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Abstract

Lemmatization of cuneiform languages
presents a unique challenge due to their
complex writing system, which combines
syllabic and logographic elements. In this
study, we investigate the effectiveness of the
ByT5 model in addressing this challenge
by developing and evaluating a ByT5-based
lemmatization system. Experimental results
demonstrate that ByT5 outperforms mT5 in
this task, achieving an accuracy of 80.55%
on raw lemmas and 82.59% on generalized
lemmas, where sense numbers are removed.
These findings highlight the potential of ByT5
for lemmatizing cuneiform languages and
provide useful insights for future work on
ancient text lemmatization.

1 Introduction

Cuneiform writing systems, used by ancient
Mesopotamian civilizations like the Sumerians and
Akkadians, provide valuable insights into early hu-
man civilization. However, despite their historical
significance, computational methods for process-
ing cuneiform texts remain relatively underdevel-
oped. One of the key challenges in natural language
processing (NLP) for these ancient languages is
lemmatization — the task of reducing words to
their base or dictionary forms—a process that is
particularly complex due to the high degree of in-
flection, polysemy of signs, and extensive morpho-
logical variation characteristic of these languages.

Among the languages written in cuneiform,
Akkadian and Sumerian are two of the most exten-
sively documented, yet they pose distinct compu-
tational challenges. Akkadian, a Semitic language,
exhibits root-based morphology with non-linear
inflectional patterns, while Sumerian, a language
isolate, follows an agglutinative structure with ex-
tensive prefixation and suffixation. Both languages
also feature logographic and syllabic writing ele-
ments, further complicating automated linguistic

analysis.
Among existing approaches, BabyLemmatizer

(Sahala and Lindén, 2023) employs a neural
encoder-decoder model to perform joint POS tag-
ging and lemmatization, achieving 94–96% ac-
curacy. Similarly, AkkParser (Ong and Gordin,
2024) combines rule-based morphological analy-
sis, dictionary matching, and dependency parsing,
providing robust performance on Neo-Assyrian
texts. Despite their success, the variability in ortho-
graphic forms and the vast morphological richness
of cuneiform languages still present challenges.

Recent advancements in transformer-based mod-
els, such as T5 (Text-to-Text Transfer Transformer)
(Raffel et al., 2020), have significantly improved
performance across a wide range of NLP tasks,
including sequence-to-sequence applications like
translation and lemmatization (Riemenschneider
and Krahn, 2024). Building upon this foundation,
ByT5 (Xue et al., 2022) was introduced as a vari-
ant of T5, designed to process text at the byte level.
Unlike traditional token-based models, ByT5 op-
erates directly on raw byte sequences, eliminat-
ing the need for predefined vocabularies and tok-
enization schemes. This token-free approach has
proven advantageous in multilingual tasks such
as grapheme-to-phoneme conversion (Zhu et al.,
2022), where ByT5 has outperformed token-based
models. Its architecture has also proven effective
in lemmatization tasks—particularly for morpho-
logically rich languages such as Latin (Wróbel and
Nowak, 2022)—highlighting ByT5’s ability to han-
dle complex morphological variation with minimal
preprocessing. Moreover, its strong zero-shot learn-
ing capabilities (Stankevičius et al., 2022) enable it
to generalize to previously unseen languages, mak-
ing it especially valuable for under-resourced his-
torical languages such as Akkadian and Sumerian,
where annotated corpora remain limited.

The aim of this study is to evaluate the effec-
tiveness of ByT5 in lemmatizing Akkadian and
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Sumerian texts, with a focus on assessing its ability
to overcome the challenges posed by the morpho-
logical complexity and spelling irregularity of these
ancient languages.

2 Methodology

2.1 Dataset
The original dataset consists of several fields, in-
cluding: fragment id, fragment line num,
index in line, word language, domain, place
discovery, place composition, value, clean
value, and lemma. The primary input to the model
during training is the clean value, and the target
is the lemma.

A particular challenge in this task arises from
words that have multiple meanings or senses, a
phenomenon particularly prominent in cuneiform
lexicon. For example, the lemma abāru exhibits
various senses, each with a specific definition in
the Concise Dictionary of Akkadian (Black et al.,
2000). The different senses of abāru are often
marked with Roman numerals to denote the specific
sense, as outlined below:

1. abāru I: This sense refers to “(the metal) lead.”
It appears in texts such as A.GAR5 and in
1st millennium royal inscriptions, specifically
noted as A.BÁR. In Middle Assyrian, the
phrase is also written as annuku abāru.

