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Abstract
Large Foundation Models such as Llama and
LLaVA have displayed incredible capabilities
in a wide range of domains and tasks. How-
ever, it is unclear whether these models match
specialist capabilities without special training
or fine-tuning. In this paper, we investigate
the innate ability of foundation models as neu-
rodegenerative disease specialists, particularly
for detecting the Alzheimer’s Disease. Pre-
cisely, we use a language model, Llama-3.1,
and a visual language model, Llama3-LLaVA-
NeXT, to detect language specificity between
Alzheimer’s Disease patients and healthy con-
trols through a well-known Picture Description
task. Results show that Llama is comparable
to supervised classifiers, while LLaVA, despite
its additional “vision”, lags behind.

1 Introduction

Large Foundation Models such as Llama have
demonstrated surprising capabilities in the field
of Natural Language Processing (NLP). Recent
work seems to indicate that these generalist models
can be used in specialized domains, such as clin-
ical medicine, with proprietary Large Language
Models (LLMs) such as GPT-4 achieving impres-
sive performance on professional benchmarks in
health domain (Bubeck et al., 2023; Cui et al., 2024;
Belyaeva et al., 2023; Jin et al., 2024). Other work,
however, suggests that GPT-4 does not outperform
traditional AI tools and cannot replace them at cur-
rent stage (Wang et al., 2023).

The healthcare sector often prefers open LLMs
that can be deployed in local environments, es-
pecially since relying on third-party commercial
LLMs is not always feasible due to concerns about
traceability, privacy, and security. Taking into ac-
count the complexity of real-world applications, in
this paper, we explore the use of small (e.g., less
than 10B), cost-effective open-source LLMs for
Alzheimer’s Disease detection.

Alzheimer’s Disease (AD) is a insidious pro-
gressive neurodegenerative disease resulting in im-
paired cognition and dementia, and eventual death
(Scharre, 2019). Since there is no effective cure for
dementia, early intervention is essential. Modern
deep learning approaches utilize data from various
modalities, such as speech (Berube et al., 2019; Il-
ias and Askounis, 2022), eye-tracking (Sriram et al.,
2023; Sheng et al., 2022), facial (Chou et al., 2025),
and neuroimaging (Sarraf et al., 2023). However,
some modalities require invasive and costly screen-
ing tools. In contrast, language data is easy to
collect—a speech recording takes no more than 10
minutes—and involves no invasive procedure, mak-
ing it an ideal resource for early disease detection.

Picture description, such as the one shown in Fig-
ure 1, has been widely used to capture deficits or ab-
normalities in language (Yorkston and Beukelman,
1980). Over the years, clinicians have assessed a va-
riety of measures, such as grammaticality (Ash and
Grossman, 2015), vocabulary (Forbes-McKay and
Venneri, 2005), frequency of noun-verb ratio (Bird
et al., 2000), and the percentage and change of in-
formation units (IUs), e.g., “mom”, “girl” (Giles
et al., 1996; Bouazizi et al., 2023). In the pre-LLM
era, NLP practitioners manually craft linguistic fea-
tures and use machine learning algorithms to train
supervised models (Fraser et al., 2016, 2019; Barral
et al., 2020; Jang et al., 2021). While these exper-
iments yield promising results, they require the
collection of training data, a time-consuming and
labor-intensive process. Additionally, the variabil-
ity in datasets and recording conditions also makes
it challenging for supervised models to generalize
well (Favaro et al., 2024).

With the advent of LLMs, NLP has shifted from
developing task-specific representations and archi-
tectures to using task-agnostic foundation models
(Radford et al., 2019; Brown, 2020), which are
pretrained on vast, cross-disciplinary data. These
models not only streamline the process but also
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Figure 1: The roadmap of our approach. Textual prompt are provided to language model Llama; image and textual
prompts are provided to vision-language model LLaVA-NeXT. We extract class, probability, and analysis from Y .

offer interpretable explanations, providing clinical
doctors with valuable insights into their reasoning
(Perlis, 2023; Nori et al., 2023a,b). Our approach
leverages the powerful open-source LLM, Llama-
3.1-8B (Dubey et al., 2024), and explores its poten-
tial for AD detection through carefully designed
zero-shot and few-shot prompting strategies. At
the time of our experiments, Llama-3.1 models
offered state-of-the-art performance in the open-
source LLM landscape.

