
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 2415–2423

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

On Localizing and Deleting Toxic Memories in Large Language Models

Anubrata Das 1, Manoj Kumar2, Ninareh Mehrabi2, Anil Ramakrishna2,
Anna Rumshisky2,3, Kai-Wei Chang2,4, Aram Galstyan2, Morteza Ziyadi 2, Rahul Gupta 2

1University of Texas at Austin, 2Amazon AGI, 3University of Massachusetts, Lowell,
4University of California, Los Angeles,

Correspondence: anubrata.das@utexas.edu

Warning: This paper contains offensive language.

Abstract

Ensuring that large language models (LLMs)
do not generate harmful text is critical for their
safe deployment. A common failure mode in-
volves producing toxic responses to otherwise
innocuous prompts. While various detoxifica-
tion methods have been proposed, the underly-
ing mechanisms that drive toxic generation in
LLMs are not yet fully understood. Our work
aims to provide a mechanistic understanding
of toxic generation against innocuous-seeming
adversarial prompts through the lens of mem-
ory localization. We find evidence of local-
ization of toxic memories in the early Multi-
layer Perceptron (MLP) layers of GPT-2-XL.
We further investigate the effects of editing
and deleting these toxic memories in MLP lay-
ers to reduce toxic generation. Editing signifi-
cantly reduces toxic generation, from 62.86%
to 28.61%. However, this reduction comes
with a trade-off in generation quality as perplex-
ity increases from 78.18 on GPT2-XL against
the adversarial prompts to 106.06 after edit-
ing. Localization-informed deletion achieves a
better toxicity-perplexity tradeoff compared to
random early layer editing, which reduces toxi-
city but leads to greater perplexity increases.

1 Introduction

Detoxifying natural language generations is cru-
cial for safe use of Large Language Models
(LLMs) (Bai et al., 2022). One specific concern is
that LLMs could generate toxic completions from
innocuous prompts and expose users to harmful
text. Current strategies to mitigate toxicity include
finetuning (Meng et al., 2024; Siegelmann et al.,
2024), removing toxic data from the pretraining cor-
pus, and using reinforcement learning from human
feedback (RLHF) to reduce harmful generations.
While these methods have been shown to reduce
toxicity, prior work also shows that these methods
often suppress toxic generation without addressing
the root cause at the model parameter level (Lee

et al., 2024; Wang et al., 2024).
Transformer-based language models are known

to memorize training data (Carlini et al., 2023).
Prior work shows that memories in LLMs can be
localized to specific layers and model parameters
(Meng et al., 2022; Geva et al., 2022). Research
on specifically how toxicity is localized in LLMs
is limited. We investigate if memorization plays a
role in toxic generation against adversarial prompts
and to the extent toxic memories can be localized
to specific layers in a model. We further investigate
to what extent understanding the localization of
toxicity within models can be valuable for altering
the parameters responsible for toxic generations
through model editing (Meng et al., 2023). Recent
success in localizing and editing factual knowledge
opens natural follow-up questions: How can we ap-
ply this paradigm of locate-then-edit to responsible
language generation? To what extent would such a
paradigm be effective in subjective domains such
as harmful generations?

This work outlines a procedure for tracing tox-
icity in transformer models, which are fundamen-
tal to many of today’s powerful language models.
Multi-layer Perceptrons (MLPs), a component of
transformers, can be modeled as linear associative
memory (Anderson, 1972; Kohonen, 1972), where
the weights of an MLP layer store key-value pairs.
Using causal tracing (Meng et al., 2022), we ex-
amine the extent to which toxicity is localized in
specific MLP layers in GPT2-XL. We also explore
whether applying MEMIT-style editing to these
localized MLP layers can detoxify model gener-
ations. Additionally, we apply MEMIT to delete
toxic memories in MLPs.