2. abāru II: This sense has two distinct mean-
ings:

(a) Babylonian literary meaning: “A kind of
clamp”.

(b) Standard Babylonian (Jungbabylonisch)
transferred meaning: “embrace” or
“physical strength”, often used in refer-
ence to gods or kings.

3. abāru III: This sense refers to “to embrace”
in Old and Standard Babylonian. It is often
used in magical contexts to mean “embrace
intensely” or “bind” (e.g., limbs or persons).
In legal contexts, it is used to mean “accuse
someone” or “denounce”.

Given this ambiguity, two distinct forms of the
dataset are created to account for the different lev-
els of semantic granularity.

• Raw Lemma Dataset retains sense numbers
(e.g., abāru I) to capture semantic distinctions,
as shown in Table 1.

Surface Form Lemma
A.BAR2 abāru I
a-ba-ri abāru II
ub-bir abāru III

Table 1: Examples from the Raw Lemma Dataset

• Generalized Lemma Dataset removes sense
numbers for morphological normalization, as
shown in Table 2.

Surface Form Lemma
A.BAR2

abārua-ba-ri
ub-bir

Table 2: Examples from the Generalized Lemma
Dataset

2.2 Model Architecture

The primary model used for lemmatization of
cuneiform languages is the ByT5 model, a vari-
ant of the T5 architecture that operates directly
on the raw character sequences of texts at the byte
level. ByT5 is built on a transformer-based architec-
ture, where input sequences pass through multiple
layers of attention mechanisms and feed-forward
networks. It employs a standard encoder-decoder
framework: the encoder processes the input text,
while the decoder generates the corresponding out-
put based on the encoded information.

Figure 1: ByT5 Lemmatization Architecture with
Byte-Level Tokenization

In this study, ByT5 is trained to map sequences
of byte tokens to a sequence of output tokens,



175

where each output token corresponds to the canon-
ical lemma (or generalized lemma) of the input
word, as illustrated in Figure 1.

As an additional model for comparison, the mT5
model was also used. mT5 is a multilingual vari-
ant of T5, capable of processing text in multiple
languages. mT5 also follows a transformer-based
architecture, using word-level tokenization and is
suited for handling multiple languages with varying
scripts. For the purpose of this study, mT5 serves
as a baseline model to evaluate how well ByT5 per-
forms relative to a more traditional, multilingual
approach.

2.3 Training Setup

Both models are trained using a standard sequence-
to-sequence learning approach. For ByT5, the in-
put sequence length is limited to 128 tokens, while
for mT5, it is restricted to 32 tokens. The input
text is prefixed with a task-specific indicator like
“Convert:”, following the approach inspired by the
T5 model. The model’s output is the predicted
lemma, which can either be a raw lemma with
sense numbering (for the Raw Lemma Dataset) or
a generalized lemma (for the Generalized Lemma
Dataset). Both datasets are split, with 95% used for
training and the remaining 5% for validation.

We utilize pre-trained weights from the Hugging
Face Transformers library and fine-tune the model
on both datasets. The training process uses the
Adam optimizer with a learning rate of 2e-5 and
a batch size of 16. Models are fine-tuned for 10
epochs or until convergence. Training is conducted
on an Apple M3 Pro (18GB) chip, leveraging the
MPS backend for accelerated computation.

3 Experimental Results

3.1 Performance Metrics

To evaluate the effectiveness of the models, we
used the following metrics:

Accuracy (Exact Match): This metric measures
the percentage of instances where the predicted
lemma exactly matches the target lemma.

Accuracy =
Number of Correct Lemma Predictions

Total Number of Words
×100%

(1)

Accuracy serves as the primary metric for assess-
ing the accuracy of the lemmatization process.

3.2 Results
The following tables present the performance of
ByT5-small and mT5-small on the two datasets:
one with raw lemmas (where sense numbers are
retained) and another with generalized lemmas
(where sense numbers are removed).