Given that our task involves describing a pic-
ture using language, a Vision-Language Model
(VLM) should offer a clear advantage. We choose
a VLM from the LLaVA family (Liu et al., 2024b),
a pioneering work in visual instruction tuning,
while also considering its base language model and
comparable size. LLaVA is pretrained on image-
caption data and designed to provide detailed de-
scriptions (e.g., position of objects in an image)
and perform complex reasoning (e.g., “What is
unusual in an image, and explain.”). These capabil-
ities align well with our experimental setup. Based
on these considerations, we use Llama3-LLaVA-
NeXT (Liu et al., 2024a), one of the latest LLaVA
models, which is built on Llama-3-8B-Instruct and
integrates a vision encoder for image processing.

Our experimental results show that Llama-3.1-
8B model can match or even surpass traditional
supervised methods with minimal supervision. The
key factor is the effective combination of Back-
ground and Question prompts. LLaVA, on the
other hand, is not yet suited for this task, as in-
triguingly it may itself exhibit symptoms akin to
“neurodegenerative” issues.

2 The Power of Prompting

Prompt engineering is a popular and effective way
for using LLMs without altering their parameters.
Empirical studies have shown that a model’s per-
formance on specific tasks can be significantly

affected by the prompt, often in surprising ways
(Feng et al., 2024; Sivarajkumar et al., 2024; Sali-
nas and Morstatter, 2024; Sclar et al., 2024). For
instance, by adding “Let’s think step by step” can
greatly improve model performance (Kojima et al.,
2022). To date, there is not yet a consensus on
how to formulate the most effective prompts for a
specific task.

To unleash the inner specialist capabilities of
LLMs and gain a better understanding of the crucial
components in a prompt, we design our prompts
in a systematic way. For language-only model, we
divide our prompt into three parts: (1) Background
prompt, (2) Question prompt, and (3) Example
prompt. For vision-language model, we include
the image and prepend the cue phrase, “This image
is used for speech assessment in Alzheimer’s Dis-
ease.”, to the beginning of the textual prompt, as
shown in Figure 1. The textual input for VLM is
the same as the language-only model. Precisely:

(1) Background Prompt aims to place LLMs in
a specific knowledge graph where the information
is closely related to the target domain. For instance,
prompts starting with “You are an intelligent AI
assistant” or “You are an expert in clinical NLP”
use Persona pattern as guiding cues (Sivarajkumar
et al., 2024). In our experiments, we test three
cue phrases, including Role—“You are a medical
expert in Alzheimer’s Disease”, Context— a brief
introduction of the Cookie Theft picture description
task, and Linguistic—clinical observations of
linguistic features from AD and healthy controls.

(2) Question Prompt directs LLMs to produce
desirable output, whether text generation, classi-
fication, or resolution. It has been shown that by
simply adding “Let’s think step by step” before
each answer, LLMs can become decent zero-shot
reasoners (Kojima et al., 2022). Here, we compare
short answer and Chain of Thought (CoT) prompt-
ing answer in the question prompt. Short answer
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simply asks the LLM to predict a class (i.e., normal
vs. patient) without any explanation, while CoT
answer asks the model to first analyze step by step
and then give an answer. We also offer a Guided
CoT (G. CoT) version to direct the model to rea-
son from specific linguistic perspectives, such as
“vocabulary richness” and “syntactic complexity”.

Pre-trained language models are often inherently
calibrated to different extents (Jiang et al., 2021;
Liang et al., 2023), with token probabilities might
be employed off-the-shelf. Since they could ver-
balize confidence scores (Tian et al., 2023), we use
the cue phrase “Give a prediction with a probabil-
ity” to directly ask for prediction probabilities. In
preliminary experiments, we found that using this
cue phrase yielded better results than omitting it.

(3) Example Prompt is positioned between
Background Prompt and Question Prompt. It aims
to examine whether In-Context Learning (ICL)
with demonstrations further improves LLMs’ per-
formance in comparison to zero-shot prompting.
Practically, we employ fixed and dynamic few-shot
ICL. The fixed examples are selected randomly
in the held-out set to be broadly representative
and relevant to a wide distribution of text exam-
ples. The dynamic examples are instead chosen
with a kNN-based approach (k “ 2) (Nori et al.,
2023b), where we embed all texts in the held-
out set using OpenAI’s latest embedding model
text-embedding-3-small1. For each test exam-
ple, we identify its nearest neighbor in both Patient
and Control classes by computing their cosine sim-
ilarity scores. In our experiments, we use a small k
value, i.e., one positive and one negative examples.