We find evidence of toxicity localization in the
early layers, particularly the first six layers of
GPT2-XL. When using localization to inform edit-
ing targets, we find that editing random layers leads
to better detoxification than localization-informed
editing (similar to Hase et al. (2023)’s findings for

2415

mailto:anubrata.das@utexas.edu

0 5 10 15 20 25 30 35 40
single restored layer within GPT

if
 you

 grab*
 a*

 woman*
 by

 the

Impact of restoring state after corrupted input

0.1

0.2

0.3

0.4

p() 0 5 10 15 20 25 30 35 40
center of interval of 10 restored Attn layers

if
 you

 grab*
 a*

 woman*
 by

 the

Impact of restoring Attn after corrupted input

0.10

0.15

0.20

p() 0 5 10 15 20 25 30 35 40
center of interval of 10 restored MLP layers

if
 you

 grab*
 a*

 woman*
 by

 the

Impact of restoring MLP after corrupted input

0.10

0.15

0.20

0.25

p()

Figure 1: This figure is a representative causal tracing plot with obfuscated chunks on the X-axis. It captures the
AIE of each layer on the output. We observe evidence of memorization in the early MLP layers, suggesting that
these layers play a role in memorizing toxicity. Note that we hide the toxic completion token from the graphs to
avoid using explicit language.

factual knowledge). For example, we observed the
highest toxicity reduction from 62.86% to 28.61%
after editing random layers. However, this ap-
proach increases the perplexity score and decreases
generation coherence in GPT-2-XL. In contrast, we
show that localization-informed deletion leads to
a better toxicity-perplexity trade-off than editing
random early layers.

2 Method
In this section, we provide the setup for our key
research objectives, to what extent do we find
evidence of localization for toxic generation in
MLP layers? Furthermore, we investigate a re-
lated question, to what extent does MEMIT-style
editing generalize to detoxification of natural
language generation? For localization, we formu-
late a way to perform causal tracing of toxic gener-
ation. Due to space constraints, we have provided
a background on causal tracing in the Appendix A.

Formulation Unlike factual knowledge, toxicity
is subjective, and thus, we need to define what it
means to localize toxic knowledge. Meng et al.
(2022, 2023) characterize factual knowledge as a
tuple of three: (subject, relationship, object). Any
factual question can be presented in this format.
For example, The Space Needle is located in Seat-
tle can be presented as (the space needle, located in,
Seattle). Now for a prompt The Space Needle is lo-
cated in, MEMIT looks for the key-value pair (the
space needle, located in):(Seattle) and performs the
edits in an MLP storing this key-value pair.

However, toxicity is more pervasive, so breaking
them down into (subject, relation, object) tuples
may not work well. Instead, we identify chunks
in a prompt that might elicit a toxic response in
a model. We achieve this through the following
two-step process. First, we use an off-the-shelf tool
to obtain all the chunks for the prompt. Second,
we measure the toxicity of each chunk as per the

Perspective API1 toxicity classifier and then select
the one with the highest toxicity score. So, instead
of (subject, relation) as the key, we use the most
toxic chunk as the key for the memory we want to
edit 2. Now, as per the key-value memory pair’s
value, we consider the toxic generation’s first to-
ken3. In factual editing, the target is to modify the
tuple (subject, relation, object) with a (subject, re-
lation, new-object). For detoxification, instead of
a new object, we provide either a) the first token
of a non-toxic response or b) a canned non-toxic
response (i.e., Sorry, I cannot engage with provoca-
tive prompts).

Deleting Toxic Memories Editing provides an
alternative generation path to detoxify against ad-
versarial prompts. However, a more intuitive ap-
proach would be to delete the toxic memory. For
effective editing, we need an alternative, non-toxic
completion to edit the response for any prompt.
Deleting instead of editing alleviates this need to
find an appropriate alternative generation.

Given an adversarial prompt, the most likely
completion might include explicit language, mak-
ing it a toxic sentence. On the other hand, other
generation paths for the same prompt may exist
where such explicit tokens are not present and thus
can qualify as a non-toxic response.

Deleting a memory can be achieved by encour-
aging the model to minimize the probability of
a token generation that is deemed toxic, thereby
deleting the toxic key-value pair and nudging the
model to follow a different, non-toxic generation
path. Given a prompt xj and the first token for

1https://perspectiveapi.com/
2We have experimented with several different selection

schemes, e.g., the entire prompt, the subject in the prompt,
the first chunk of the prompt, the last chunk, and the chunk
most semantically similar to the whole prompt. However, the
top-toxic chunk is the most intuitive for this task

3We also experimented with the entire generations; how-
ever, the edits often led to nonsensical content within the
generations.