Model Accuracy (%)
ByT5-small 80.55
mT5-small 77.38

Table 3: Performance on Raw Lemmas
(Sense Number Retained)

Model Accuracy (%)
ByT5-small 82.59
mT5-small 79.28

Table 4: Performance on Generalized Lemmas
(Sense Number Removed)

4 Error Analysis

4.1 Challenges in Lemma Prediction
In this section, we conduct an error analysis based
on the predictions made by the ByT5-small model
on the raw lemma dataset, which consists of 39,621
unique word forms (transliterations) that have not
been normalized and 8,021 unique lemmas, reflect-
ing the diversity and complexity of the cuneiform
lexicon. The model was trained on a dataset of
290,294 instances, learning to map surface forms
to their corresponding lemmas. To assess its per-
formance, we evaluated it on a validation set of
15,279 instances, where it produced 2,972 erro-
neous predictions, resulting in an overall accuracy
of 80.55%. The detailed statistics of the dataset
and its partitions are presented in Table 5 1.

Dataset Instances
Unique
Word
Forms

Unique
Lemmas

Raw Lemma Dataset 305,573 39,621 8,021
Training Set (95%) 290,294 38,464 7,898
Validation Set (5%) 15,279 5,257 2,459

Table 5: Detailed Statistics of Raw Lemma Dataset

To better understand the sources of errors, we
analyzed the incorrect predictions and categorized

1For conciseness, we will refer to the training set as TS
and the validation set as VS in following tables.
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them into three main groups: (1) surface forms that
were most frequently mispredicted, (2) lemmas that
were most frequently predicted incorrectly, and (3)
erroneous lemma predictions that the model fre-
quently produced. These insights highlight specific
challenges in lemma disambiguation and the com-
plex mappings required for accurate lemmatization.

Based on the validation set, the following table
summarizes the five most frequently mispredicted
surface forms, the five lemmas that were most com-
monly misclassified, and the five incorrect lemma
predictions that the model frequently produced:

Category Word/Lemma Freq

Most frequently
mispredicted
surface forms

IGI 50
NU 41
ša 33
KI 32
BI 31

Most frequently
misclassified
lemmas

amāru I 40
ul I 36
ša 32

ana 29
šamšu I 27

Most frequently
produced incorrect
lemma predictions

pānu I 77
lā I 52
itti I 35
ša I 33
šū I 31

Table 6: Common Errors in Lemmatization

Building on the analysis above, we can iden-
tify three major challenges in the lemmatization
process. First, polysemy poses a significant issue:
without explicit syntactic or semantic context, the
model struggles to accurately disambiguate mul-
tiple possible meanings of a given form. Second,
inconsistencies in scribal conventions contribute to
further complexity, leading to variability in repre-
sentation. Third, the model exhibits a frequency
bias, tending to over-predict high-frequency lem-
mas even in contexts where they are incorrect.
These three challenges will be examined in detail
in the following discussion.

4.1.1 Polysemy in Surface Forms
A major source of error in the ByT5-small model’s
predictions stems from the inherent polysemy in
surface forms. Polysemy arises when a single sur-
face form corresponds to multiple meanings or

senses, each associated with a distinct lemma. Our
analysis identified 2,194 surface forms exhibiting
polysemy, accounting for a significant proportion
of the dataset.

We observe that many of the most frequently
mispredicted surface forms—IGI, NU, KI, BI—
are Sumerograms, logographic signs borrowed
from Sumerian into Akkadian. Unlike phonetic
spellings, Sumerograms encode meaning rather
than sound, making them particularly challenging
for lemmatization. The interpretation of a single
Sumerogram often depends on its contextual us-
age, as it can correspond to multiple lemmas. For
instance, IGI can signify “eye” (ı̄nu I) or “to see”
(amāru I), among other meanings.

The semantic range of the Sumerogram IGI, as
documented in the Concise Dictionary of Akka-
dian, along with their frequency distribution in the
training dataset, is presented in the table below.

Sign Lemma Meaning TS
Freq

IGI

pānu I face 772
amāru I to see 475
mahru II front 270
nat.ālu I to look 79

mahra I
in front;

before; earlier
51

ı̄nu I eye 41

mahāru I
to face;
oppose;
receive

10

pānātu I front 7
lapān I in front of 5
mahrum / 4

āmeru I
that sees,

reads
2

mehretu I
opposite side;

front
2

panû I
to face; be

ahead
1

nawāru I
to be(come)
bright, shine

1

Table 7: Frequency and Semantic Range of
Sumerogram IGI

Similar to IGI, the cuneiform logogram IM can
correspond to four distinct lemmas: t.uppu I, šāru
I, t. ı̄du I, and ešēru I. To illustrate this challenge,
Table 8 presents the distribution of IM’s lemmas
in the training and validation sets and the model’s
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predictions. Despite the diverse occurrences of IM
in the dataset, the model consistently predicted t. ı̄du
I across all instances, failing to account for the
other possible lemmas.