We combine different types of Background and
Question prompts in both zero-shot and 2-shot ICL.
For instance, (Role; Short) uses Role in the back-
ground prompt and requires a short answer in the
question prompt; (Context+Role+Ling; G. CoT)
uses a combination of all background prompts and
a guided CoT answer. Detailed prompting tem-
plates are provided in Appendix 5.

3 Data and Experiment Settings

Dataset. We use the dataset from Jang et al.
(2021), which comprises 63 patients recruited from
a specialty memory clinic and 67 healthy con-
trols from the community. Patients are either diag-
nosed with Alzheimer’s Disease (AD) or exhibiting

1https://platform.openai.com/docs/guides/
embeddings.

Group # Age Gender MoCA

Patient 63 72 ˘ 9 31M / 34F 18 ˘ 7
Control 67 62 ˘ 15 22M / 45F 27 ˘ 3

Table 1: Dataset demographic and clinical statistics.
MoCA stands for Montreal Cognitive Assessment score.

initial symptoms of Mild Cognitive Impairments
(MCI), potentially progressing to AD. Participants
completed four tasks—pupil calibration, picture
description, paragraph reading, and memory re-
call—during which both language and eye move-
ment data were collected. In this study, we focus
on the picture description task. Demographic and
clinical data is provided in Table 1.

Data Processing. The original speech data is
transcribed and timestamped using WhisperX
(Bain et al., 2023). Following automatic transcrip-
tions, a human transcriber manually verified each
transcript for word spelling and speaker diariza-
tion accuracy. Task instructions from the instructor
were removed to include only participant speech.

Hyper-Parameters. We use the 8B checkpoint
of Llama-3.1 and LLaVA-NeXT from Huggingface
(Wolf et al., 2020). We use a low temperature (0.1)
and set top_k sampling to 50. The maximum new
tokens are 16 and 512 for Short answer and CoT
answer, respectively. To investigate the potential
non-determinism of LLMs (Ouyang et al., 2023;
Song et al., 2024), each prompt configuration (e.g.,
(Role; Short answer)) is executed on two differ-
ent servers with three runs per server. We report
micro-averaged scores with standard deviation over
6 runs per setup.

Supervised Classifiers and Metrics. We com-
pare with three classic supervised algorithms: Lo-
gistic Regression (LR), Random Forest (RF), and
Gaussian Naive Bayes (GNB). We follow the
feature extraction process outlined in Jang et al.
(2021) and split the dataset into ten folds for cross-
validation. Appendix 5 provides details.

In all experiments, we report three metrics: (1)
Area Under the Receiver Operating Characteris-
tic (ROC) Curve (AUC): the ability to distinguish
between Patient and Control under different thresh-
olds; (2) Sensitivity: the True Positive rate for
Patient detection, and (3) Specificity: the True Neg-
ative rate for Control detection. The main measure
is the AUC score.
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Background Question AUC Sensitivity Specificity

Role Short 60.3 ˘ 1.1 96.4 ˘ 0.8 11.5 ˘ 0.8
CoT 65.8 ˘ 0.5 91.13 ˘ 1.1 24.6 ˘ 2.5
G. CoT 70.9 ˘ 0.4 84.7 ˘ 1.1 35.4 ˘ 2.1

Context Short 69.4 ˘ 1.5 35.9 ˘ 2.0 93.5 ˘ 1.4
CoT 68.9 ˘ 0.6 50.8 ˘ 1.1 73.9 ˘ 2.1
G. CoT 74.3 ˘ 1.1 69.4 ˘ 2.2 69.3 ˘ 0.0

Context Short 71.6 ˘ 0.5 72.6 ˘ 0.0 69.6 ˘ 1.4
+Role CoT 72.9 ˘ 3.8 70.2 ˘ 3.4 70.8 ˘ 4.3
+Ling G. CoT 76.1 ˘ 2.0 71.8 ˘ 3.4 73.9 ˘ 2.1

Supervised Classifiers
GNB - 72.8 ˘ 2.2 64.1 ˘ 2.2 66.5 ˘ 3.5
LR - 73.2 ˘ 1.7 68.5 ˘ 3.8 70.2 ˘ 1.6
RF - 75.2 ˘ 3.1 67.7 ˘ 4.6 73.1 ˘ 3.6

Table 2: Top: zero-shot with different background and
question prompts. Scores are averaged across 6 runs.
Best score in each sub-section is in bold. Bottom: per-
formances using supervised classifiers.

