nagoudi et al., 2023b) 144
BitextMining Mt_en2ar S2S English to MSA (Nagoudi et al., 2023b) 4000
BitextMining Mt_fr2ar S2S French to MSA (Nagoudi et al., 2023b) 4000
BitextMining Mt_es2ar S2S Spanish to MSA (Nagoudi et al., 2023b) 4000
BitextMining Mt_ru2ar S2S Russian to MSA (Nagoudi et al., 2023b) 4000
BitextMining Cs_dz_fr S2S Algerian Arabic Dialect to French (Nagoudi et al., 2023b) 200
BitextMining Cs_eg_en S2S Egyptian Arabic Dialect to English (Nagoudi et al., 2023b) 200
BitextMining Cs_jo_en S2S Jordanian Arabic to English (Nagoudi et al., 2023b) 200
BitextMining Cs_ma_fr S2S Moroccan Arabic to French (Nagoudi et al., 2023b) 200
BitextMining Cs_ps_en S2S Palestinian Arabic to English (Nagoudi et al., 2023b) 200
BitextMining Cs_ye_en S2S Yemeni Arabic to English (Nagoudi et al., 2023b) 200

Classification MassiveIntent S2S Multilingual (Arabic subset) (FitzGerald et al., 2022) 100
Classification MassiveScenario S2S Multilingual (Arabic subset) (FitzGerald et al., 2022) 100
Classification OrcaSentiment S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaDialect_region S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaDialect_binary S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaDialect_country S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaAns_claim S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaMachine_generation S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaAge S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaGender S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaAdult S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaDangerous S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaEmotion S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaHate_speech S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaOffensive S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaIrony S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaSarcasm S2S Arabic (Elmadany et al., 2022) 5000
Classification OrcaAbusive S2S Arabic (Elmadany et al., 2022) 5000

Clustering Arabic_news P2P Arabic Our Paper 2500
Clustering Arabic_topic S2S Arabic Our Paper 30
Clustering Arabic_baly_stance P2P Arabic (Elmadany et al., 2022) 1000
Clustering Arabic_baly_stance S2S Arabic (Elmadany et al., 2022) 100
PairClassification Arabic_xnli S2S Arabic Our Paper 538
PairClassification Arabic_sts S2S Arabic Our Paper 1256
PairClassification Arabic_mq2q S2S Arabic Our Paper 244

Reranking Miracl_ar S2P Multilingual (Arabic subset) (Zhang et al., 2023) 750
Reranking Mmarco_arabic S2P Arabic Our Paper 3000
Reranking MedicalQA_arabic S2P Arabic Our Paper 4350
Reranking Mmarco_en2ar S2P English to MSA Our Paper 500
Reranking Mmarco_ar2en S2P MSA to English Our Paper 500