2416

https://perspectiveapi.com/

Figure 2: The figure shows the trade-off between per-
plexity and toxicity for various editing strategies com-
pared to the base model. It highlights that editing ran-
dom layers results in the lowest toxicity but increases
perplexity significantly. On the other hand, edits in-
formed by Causal Tracing (CT) achieve a more balanced
reduction in both perplexity and toxicity.

a toxic generation path as oj , we minimize the
probability of generating the token oj . This is a
modification to the editing objective proposed by
MEMIT (Meng et al., 2023) (see Equation 1 in the
appendix) and introduces two changes: (i) instead
of optimizing for a new target token, we use the
existing token as the target, and (ii) we reverse the
optimization objective, minimizing the probability
of generating the existing token rather than max-
imizing the probability of generating a new one.
Similar to Meng et al. (2022), an additional term
is added to ensure the model does not drift away
from the original parameters. This is implemented
using the KL divergence between the model out-
puts before and after the deletion with a standard
set of prompts (denoted by x). Some prior work
has tried a similar formulation in domains such as
factual knowledge removal (Hase et al., 2023).

zi = hLi + argmin
δi

(1

n

n∑

j=1

logPG(hL
i +δi)

[oj |xj]

+λklDKL(Pθ[·|x] ∥ Pθ[·|x, δi])
)

Given this setup, we investigate the following
research questions: (1) How can we localize toxic-
ity in autoregressive generative models? (2) How
can we effectively edit toxic beliefs, leading to re-
duced toxic generation, and what is the most effec-
tive strategy for reducing toxicity through editing
without compromising generation quality? 3) How
does deleting compare to editing as a detoxification
strategy?

Perplexity
(Edited Prompts)

Toxic percentage
(Generation only)

GPT2-XL 78.1875 62.86

Edit Strategy
Random Single layer (avg) 90.325 58.166
Random Multiple Layers 129 45.78
Random Top-K Single (avg) 90.1875 58.12
Random Top-K Multiple 133 57.73
CT Informed Single Layer 86.25 59.23
CT Informed Multiple Layer 98.875 57.4
Random Single layer (avg) 88.13 47.53
Random Multiple Layers 106.0625 28.61
Random Top-K Single (avg) 91.85 54.1
Random Top-K Multiple 133 37.37
CT Informed Single Layer 88.625 56.24
CT Informed Multiple Layer 105.625 53.42

Table 1: Toxicity and Perplexity across different editing
strategies. Random single-layer edits are averaged over
five runs. For the top half of the table, we use the first
word of a non-toxic completion given the prompts as
the edit target. We use a canned response as the edit
target in the bottom half.

3 Experiments and Results

Dataset We utilize an adversarial dataset designed
to elicit toxic responses in language models named
RealToxicityPrompt (Gehman et al., 2020). This
is an adversarial dataset designed to elicit toxic re-
sponses in language models. We select a subset of
the prompts with a toxicity score < 0.5 and gener-
ations with an average toxicity score > 0.5 (over
p = 25 generations). We filter the dataset to specif-
ically find innocuous-seeming adversarial prompts
that lead to toxic generation as a particularly chal-
lenging subset to detoxify. After filtering, we have
∼ 1298 prompts that lead to toxic generations.

Casual Tracing In causal tracing, when the
prompt does not contain a toxic token, how do
we identify which tokens to obfuscate in the cor-
rupted run? As discussed in section 2, we first parse
the prompts and identify chunks. Then, we pick
the most toxic chunk and obfuscate the tokens in
the most toxic chunk. We have used an AWS P4d
instance for performing all the experiments 4. A
representative result is shown in Figure 1, where we
notice that there is memorization of the key-value
pairs at the first eight MLP layers has the highest
average indirect effect. We then perform CT for all
1298 prompts and aggregate their average indirect
effect (see figure 4 in Appendix). This aggregation
provides evidence that the first six layers have the
highest average indirect effect for most prompts.
This evidence informs our editing strategy.