4 Results with Foundation Models

Impact of Background and Question Prompts
on Zero-shot Prompting. We present zero-shot
results in Table 2. When using the Role pattern in
the Background prompt, Llama is highly sensitive
in detecting Patients (90%), but much less so for
Controls. In contrast, when the model is provided
only with the Context of the picture description
task, it predicts Controls more accurately. This
suggests that different background prompts shift
the model’s threshold for identifying Patient lan-
guage in distinct ways. Combining different back-
ground prompts (Context+Role+Ling) provides
more complete information, enabling the LLM to
retrieve the most relevant knowledge and deliver
optimal performance. With a 76% AUC score, it
matches and even surpasses supervised classifiers
(GNB 73%, LR 73%, RF 75%). In the Question
prompt, CoT significantly enhances model perfor-
mance compared to Short answers, and this im-
provement is consistent across various background
settings. Interestingly, we find that simply asking
the model to analyze before making predictions
helps the LLM to show moderation in its decision
making, as evidenced by a more balanced Sensitiv-
ity and Specificity rate.

Few-shot vs. Zero-shot Prompting. In few-shot
in-context learning, we use the same Background
and Question prompts as in the zero-shot setting,
but add input-output pairs as demonstration in the
Example Prompt. Table 3 demonstrates that few-
shot prompting consistently enhances AUC scores,
particularly when the background prompt lacks

Figure 2: LLaVA and LLama performances
on different Background (Role, Context,
Context+Role+Linguistic) and Answer prompt (G.
CoT) settings.

sufficient task information, as seen with the Role
background. Remarkably, we also find that zero-
shot prompting can be highly effective in some
cases, even surpassing few-shot prompting. This
occurs when the background is complete and a
CoT answer is employed—a trend also observed
in other clinical NLP tasks (Sivarajkumar et al.,
2024). In most prompt settings, random few-shot
outperforms kNN, suggesting that a more general
and representative set of examples leads to better
performance than semantically close ones. Similar
observations are made by Nori et al. (2023a). How-
ever, it comes with the trade-off of greater fluctua-
tions and less consistent Sensitivity and Specificity
rates.

Vision Language Model vs. Language-only
Model. While we were expecting VLMs to out-
perform pure LLMs due to their ability to pro-
cess the picture, Figure 2 reveals that LLaVA
significantly underperforms Llama on this task,
with lower AUC scores up to 10% across various
prompting, in both zero-shot and few-shot setups.
Specifically, we observe some extreme predictions
in zero-shot prompting, where LLaVA exclusively
predicts either Patient or Control, a behavior never
observed with Llama. While few-shot prompting
brings some improvement, the model remains bi-
ased toward producing high Specificity or Sensitiv-
ity scores (see detailed scores in Appendix 5). We
also note some anecdotal observations regarding
LLaVA’s reasoning. For instance, when asked to
analyze step by step, instead of reasoning from a
linguistic perspective, LLaVA simply lists the ob-
jects in the image, such as: “1. The image shows a
family. 2. The boy is standing. 3. Water is flowing.”
One plausible reason is that VLMs are not trained
to capture subtle linguistic nuances as LLMs are,
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Random Few-shot kNN Few-shot Zero-shot

B prompt Q prompt AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

Role Short 69.5 ˘ 7.5 74.4 ˘ 8.1 55.9 ˘ 14.8 64.5 ˘ 0.2 84.13 ˘ 0.0 38.8 ˘ 2.1 60.3 ˘ 1.1 96.4 ˘ 0.8 11.5 ˘ 0.8
CoT 71.3 ˘ 3.4 75.4 ˘ 9.0 50.0 ˘ 17.9 70.7 ˘ 2.1 94.4 ˘ 1.1 23.1 ˘ 1.0 65.8 ˘ 0.5 91.13 ˘ 1.1 24.6 ˘ 2.5
G. CoT 73.4 ˘ 7.0 74.9 ˘ 8.0 60.8 ˘ 12.1 72.9 ˘ 0.7 87.2 ˘ 2.4 33.6 ˘ 1.0 70.9 ˘ 0.4 84.7 ˘ 1.1 35.4 ˘ 2.1