Retrieval MultiLongDoc S2P Multilingual (Arabic subset) MDQA
Retrieval XPQA S2S Multilingual (Arabic subset) XPQA
Retrieval Mintaka S2S Multilingual (Arabic subset) Mintaka
Retrieval Lareqa S2P Arabic (Nagoudi et al., 2023b) 220
Retrieval Dawqs S2S Arabic (Nagoudi et al., 2023b) 318
Retrieval Exams S2S Arabic (Nagoudi et al., 2023b) 2600
Retrieval Mkqa S2S Arabic (Nagoudi et al., 2023b) 340
Retrieval Mlqa S2S Arabic (Nagoudi et al., 2023b) 517
Retrieval Arcd S2S Arabic (Nagoudi et al., 2023b) 693
Retrieval Tydiqa S2S Arabic (Nagoudi et al., 2023b) 5700
Retrieval Xsquad S2S Arabic (Nagoudi et al., 2023b) 5700
Retrieval Crosslingual_ar2de S2P MSA to German Our Paper 1831
Retrieval Crosslingual_ar2en S2P MSA to English Our Paper 1831
Retrieval Crosslingual_ar2es S2P MSA to Spanish Our Paper 1831
Retrieval Crosslingual_ar2hi S2P MSA to Hindi Our Paper 1831
Retrieval Crosslingual_ar2vi S2P MSA to Vietnamese Our Paper 1831
Retrieval Crosslingual_ar2zh S2P MSA to Chinese Our Paper 1831
Retrieval Crosslingual_de2ar S2P German to MSA Our Paper 1831
Retrieval Crosslingual_en2ar S2P English to MSA Our Paper 1831
Retrieval Crosslingual_es2ar S2P Spanish to MSA Our Paper 1831
Retrieval Crosslingual_hi2ar S2P Hindi to MSA Our Paper 1831
Retrieval Crosslingual_vi2ar S2P Vietnamese to MSA Our Paper 1831
Retrieval Crosslingual_zh2ar S2P Chinese to MSA Our Paper 1912
Retrieval MoroccoCultural S2P Arabic Our Paper 100
Retrieval SyriaCultural S2P Arabic Our Paper 100
Retrieval LibyaCultural S2P Arabic Our Paper 100
Retrieval LebanonCultural S2P Arabic Our Paper 100
Retrieval QatarCultural S2P Arabic Our Paper 100
Retrieval SudanCultural S2P Arabic Our Paper 100
Retrieval AlgeriaCultural S2P Arabic Our Paper 100
Retrieval MauritaniaCultural S2P Arabic Our Paper 100
Retrieval TunisiaCultural S2P Arabic Our Paper 100
Retrieval IraqCultural S2P Arabic Our Paper 100
Retrieval EgyptCultural S2P Arabic Our Paper 100
Retrieval SomaliaCultural S2P Arabic Our Paper 100
Retrieval UAE_Cultural S2P Arabic Our Paper 100
Retrieval OmanCultural S2P Arabic Our Paper 100
Retrieval KuwaitCultural S2P Arabic Our Paper 100
Retrieval BahrainCultural S2P Arabic Our Paper 100
Retrieval Saudi_ArabiaCultural S2P Arabic Our Paper 100
Retrieval JordanCultural S2P Arabic Our Paper 100
Retrieval PalestineCultural S2P Arabic Our Paper 100
Retrieval YemenCultural S2P Arabic Our Paper 100
Retrieval MoroccoDIA S2P Moroccan Arabic Dialect Our Paper 100
Retrieval EgyptDIA S2P Egyptian Arabic Dialect Our Paper 100
Retrieval NewsDomainSpecific S2P Arabic Our Paper 1000
Retrieval LegalDomainSpecific S2P Arabic Our Paper 1000
Retrieval MedicalDomainSpecific S2P Arabic Our Paper 1000
Retrieval FinanceDomainSpecific S2P Arabic Our Paper 1000
Retrieval WikipediaDomainSpecific S2P Arabic Our Paper 1000

STS STS17 S2S Arabic (Cer et al., 2017) 8060
STS STS22 P2P Arabic (Semenov et al., 2023) 500
STS Arabic_sts S2S Arabic Our Paper 750
STS Arabic_stsb_multi_dialect S2S Arabic Dialectal Our Paper 1500
STS Arabic_sts P2P Arabic Our Paper 500

Table 11: Overview of ArabicMTEB datasets. S2S: Sentence to Sentence. S2P: Sentence to Paragraph. P2P:
Paragraph to Paragraph.
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Task Instructions

Reranking Given an Arabic search query, retrieve web passages that answer the question in {Lang}. Query:{query}.
BitextMining Retrieve parallel sentences in {Lang}.
Retrieval Given an Arabic search query, retrieve web passages that answer the question. Query:{query}.
Crosslingual Retrieval Given an Arabic search query, retrieve web passages that answer the question in {Lang}. Query:{query}.
STS Retrieve semantically similar text. Text: {text}.
Pair Classification Retrieve texts that are semantically similar to the given text. Text: {text}.
Clustering Identify the topic or theme of the given news article. Article:{article}.
Classification Classify the text into the given categories {options}.

Table 12: Prompts used for evaluation.