Surface
Form

TS
Count TS Lemma Distribution

IM

226

t.ı̄du I (57),
t.uppu I (66),
šāru I (102),
ešēru I (1)

VS
Count VS Lemma Distribution

16
t.ı̄du I (3),

t.uppu I (9),
šāru I (4)

Prediction:
t.ı̄du I (16/16)

Table 8: Distribution of IM’s Lemmas in Training and
Validation Sets vs. Model Prediction

The majority of most frequently misclassified
lemmas and most commonly produced incorrect
lemma predictions are closely associated with
Sumerograms with multiple semantic variants. As
shown in Table 6, amāru I and pānu I correspond to
the Sumerogram IGI, lā I corresponds to NU, and
šū I corresponds to BI. Moreover, these Sumero-
grams occur with high frequency in the training
set, making them some of the most common lexi-
cal items (e.g., IGI: 1,720 occurrences; NU: 1,993
occurrences; BI: 1,352 occurrences). This high
frequency, combined with their multiple seman-
tic interpretations, constitutes a major source of
prediction errors in the model.

Notably, the inclusion of texts from different his-
torical periods and source traditions (as discussed
in later sections) may further contribute to incon-
sistencies in lemmatization, as variations can arise
due to differences in transcription conventions for
cuneiform signs or historical shifts in the writing
system. For example, the original form t.up-pi can
be lemmatized as t.uppi I, t.uppu I, or t.uppum, de-
pending on scribal practices. However, the lemma
t.uppum appears only twice in the training dataset
and is more likely a morphological variant of t.uppu
I rather than a distinct lemma.

Overall, these challenges highlight the inher-
ent complexities of cuneiform languages, where
a single word form can have multiple interpreta-
tions depending on context or transcription con-
ventions. Among all mispredictions, 1,253 errors

were attributed to such one-to-many mappings. The
model struggles to effectively disambiguate these
cases, primarily due to its limited ability to cap-
ture the contextual cues that differentiate semantic
variants. This issue is fundamentally rooted in
the constraints of a simple sequence-to-sequence
architecture, in which the model takes a surface
form as input and generates a single corresponding
lemma as output. Hence, lacking the capacity to
incorporate broader contextual information neces-
sary for disambiguation makes the existing model
architecture inadequate for handling one-to-many
mappings, which eventually leads to frequent mis-
classifications.

4.1.2 Orthographic Variation in Lemmas
As previously noted, t.uppu I as a lemma may be
reconstructed from multiple surface forms, such as
t.up-pi or IM, illustrating the intricate mapping be-
tween surface forms and lemmas. A single surface
form may correspond to multiple lemmas, while
a single lemma may also be associated with mul-
tiple surface forms (although the latter does not
introduce ambiguity in one-to-one lemmatization
processes).

Therefore, in addition to polysemy, orthographic
variation presents another challenge, wherein a sin-
gle lemma can be represented by multiple surface
forms. Our analysis of the raw lemma dataset
revealed that 4,865 lemmas—comprising 60.65%
of the total—are associated with multiple surface
forms, indicating a significant presence of spelling
variants. Noticeably, among the 2,972 lemmas in-
correctly predicted by the model (i.e., the lemmas
that the model erroneously generated rather than
the correct lemmas that were misidentified), 2,788
errors were traced to these orthographic variations.
This finding suggests that a substantial proportion
of mispredictions can be attributed to the model’s
inclination to favor frequently occurring variants,
likely due to the disproportionate representation of
such cases in the training data. A clear example is
pānu I, which exhibits significant spelling variation
and is frequently mispredicted by the model.