Context Short 69.2 ˘ 9.6 77.2 ˘ 12.8 50.0 ˘ 18.5 68.3 ˘ 0.9 61.1 ˘ 1.1 69.4 ˘ 1.0 69.4 ˘ 1.5 35.9 ˘ 2.0 93.5 ˘ 1.4
CoT 65.0 ˘ 5.1 59.1 ˘ 12.4 65.3 ˘ 14.3 68.1 ˘ 2.7 61.1 ˘ 3.4 71.6 ˘ 0.0 68.9 ˘ 0.6 50.8 ˘ 1.1 73.9 ˘ 2.1
G. CoT 76.0 ˘ 4.1 64.6 ˘ 4.8 75.9 ˘ 8.9 74.3 ˘ 2.1 80.2 ˘ 1.1 64.2 ˘ 0.0 74.3 ˘ 1.1 69.4 ˘ 2.2 69.3 ˘ 0.0

Context Short 71.9 ˘ 3.7 58.1 ˘ 15.0 79.8 ˘ 10.5 71.1 ˘ 2.3 65.9 ˘ 1.1 71.6 ˘ 0.0 71.6 ˘ 0.5 72.6 ˘ 0.0 69.6 ˘ 1.4
+Role CoT 71.9 ˘ 3.6 61.4 ˘ 11.0 78.4 ˘ 7.2 74.9 ˘ 0.1 77.0 ˘ 3.3 64.2 ˘ 0.0 72.9 ˘ 3.8 70.2 ˘ 3.4 70.8 ˘ 4.3
+Ling G. CoT 76.4 ˘ 2.9 71.7 ˘ 7.6 75.8 ˘ 8.4 74.8 ˘ 1.3 83.2 ˘ 1.3 46.3 ˘ 0.0 76.1 ˘ 2.0 71.8 ˘ 3.4 73.9 ˘ 2.1

Table 3: Random, kNN few-shot, and zero-shot prompting results with Llama. Random few-shot results are averaged
from three sampling. Best AUC in random, kNN, and zero-shot sections is highlighted ; second best is underlined.

as they are primarily pretrained on image-text pairs
to recognize objects in images.

Recent studies reveal that VLMs are prone to
heavy hallucinations and can be easily misled by
deceptive prompts (Qian et al., 2024; Zhang et al.,
2024). To explore the “neuro-cognitive status” of
LLaVA, we prompt the model to perform the pic-
ture description task, similar to the human partici-
pants. We then apply trained classifiers (GNB, LR)
to analyze LLaVA’s generated speech, with details
in Appendix 5. Unsurprisingly, the supervised clas-
sifiers consistently predict LLaVA as a Patient with
high probability: GNBą 90%, LRą 80%. Since
LLaVA is unable to generate normal speech during
the picture description task, it is not surprising that
its predictions are not reliable.

5 Conclusion and Open Questions

In this paper, we explore the potential of foundation
models for lightweight use in Alzheimer’s Disease
detection via Picture Description task. Using ap-
propriate prompting strategies, we find that LLMs
can be activated to exhibit specialist capabilities
even in a no-data scenario, achieving performance
comparable to supervised classifiers, while provid-
ing clear and insightful reasoning. VLMs, however,
are not yet suited for complex language reasoning
tasks, as they may themselves exhibit symptoms
akin to “neurodegenerative” issues. In the near fu-
ture, we plan to expand our methods from picture
description narratives to conversational interactions
such as semi-structured conversations (Goodkind
et al., 2018), and other healthcare-related disease
detection (Li et al., 2022).

Several open questions remain worth exploring,
such as alternative methods for demonstration ex-
ample selection and whether a best example-pair
exists that could boost LLMs’ performance. For

multimodal models, a key challenge is how to ef-
fectively enhance their compositional capabilities,
thus enabling them to process different information
in a more intelligent and integrated way.

Limitations

Most LLMs do not consistently produce the same
output due to the inherent randomness in their pa-
rameter initialization. To address this and ensure
more robust results, we ran each setup at least three
times on different servers. In most cases (zero-shot
and kNN few-shot), the variations were minimal,
reinforcing our conclusions about different prompt-
ing strategies. However, we found that the relative
performance of prompt variations could vary sig-
nificantly when using random few-shot prompting.

We evaluate two model variations, Llama and
LLaVA, both of which are leading models of LLMs
and VLMs, respectively. However, further research
is needed to understand how different language
models, architectures, and datasets may impact the
sensitivity of prompt variations on this task.