Model Dim. Retrieval STS PairCLF CLF Re-rank Cluster BTM Avg

Number of datasets 23 5 3 18 5 4 12 70

Swan-Large 4096 65.63 59.10 75.62 52.55 69.42 41.24 71.24 62.11
multilingual-e5-lg 1024 64.01 59.45 75.06 53.43 70.79 42.49 66.33 61.65
e5-mistral-7b-inst 4096 56.34 57.02 70.24 53.21 66.24 39.44 70.50 59.00
Swan-Small 768 58.42 58.44 74.93 57.34 68.43 40.43 42.45 57.21
multiling-e5-b 768 56.91 57.99 74.30 52.30 69.07 42.56 33.90 55.29
multiling-e5-s 384 55.14 56.73 73.97 50.85 67.92 42.37 38.47 55.06
LaBSE 768 34.98 54.15 70.60 49.57 62.17 41.42 33.28 49.45
text2vec-base 384 27.69 59.37 71.41 47.94 57.76 37.26 38.32 48.54
ARBERTv2 768 15.12 37.88 62.87 56.85 62.21 39.25 1.99 39.45
CamelBERT-msa 768 9.21 47.69 67.43 55.77 60.20 39.89 1.85 40.29
arabertv02-large 1024 7.34 34.26 63.63 54.32 56.71 37.26 10.97 37.78
arabertv02-base 768 8.62 39.77 66.30 55.77 60.03 41.74 0.70 38.99
CamelBERT-mix 768 7.19 46.47 67.23 56.68 57.50 38.72 0.41 39.17
MARBERTv2 768 5.88 45.21 70.89 54.89 58.64 40.81 0.45 39.54
ARBERT 768 8.07 29.89 61.86 56.92 61.09 37.10 2.28 36.74
CamelBERT-da 768 4.07 41.05 65.82 53.75 54.44 37.63 0.31 36.72
MARBERT 768 2.22 40.62 66.46 54.35 53.09 36.33 0.40 36.21
CamelBERT-ca 768 2.74 36.49 62.26 46.26 51.34 35.77 0.09 33.56

Table 13: ArabicMTEB Results.

Model Swan-lg Me5-lg Coh-lt-v3.0 Swan-s OpenAI-3-lg Coh-v3.0 Me5-s Me5-b ATM-V2 ARBERTv2 MARBERT

Algeria 89.34 93.34 89.44 90.45 86.95 88.99 91.23 90.66 84.99 18.27 1.50
Bahrain 93.71 93.77 93.52 86.48 91.98 92.40 93.08 89.04 90.49 27.48 5.74
Egypt 98.34 94.58 91.37 95.66 91.45 87.81 93.02 91.65 88.45 11.54 1.63
Iraq 92.45 90.90 86.98 88.34 92.43 87.83 89.02 90.78 81.22 17.34 1.92
Jordan 92.34 92.79 90.07 89.70 94.56 91.18 93.67 92.25 87.95 27.46 4.50
Kuwait 93.45 96.34 96.10 90.44 88.53 92.51 96.17 94.94 89.97 36.67 4.92
Lebanon 95.66 93.05 92.38 90.45 90.23 91.04 91.92 92.85 87.14 22.55 1.82
Libya 89.56 88.43 87.27 85.45 89.66 85.75 87.21 85.32 79.95 28.88 2.46
Mauritania 92.44 92.92 92.61 89.45 90.31 92.05 20.99 3.32 0.63 0.50 0.00
Morocco 90.34 85.49 83.19 86.34 83.56 85.47 81.73 86.59 4.75 0.32 0.00
Oman 94.45 94.26 92.37 91.98 92.45 92.61 93.00 93.04 84.21 11.24 3.43
Palestine 90.45 90.67 87.50 91.18 87.45 83.33 85.22 86.49 77.83 27.25 3.63
Qatar 98.79 93.44 91.80 92.35 95.66 89.98 91.20 90.49 85.50 29.15 7.00
Saudi_Arabia 95.34 93.49 92.98 91.47 90.45 92.12 92.72 91.47 86.48 25.06 2.50
Somalia 90.23 94.78 93.67 88.34 89.55 92.30 21.25 2.50 20.81 2.62 0.00
Sudan 92.36 91.99 86.90 90.89 91.45 90.72 89.49 87.60 82.47 24.51 2.50
Syria 91.46 91.83 90.56 90.45 90.56 86.97 88.69 88.75 87.45 13.81 3.63
Tunisia 94.57 94.64 93.46 95.54 85.34 90.92 93.79 92.04 84.40 25.04 4.15
UAE 96.09 95.14 93.41 94.12 97.66 93.53 94.45 91.56 91.79 31.92 2.00
Yemen 92.34 91.24 89.40 92.12 89.54 89.70 88.25 89.89 83.08 5.29 1.29

Avg. 93.19 92.65 90.75 90.56 90.49 89.86 83.81 81.56 73.98 19.34 2.73

Table 14: Country-level cultural evaluation.
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