Editing Prior work has shown evidence that

4https://aws.amazon.com/ec2/instance-types/
p4/

2417

https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p4/

Figure 3: Comparison of Edit vs. Delete in Random Top-k vs. CT-Informed Approaches: This figure illustrates the
perplexity-toxicity trade-off for CT-informed and random top-k. Notably, CT-informed deletions perform better
than CT-informed edits in achieving a favorable trade-off. Conversely, when applying random top-k selections, edits
surpass deletions, suggesting that CT is more informative for targeted deletions, while random early-layer edits lead
to more reduction in toxicity.

causal tracing informed editing may not always
lead to the best editing outcome (Hase et al., 2023)
and can impact the model’s generations (Gu et al.,
2024). To that end, we investigate different vari-
ables to identify the best editing strategy. The
experimental variables we consider are: a) Layer
selection - which layers to select for editing? -
Random layers, Top-K layers (Randomly selected
layers limited to first K layers5), Causal Tracing In-
formed layers (CT-Informed) b) Number of Layers
- How many layers to edit? - Single Layer, Mul-
tiple Layers c) Edited response - What should the
model generate? - Canned Response, i.e., “I cannot
engage with Toxic Prompts”, Non-toxic response
from ChatGPT. The assumption is that ChatGPT is
a model that often leads to a non-toxic response to
adversarial prompts. We evaluate the edited model
in terms of two metrics: a) the percentage of toxic
generations that have toxicity score > 0.5 given a
particular prompt, and b) the perplexity score of
the model against the dataset we have used. Note
that since RealToxicityPrompts is an adversarial
dataset, the perplexity score of the model on the
subset of this dataset is higher than the perplexity
on datasets such as Wikipedia data.

Results are reported in table 1. There is no clear
strategy for editing that outperforms the others. We
see that editing randomly selected layers leads to
the most drop in the percentage of toxic generation.
However, when random layers are edited, model
perplexity increases. CT-informed layers have the

5For GPT2-XL we consider K=15

least increase in perplexity scores. We find an in-
herent trade-off between generation quality and
editing toxicity (shown in figure 2). Even though
the results may indicate that the random edits are
performing seemingly better, we observed degen-
eration for random edits (shown in Appendix C).
To formally verify the generation qualities, we also
evaluate the coherence of the generations after edit-
ing the model. We utilize GPT-3.5 for an automated
evaluation following the protocol proposed by Liu
et al. (2023) on a subset of the prompts and their
generations. CT-informed edits have better gener-
ation quality than random or top-k edits (results
shown in the appendix, table 3). However, editing
top-k layers provides the best trade-off, i.e., a com-
parable generation quality score to CT-informed
editing and a toxicity score closer to random.

Edit/Delete Strategy Perplexity on
prompts

% Toxicity
on 100 ∗ 10
Generations

Coherence on
100 ∗ 10
Generations

Edit
Random Top-K
Target - Canned Response

133 27.25 3.19

Edit
CT Informed
Target - Canned Response

105.63 31.27 3.29

Delete Random Top-k 125.94 19.41 3.69
Delete CT Informed 102.38 22.25 3.82

Table 2: Comparison between deleting and editing
strategies on ∼ 100 prompts.

Deletion Our experiments on a randomly se-
lected 100 prompts show that deletion performs
better than editing as it has the lowest perplexity
and leads to reduced toxicity, as shown in table 2.
Similar to editing, we observe a trade-off between
toxicity and generation quality after deletion. For

2418

example, while Random Top-k has the best tox-
icity score, CT-informed deletion has the lowest
perplexity score.

To investigate such trade-offs further, we com-
pare multiple edits and delete runs to identify which
method provides a better frontier. Here, we vary the
hyperparameter responsible for weighing the KL di-
vergence before and after editing a model. We var-
ied the hyperparameter from 0 to 0.09, with 0 indi-
cating no regularization for the model weight drift
and 0.09 indicating high regularization. In Figure 3,
we show that editing works better when top-k lay-
ers are selected at random. However, CT-informed
deletes provide a better perplexity-toxicity trade-
off than CT-informed edits.

4 Conclusion

Our study has implications for the application of
causal tracing and model editing in responsible
AI. We find evidence that responses to adversarial
prompts, influenced by training data, are tied to
localized memories in the early layers of GPT-2
XL. Future research is needed to investigate the
mechanisms between training data memorization
and localization in subjective domains such as toxi-
city. Our results show that through targeted model
editing, toxic generation can be reduced. We ac-
knowledge the inevitable trade-off between mini-
mizing toxicity and preserving generation quality.
Furthermore, comparing toxicity-perplexity trade-
offs between methods shows that causal tracing is
informative. Finding the optimal balance between
the two remains a challenge that warrants contin-
ued investigation.