Ethical Considerations

The dataset we use for this paper comes from
the CANARY project at University of British
Columbia (UBC), which was approved by the UBC
clinical research ethics board (H17-02803-A036).
During the experiments, we ensure that no private
information—such as participants’ health, clinical,
or demographic data—is disclosed. This is a main
reason for us exclusively testing with open-source
language models.
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Appendix A Prompt Templates

We provide prompting templates used in Llama and
LLaVA in Table 5 and Table 6, respectively.

Appendix B Supervised Classifiers

Following Jang et al. (2021), we reduplicate the su-
pervised learning results using Logistic Regression
(LR), Random Forest (RF), and Gaussian Naive
Bayes (GNB), all implemented with Scikit-learn li-
brary (Pedregosa et al., 2011). We split the dataset
into 10 folds with 10 different seeds for cross-
validation. The micro-averaged scores are given in

Table 4, in comparison with our best zero-shot and
few-shot prompting strategies.

Note that noting that our results differ slightly
from those reported in Jang et al. (2021), as we
do not use the exact same training samples (79
Patients and 83 Controls vs. our dataset with 63
Patients and 67 Controls). Additionally, we employ
different speech-to-text methods, which may have
led to variations in the transcripts.

Training Model AUC Sensitivity Specificity

Supervised GNB 72.8 ˘ 2.2 64.1 ˘ 2.2 66.5 ˘ 3.5
LR 73.2 ˘ 1.7 68.5 ˘ 3.8 70.2 ˘ 1.6
RF 75.2 ˘ 3.1 67.7 ˘ 4.6 73.1 ˘ 3.6

Ours (zero-shot) Llama-3.1 76.1 ˘ 2.0 71.8 ˘ 3.4 73.9 ˘ 2.1
Ours (few-shot) Llama-3.1 76.4 ˘ 2.9 71.7 ˘ 7.6 75.8 ˘ 8.4

Table 4: Comparison of fully supervised classifiers (top)
and our methods using LLMs (bottom). RF: random
forest, GNB: Gaussian Naive Bayes, LR: logistic re-
gression. Supervised results are averaged over 10-seed
10-fold cross-validation. Prompting results are averaged
over 2-trial 3-run per setup.

Appendix C LLaVA Prompting Results

We report zero-shot and few-shot prompting results
with LLaVA-NeXT-8B in Table 7. Textual prompts
and hyper-parameters are the same as with Llama.
Different from Llama, we do not observe a con-
sistent improvement with more complete prompts.
Plausibly, LLaVA is not capable of processing
longer and more complex textual information. We
also observe some extreme predictions where the
model only predicts Patient or Control, as high-
lighted in pink in Table 7.

Appendix D LLaVA’s Speech on Picture
Description Task

We prompt LLaVA twenty times on picture de-
scription task. The instruction is provided in the
same way as for human participants. We then use
supervised classifiers to categorize its responses.
Across all of LLaVA’s outputs, the three classifiers
consistently classify them as “Patient” with high
probabilities: RF ą 60%, GNB ą 90%, and LR
ą 80%. Two examples are given in Table 8.
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Llama-3.1

Strategy Template

Background
Prompt

Role: You are a medical expert in Alzheimer’s disease. You analyze linguistic features in the patient’s
speech, such as lexical richness, syntactic complexity, grammatical correctness, information content, and
semantic coherence. Based on the participant’s speech, provide an initial diagnosis of dementia patient
(P) and healthy control (H).

Context: The Boston Cookie Theft picture description task is a well established speech assessment
in Alzheimer’s disease. During the task, participants are shown the picture and are asked to describe
everything they see in the scene using as much time as they would like. Based on the participant’s
description, make a classification of dementia patient (P) versus healthy control (H).

Context+Role+Ling: The Boston Cookie Theft picture description task is a well established speech
assessment in Alzheimer’s disease. During the task, participants are shown the picture and are asked to
describe everything they see in the scene using as much time as they would like. The objects (also known
as information units) in this picture includes: “cookie”, “girl”, “boy”, “woman”, “jar”, “stool”, “plate”,
“dishcloth”, “water”, “window”, “cupboard”, “curtain”, “dishes”, “sink”. You are a medical expert in
Alzheimer’s disease. You analyze linguistic features in the patient’s speech, such as lexical richness,
syntactic complexity, grammatical correctness, information units, and semantic coherence. Based on the
participant’s description of the picture, provide an initial diagnosis of dementia patient (P) and healthy
control (H).

Example
Prompt

Zero-shot: None

Few-shot: Example: ## Text: <text> ## Answer: healthy control (H). ## Text: <text> ## Answer:
dementia patient (P).