Another illustrative case is the lemma šapârum,
which corresponds to 92 distinct word forms, many
of which exhibit considerable morphological com-
plexity and subtle variations (e.g., ši-ta-ap-pa-ra-
am, iš-pu-ra-am, šu-up-ra-nim, áš-tap-ra, li-iš-ur-
ma, etc.). While the model successfully predicts
the lemma in the majority of cases, it occasion-
ally produces an entirely nonexistent lemma. For
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instance, for “ša-ap-pa-ra-ak-kum”, the model in-
correctly generates “šapparakkum”—a form unat-
tested in the dataset. This pattern of errors further
underscores the model’s difficulty in distinguish-
ing between legitimate orthographic variants and
erroneous extrapolations, ultimately complicating
the lemmatization process.

4.1.3 Frequency Effects in Lemma Prediction
An important consideration in the model’s perfor-
mance is the effect of lemma frequency on pre-
diction accuracy. In the dataset, some lemmas
appear far more frequently than others, creating
a potential imbalance in the model’s learning pro-
cess. To systematically analyze this, we classi-
fied low-frequency lemmas as those appearing at
most once (Q1 = 1.0), mid-frequency lemmas as
those appearing between Q1 and Q3 (2 to 12 times),
and high-frequency lemmas as those appearing 13
times or more (Q3 = 13.0).

Our analysis revealed that 2,349 errors (79.0%
of the total errors) were made by the model on
high-frequency lemmas, 529 errors (17.8%) on
mid-frequency lemmas, and 94 errors (3.2%) on
low-frequency lemmas. The relatively high number
of errors on high-frequency lemmas suggests that,
despite their prominence in the training data, these
words still present challenges for the model. This
can be attributed to the polysemy and orthographic
variation issues discussed above, where the model’s
familiarity with a lemma’s high-frequency forms
does not guarantee its ability to handle less com-
mon senses or spelling variants. On the other hand,
low-frequency lemmas, while less problematic in
terms of sheer error counts, may be underrepre-
sented in the training data, leading to occasional
mispredictions when these lemmas do appear in the
validation set. For instance, in the training corpus
(comprising 290,294 instances), there were only
nine occurrences of the surface form “im”, map-
ping to seven distinct lemmas: s. âbum (2 instances),
ne’rârum (2 instances), epêšum (1 instance), eqlum
(1 instance), šapârum (1 instance), âlum (1 in-
stance), and makârum (1 instance). Given the ex-
tremely limited number of training examples, the
model struggled to learn the correct mappings, ulti-
mately producing an erroneous output (e.g., t.uppu
I). The lack of sufficient representation of variant
forms in the training data makes it even more diffi-
cult for the model to generalize accurately.

These findings highlight the impact of data im-
balance, where the model’s performance is skewed

toward frequently occurring lemmas while remain-
ing less reliable on rarer ones.

4.2 Comparative Evaluation on Archibab and
eBL Corpora

As part of our error analysis, we conducted an addi-
tional evaluation by dividing the validation set into
two subsets based on their sources: Archibab2 and
the Electronic Babylonian Library (eBL)3. This
allowed us to assess the model’s performance sep-
arately on texts from distinct historical periods
and linguistic traditions, providing further insights
into its strengths and limitations. The division
was necessary due to significant differences be-
tween these two corpora. Archibab consists of Old
Babylonian texts from the early second millennium
BCE, primarily legal, administrative, and episto-
lary documents. These texts adhere to lemmati-
zation conventions shaped by their historical and
linguistic context. In contrast, eBL comprises first-
millennium BCE literary and scholarly texts, which
reflect later linguistic developments and more stan-
dardized scribal practices. With approximately
1000 years separating these corpora, their divergent
lemmatization practices posed unique challenges
for the model.

To conduct this evaluation, we refined the dataset
by further splitting the training and validation sets
accordingly, after which we obtained the following
distribution of instances, as shown in Table 9. No-
tably, the Archibab dataset does not include sense
numbers in its lemmatization annotations, which
may influence the ability of certain models to han-
dle this subset effectively.

Source Training Set Validation Set

eBL 292,423 14,619
Archibab 13,150 660

Table 9: Data Distribution across Different Sources

By evaluating performance on each subset in-
dependently, we aimed to determine whether the
model could generalize across different stages of
cuneiform languages or whether it showed biases
toward a particular linguistic tradition. Specifi-
cally, we evaluated models trained on two different
datasets: the Raw Lemma Dataset and the General-
ized Lemma Dataset. The results are summarized
in Table 10 and Table 11.