5 Limitation

Our work has several limitations. First, we ex-
plore toxicity using only a subset of the RealToxi-
cityPrompts (Gehman et al., 2020) dataset. More-
over, we have not evaluated the generality of the
edits/deletes beyond the specific prompts. Second,
we have evaluated generation quality only in terms
of perplexity and coherence. Third, our experi-
ments are limited to GPT2-XL. While transformers
remain the basic building blocks for state-of-the-art
models, establishing the generality of our findings
requires further investigation with modern mod-
els. Future research should include experiments
with larger open-weight models, evaluating model
capabilities against other tasks, and incorporating
human evaluation to assess generation.

6 Ethical Considerations

In principle, our work could be extended to in-
crease the toxicity in language models by insert-
ing toxic memories instead of deleting them and
thereby posing an ethical risk. However, existing
methods, such as parameter efficient fine-tuning,
already allow for amplification of toxic behavior
in LLMs, and our work does not make it more ac-
cessible. While malicious actors may deliberately
insert toxic memories in LLMs, a greater harm
can arise from unintended user exposure to toxic
content from innocuous prompts due to a lack of un-
derstanding of how LLMs learn toxic information.
The insights from our work inform the ongoing
discourse on reducing toxicity in LLMs and we be-
lieve that the benefits outweigh the risk of potential
harm caused by bad actors.

References
James A Anderson. 1972. A simple neural network

generating an interactive memory. Mathematical
biosciences, 14(3-4):197–220.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramèr, and Chiyuan Zhang.
2023. Quantifying memorization across neural lan-
guage models. In The Eleventh International Confer-
ence on Learning Representations. OpenReview.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A Smith. 2020. Realtoxici-
typrompts: Evaluating neural toxic degeneration in
language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 30–45.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.
Model editing can hurt general abilities of large lan-
guage models. arXiv preprint arXiv:2401.04700.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In

2419

https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740

Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Skyler Hallinan, Alisa Liu, Yejin Choi, and Maarten Sap.
2023. Detoxifying text with MaRCo: Controllable
revision with experts and anti-experts. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 228–242, Toronto, Canada. Association
for Computational Linguistics.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2023. Does localization inform editing?
surprising differences in causality-based localization
vs. knowledge editing in language models. arXiv
preprint arXiv:2301.04213.

Teuvo Kohonen. 1972. Correlation matrix memories.
IEEE transactions on computers, 100(4):353–359.

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wat-
tenberg, Jonathan K. Kummerfeld, and Rada Mihal-
cea. 2024. A mechanistic understanding of align-
ment algorithms: A case study on DPO and toxicity.
In Forty-first International Conference on Machine
Learning.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. 2021. DExperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6691–6706, Online. Association for Computational
Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. Gpteval:
Nlg evaluation using gpt-4 with better human align-
ment. arXiv preprint arXiv:2303.16634.

Vittorio Mazzia, Alessandro Pedrani, Andrea Caciolai,
Kay Rottmann, and Davide Bernardi. 2023. A survey
on knowledge editing of neural networks. Preprint,
arXiv:2310.19704.

Ninareh Mehrabi, Ahmad Beirami, Fred Morstatter,
and Aram Galstyan. 2022. Robust conversational
agents against imperceptible toxicity triggers. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
2831–2847, Seattle, United States. Association for
Computational Linguistics.

Ninareh Mehrabi, Palash Goyal, Anil Ramakrishna,
Jwala Dhamala, Shalini Ghosh, Richard Zemel, Kai-
Wei Chang, Aram Galstyan, and Rahul Gupta. 2023.
Jab: Joint adversarial prompting and belief augmen-
tation. arXiv preprint arXiv:2311.09473.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Tao Meng, Ninareh Mehrabi, Palash Goyal, Anil Ra-
makrishna, Aram Galstyan, Richard Zemel, Kai-Wei
Chang, Rahul Gupta, and Charith Peris. 2024. At-
tribute controlled fine-tuning for large language mod-
els: A case study on detoxification. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 13329–13341.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D. Manning, and Chelsea Finn. 2022.
Memory-based model editing at scale. Preprint,
arXiv:2206.06520.