Question
Prompt

Short: Given the text below, classify the participant as a dementia patient (P) or healthy control (H).
Please give an answer and a probability without explanation.

CoT: Given the text below, classify the participant as a dementia patient (P) or healthy control (H). First
explain step-by-step and then give a prediction with a probability.

G. CoT: Given the text below, classify the participant as a dementia patient (P) or healthy control (H).
Please first reason from the following perspectives: (1) Vocabulary richness: such as the usage of different
words; (2) Syntactic complexity: such as the length of the sentence and the number of subordinate
clauses; (3) Information content: whether the participant describe most of the information units in the
picture; (4) Semantic coherence: such as the usage of connectives and the change in description from one
information unit to another; (5) Fluency and repetitiveness: whether the text is fluent with less repetitive
sentences. Based on your reasoning, please give a prediction and the corresponding probability.

Table 5: Prompting template used in Llama.
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LLaVA-NeXT

Strategy Template

Background
Prompt

Role: This image is used for speech assessment in Alzheimer’s disease. You are a medical expert in
Alzheimer’s disease. You analyze linguistic features in the patient’s speech, such as lexical richness,
syntactic complexity, grammatical correctness, information content, and semantic coherence. Based on
the participant’s speech, provide an initial diagnosis of dementia patient (P) and healthy control (H).

Context: This image is used in Boston Cookie Theft picture description task, which is a well established
speech assessment in Alzheimer’s disease. During the task, participants are shown the picture and are
asked to describe everything they see in the scene using as much time as they would like. Based on the
participant’s description, make a classification of dementia patient (P) versus healthy control (H).

Context+Role+Ling: This image is used in Boston Cookie Theft picture description task, which is a
well established speech assessment in Alzheimer’s disease. During the task, participants are shown the
picture and are asked to describe everything they see in the scene using as much time as they would like.
The objects (also known as information units) in this picture includes: “cookie”, “girl”, “boy”, “woman”,
“jar”, “stool”, “plate”, “dishcloth”, “water”, “window”, “cupboard”, “curtain”, “dishes”, “sink”. You
are a medical expert in Alzheimer’s disease. You analyze linguistic features in the patient’s speech,
such as lexical richness, syntactic complexity, grammatical correctness, information units, and semantic
coherence. Based on the participant’s description of the picture, provide an initial diagnosis of dementia
patient (P) and healthy control (H).

Example
Prompt

Zero-shot: None

Few-shot: Example: ## Text: <text> ## Answer: healthy control (H). ## Text: <text> ## Answer:
dementia patient (P).

Question
Prompt

Short: Given the text below, classify the participant as a dementia patient (P) or healthy control (H).
Please give an answer and a probability without explanation.

CoT: Given the text below, classify the participant as a dementia patient (P) or healthy control (H). First
explain step-by-step and then give a prediction with a probability.

G. CoT: Given the text below, classify the participant as a dementia patient (P) or healthy control (H).
Please first reason from the following perspectives: (1) Vocabulary richness: such as the usage of different
words; (2) Syntactic complexity: such as the length of the sentence and the number of subordinate
clauses; (3) Information content: whether the participant describe most of the information units in the
picture; (4) Semantic coherence: such as the usage of connectives and the change in description from one
information unit to another; (5) Fluency and repetitiveness: whether the text is fluent with less repetitive
sentences. Based on your reasoning, please give a prediction and the corresponding probability.

Table 6: Prompting template used in LLaVA.
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Random Few-shot kNN Few-shot Zero-shot

B prompt Q prompt AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

Role Short 67.1 ˘ 7.0 45.1 ˘ 9.7 85.8 ˘ 10.1 58.1 ˘ 0.0 76.2 ˘ 0.0 40.3 ˘ 0.0 57.4 ˘ 0.0 19.4 ˘ 0.0 92.3 ˘ 0.0
CoT 62.4 ˘ 9.3 27.2 ˘ 16.2 90.8 ˘ 5.6 70.6 ˘ 1.0 81.0 ˘ 2.2 41.0 ˘ 1.1 49.2 ˘ 0.0 19.4 ˘ 0.0 92.3 ˘ 0.0
G. CoT 54.9 ˘ 5.2 3.0 ˘ 7.1 100.0 ˘ 0.0 69.8 ˘ 1.3 81.8 ˘ 1.1 39.6 ˘ 1.1 58.9 ˘ 0.0 37.1 ˘ 0.0 72.3 ˘ 0.0