2https://www.archibab.fr/home
3https://www.ebl.lmu.de

https://www.archibab.fr/home
https://www.ebl.lmu.de
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Model Dataset Accuracy
(%)

ByT5
(Raw Lemma)

eBL 82.39

ByT5
(Raw Lemma)

Archibab 39.85

mT5
(Raw Lemma)

eBL 79.30

mT5
(Raw Lemma)

Archibab 34.85

Table 10: Performance of models trained on the Raw
Lemma Dataset.

Model Dataset Accuracy
(%)

ByT5
(Generalized Lemma)

eBL 83.80

ByT5
(Generalized Lemma)

Archibab 55.76

mT5
(Generalized Lemma)

eBL 80.60

mT5
(Generalized Lemma)

Archibab 50.00

Table 11: Performance of models trained on the
Generalized Lemma Dataset.

Across all models, lemmatization accuracy on
the eBL dataset was significantly higher than on
the Archibab dataset. This discrepancy can largely
be attributed to the imbalance in training data,
where eBL data greatly outnumbered Archibab data
(292,423 vs. 13,150 instances, a ratio of approxi-
mately 22.2:1). This imbalance likely led the model
to develop a stronger bias toward the linguistic pat-
terns found in eBL, resulting in higher accuracy for
that subset.

Furthermore, models trained on the Raw Lemma
Dataset exhibited particularly low performance on
Archibab data. This is likely because these models
were trained to predict sense numbers, whereas the
Archibab dataset lacks sense-number annotations.
As a result, the models trained on Raw Lemma
data tended to incorrectly assign sense numbers
when lemmatizing Archibab instances, leading to a

notable decrease in accuracy. In contrast, models
trained on the Generalized Lemma Dataset showed
higher accuracy on Archibab, as they were explic-
itly trained to generalize across datasets without
relying on sense-number distinctions. This sug-
gests that generalizing lemma annotations can help
improve model performance when dealing with
corpora that follow different lemmatization conven-
tions.

5 Conclusion

The results from our experiments demonstrate that
the ByT5-small model outperforms mT5-small in
accuracy across both generalized and raw lemmati-
zation tasks. Results also indicate that predicting
raw lemmas (including sense numbers) is more
challenging than predicting generalized lemmas,
which is reflected in the lower accuracy scores for
the raw lemma dataset, suggesting that incorporat-
ing sense numbers adds a layer of complexity to
the task.

The effectiveness of ByT5’s byte-level tokeniza-
tion is particularly evident in Akkadian and Sume-
rian lemmatization, as it eliminates the need for
complex, language-specific tokenization strategies
that traditionally require specialized cuneiform
expertise. In previous approaches to processing
these ancient languages, pre-tokenization often re-
lied on in-depth linguistic knowledge, such as the
logo-syllabic tokenization employed by BabyLem-
matizer4—a process tailored to the structure of
cuneiform writing systems. In contrast, ByT5 lever-
ages a byte-level vocabulary of only 256 basic to-
kens, enabling it to represent all cuneiform sym-
bols and their transliterations without additional
tokenization preprocessing.

This is particularly beneficial for Akkadian and
Sumerian transliterations, which often include di-
acritics (e.g., š, t.), subscript numerals (e.g., 2 and
3, to distinguish between homophones or different
readings of the same cuneiform sign), determina-
tives (e.g., {d}) and special notations for broken
or uncertain readings (e.g., ?). ByT5’s ability to
handle these symbols directly allows for a simpler
yet effective architecture that achieves competitive
performance without relying on intricate domain-
specific tokenization rules. This suggests that byte-
level models can possibly serve as a more acces-
sible and adaptable approach to lemmatization in
low-resource, complex linguistic settings, reducing

4https://github.com/asahala/BabyLemmatizer

https://github.com/asahala/BabyLemmatizer
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dependence on specialized cuneiform processing
techniques.

We acknowledge that a key limitation of our
experiment is the lack of contextual integration.
Without leveraging broader contextual information,
further performance improvements are impossible,
particularly in distinguishing sense variations. Fu-
ture work could explore incorporating sentence- or
discourse-level context, as ByT5 with contextual
awareness might yield interesting results and fur-
ther enhance lemmatization accuracy. Additionally,
expanding the training data and refining the lemma-
tization pipeline may further improve performance,
particularly for datasets with sparse annotations
like Archibab.
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