Shrimai Prabhumoye, Mostofa Patwary, Mohammad
Shoeybi, and Bryan Catanzaro. 2023. Adding in-
structions during pretraining: Effective way of con-
trolling toxicity in language models. In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 2636–2651, Dubrovnik, Croatia. Association
for Computational Linguistics.

Roy Siegelmann, Ninareh Mehrabi, Palash Goyal, Pra-
soon Goyal, Lisa Bauer, Jwala Dhamala, Aram
Galstyan, Rahul Gupta, and Reza Ghanadan. 2024.
Mico: Preventative detoxification of large language
models through inhibition control. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 1696–1703.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin,
Sergei Popov, and Artem Babenko. 2020. Editable
neural networks. Preprint, arXiv:2004.00345.

Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi,
Shumin Deng, Yunzhi Yao, Qishen Zhang, Linyi
Yang, Jindong Wang, and Huajun Chen. 2024. Detox-
ifying large language models via knowledge editing.
arXiv preprint arXiv:2403.14472.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng,
Chen Chen, and Jundong Li. 2023. Knowledge edit-
ing for large language models: A survey. Preprint,
arXiv:2310.16218.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models:
Problems, methods, and opportunities. Preprint,
arXiv:2305.13172.

2420

https://doi.org/10.18653/v1/2023.acl-short.21
https://doi.org/10.18653/v1/2023.acl-short.21
https://openreview.net/forum?id=dBqHGZPGZI
https://openreview.net/forum?id=dBqHGZPGZI
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://arxiv.org/abs/2310.19704
https://arxiv.org/abs/2310.19704
https://doi.org/10.18653/v1/2022.naacl-main.204
https://doi.org/10.18653/v1/2022.naacl-main.204
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://arxiv.org/abs/2206.06520
https://doi.org/10.18653/v1/2023.eacl-main.193
https://doi.org/10.18653/v1/2023.eacl-main.193
https://doi.org/10.18653/v1/2023.eacl-main.193
https://arxiv.org/abs/2004.00345
https://arxiv.org/abs/2004.00345
https://arxiv.org/abs/2310.16218
https://arxiv.org/abs/2310.16218
https://arxiv.org/abs/2305.13172
https://arxiv.org/abs/2305.13172

Edit Strategy
% Toxic
Generation

Generation
Quality
Score

Random Multiple 18.12 2.73
Random Top-K 27.25 3.19
CT Informed 31.27 3.29

Table 3: Generation quality vs. toxicity score in different
edit strategies on 100 ∗ 10 generations

A Background on Causal Tracing and
MEMIT

Causal tracing is the method of identifying which
network components are most responsible for a gen-
eration outcome. Here, we highlight the method for
causal tracing as discussed in Meng et al. (2022).
Lets imagine a generative language model G as a
grid of computation. The grid consists of hidden
states hli to which each layer adds global attention
and local multi-layer perceptron (MLP) layers. So
in autoregressive transformers, the hidden state is
informed only by the previous hidden state. Recall
hli = hl−1

i + ali + ml
i for autoregressive models,

where ali is a contribution from the attention layer,
and ml

i is the contribution from the MLP layer.
Causal tracing identifies which hidden state con-
tributes the most towards a generated token y given
a prompt x. It involves three stages: a) clean run,
b) corrupted run, and c) corrupted-with-restoration
run.
Clean Run. First, we pass the prompt x into
the model G and collect all the hidden activations
hli|iϵ[1, T], lϵ[1, L] where T is he number of input
tokens and L is the number of layers in the model.
Corrupted Run. In the corrupted run, once x is
embedded as [h01, h

0
2, ..., h

0
T], we can add random

noise ϵ ∼ N (0, v) (v is three times the standard
deviation of the embeddings for the target tokens).
Thus, after x is embedded, we update h0i := h0i + ϵ
and then collect all the hidden activations from this
run.
Corrupted-with-restoration Run. After adding
random noise to the embedding, for an arbitrary
token î layer l̂ combination, the model is forced to
output a noise-free activation from the clean run
hl̂
î
.

Measuring the effects of hidden layers. The ef-
fect of each hidden state can be quantified by total
effect (TE) TE = P (r) − P⋆(r) and indirect ef-
fect (IE) calculated as IE = P⋆,cleanhl

i
(r)−P⋆(r).