Context Short 67.1 ˘ 7.0 54.3 ˘ 14.6 73.6 ˘ 12.5 67.3 ˘ 0.4 73.0 ˘ 0.0 57.5 ˘ 1.1 50.0 ˘ 0.0 100.0 ˘ 0.0 0.0 ˘ 0.0
CoT 61.4 ˘ 7.3 32.4 ˘ 7.4 89.2 ˘ 6.1 64.9 ˘ 2.5 77.0 ˘ 3.4 47.1 ˘ 3.2 59.0 ˘ 0.0 14.5 ˘ 0.0 100.0 ˘ 0.0
G. CoT 52.2 ˘ 1.8 3.2 ˘ 2.4 99.3 ˘ 1.6 65.1 ˘ 3.6 84.9 ˘ 1.1 29.9 ˘ 2.1 63.0 ˘ 0.0 66.1 ˘ 0.0 63.1 ˘ 0.0

Context Short 63.4 ˘ 4.3 30.7 ˘ 13.9 89.6 ˘ 11.2 65.8 ˘ 0.0 74.6 ˘ 0.0 56.7 ˘ 2.1 60.9 ˘ 0.0 82.3 ˘ 0.0 38.5 ˘ 0.0
+Role CoT 51.6 ˘ 11.1 19.3 ˘ 10.2 89.8 ˘ 8.8 65.1 ˘ 1.5 81.8 ˘ 1.1 35.1 ˘ 3.1 55.9 ˘ 0.0 33.9 ˘ 0.0 80.0 ˘ 0.0
+Ling G. CoT 50.1 ˘ 4.7 3.2 ˘ 3.6 99.3 ˘ 1.6 69.4 ˘ 0.4 84.1 ˘ 2.2 35.8 ˘ 4.2 64.9 ˘ 0.0 30.7 ˘ 0.0 95.4 ˘ 0.0

Table 7: Random, kNN few-shot, and zero-shot prompting results with LLaVA. Random few-shot results are
averaged from three sampling. Best AUC in random, kNN, and zero-shot sections is highlighted ; second best is

underlined. Extreme prediction such as very high Sensitivity and very low Specificity (or reversely) is highlighted .

Picture Description Task on LLaVA-NeXT

Prompt: You will do a picture description task. You’ll be shown a picture. Please describe everything you see going on
in the picture.

LLaVA: The image appears to be a black and white line drawing depicting a domestic scene. There are four figures in the
image, each outlined and shaded to suggest depth and form. The drawing style is simple and cartoonish, with no color or
shading other than the outlines and the shading within the outlines. In the foreground, there is a woman standing in the
kitchen, holding a pan. She seems to be engaged in cooking or preparing food. To her right, there is a child standing on a
stool, reaching for something on a shelf. The child is wearing a short-sleeved shirt and shorts, and appears to be in the
process of retrieving an item. In the background, there is another child standing on the floor, looking up at the woman.
This child is also wearing a short-sleeved shirt and shorts, and seems to be observing the woman’s actions. On the far
right, there is a baby lying on a surface, possibly a bed or a couch, with a blanket or sheet covering them. The baby
appears to be asleep or resting. The kitchen area includes a sink and a countertop with various items such as a bowl and
a bottle. There is also a window with curtains, and a door that is partially open. The room has a simple, clean layout
with minimal decoration. The overall scene suggests a domestic setting, possibly a family home, with the woman and
children engaged in everyday activities.

LLaVA: The image appears to be a black and white line drawing depicting a domestic scene. There are four characters
in the picture: 1. A woman standing in the center, holding a plate. She is wearing a dress and seems to be engaged
in an activity related to food preparation or serving. 2. A child standing on a stool to the left of the woman, reaching
for something on a shelf. The child is wearing a short-sleeved top and shorts. 3. Another child standing to the right
of the woman, also reaching for something on a shelf. This child is wearing a long-sleeved top and shorts. 4. A baby
lying on a surface to the right of the woman, seemingly asleep or resting. The setting appears to be a kitchen or a room
with a counter and a sink. There is a window with curtains to the right, and a door to the left. On the counter, there
are various items including what looks like a bowl and a jar. The overall scene suggests a family moment, possibly
meal preparation or cleanup. The characters are drawn in a simple, cartoon-like style, which is common in educational
materials or children’s books.

Table 8: Two examples of LLaVA’s generations on Cookie Theft task. The hallucinated context are marked in red.
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