Where given the prompt x for a task, r is the
desired output and the probability of r in the
clean, corrupted, and corrupted with restoration
are, P (r), P∗(r), P∗,cleanhl

i
(r). After repeating

this process over a set of prompts, we compute
the average total effect (ATE) and average indirect
effect (AIE) for each hidden state to estimate its
overall impact.
Editing MLP Layers with MEMIT. Once we
identify the contributing layers, we can edit them
using a method called MEMIT (Meng et al., 2023).
The key idea builds on the concept of MLPs as
an associative memory that stores key-value pairs.
For each MLP layer and for each prompt, we can
calculate a key kli and a memory ml

i that is es-
sentially the MLP output with the help of MLP
weights. The objective is to edit the MLP weights
so that the MLP layer generates a new ml

i that in-
corporates a new value. However, we must also
preserve the existing correct key memory pairs.
Thus, the editing becomes a constrained optimiza-
tion problem that has a closed-form solution as
follows: ∆l = RlK lT (C l +K lK lT)−1. Here ∆l

is the update for layer l, K l contains the new keys
(as any edits to other layers may impact the keys),
C l is a constant proportional to the covariance of
the pre-existing keys, and Rl is the residual of the
old and the new memories.

If the critical layers are lϵR and L is the last
layer in R, for the model G, hLi represents the hid-
den state at layer L at the editing token’s location
for the ith prompt. For each target edit (xi, yi) that
requires editing, we need to find a vector zi to max-
imize the probability of the corrected prediction.
This can be achieved by calculating the residual
δi = zi − hLi at L by using the following equation:

zi = hL
i + argmin

δi
−logPG(hL

i +=δi)
(yi|xi) (1)

Once zi is computed and substituted at the last
layer, the new edit is spread over all the desired
layers in R. This is achieved by first calculating
the residual for all remaining layers using the fol-
lowing equation and then using that to update MLP
weights: rli =

zi−hL
i

L−l+1

B Related Works

Methods for model editing Sinitsin et al. (2020)
present Editable Training, which employs meta-
learning techniques to train neural networks with
post-hoc editable parameters. Mitchell et al. (2022)

2421

leverage an external memory module to store and
retrieve edits for future inferences. See Wang et al.
(2023); Mazzia et al. (2023); Yao et al. (2023) for a
detailed survey on other model editing techniques.
Detoxicification There is an abundant body of
work in detoxifying approaches for natural lan-
guage generation (Hallinan et al., 2023; Mehrabi
et al., 2022; Liu et al., 2021; Prabhumoye et al.,
2023). Some of these approaches rely on train time
solutions (Gururangan et al., 2020; Prabhumoye
et al., 2023). Other techniques rely on inference
time solutions (Mehrabi et al., 2023; Hallinan et al.,
2023).

C Example Generations

Here, we show representative generations after edit-
ing GPT2-XL. The bold part of the sentence repre-
sents the prompt.

C.1 Example of a generation after editing
random layers

Last week, the internet was exploding with rage
over Kick-Itch’s latest video, which featured an
Asian woman who was trying to provoke provoca-
tive prompts with provocative prompts that were
provocative prompts. Prompt prompts. You can’t
really provoke prompts prompts ...

C.2 Example of a generation after editing
Top-k layers

Last week, the internet was exploding with rage
over Kick- Me if you can’t take a joke. If you can
take a joke, I’m not saying you should. I’m not
asking you to take a joke. You don’t have to. If you
can’t, that’s okay too. That’s okay to just not take a
joke anymore. I am telling you that I don’t like this
joke. It’s just not something I find funny anymore;
I get that.

C.3 Example of a generation after editing
layers informed by CT

Last week, the internet was exploding with
rage over Kick-starter’s decision to cancel all new
pledges for their new "Star Citizen" project in the
wake of news that they have over $112 million
dollars in backer money in a bank account in the
Cayman Islands. I had the privilege of interview-
ing CIG’s CEO, Sandi Gardiner, and her CFO, Ben
Lesnick, to get their side of the story. As is their
habit, they’ve been rather quiet since

2422

Figure 4: This figure shows an aggregation of AIE across all ∼ 1298 prompts. The highest AIE is observed in the
first six layers for most prompts.

2423

