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Abstract

Ancient texts often lack punctuation marks,
making it challenging to determine sentence
boundaries and clause boundaries. Texts may
contain sequences of hundreds of words with-
out any period or indication of a full stop. De-
termining such boundaries is a crucial step
in various NLP pipelines, especially regard-
ing language models such as BERT that have
context window constraints and regarding ma-
chine translation models which may become
far less accurate when fed too much text at
a time. In this paper, we consider several
novel approaches to automatic segmentation
of unpunctuated ancient texts into grammati-
cally complete or semi-complete units. Our
work here focuses on ancient and historical
Hebrew and Aramaic texts, but the tools de-
veloped can be applied equally to similar lan-
guages. We explore several approaches to
addressing this task: masked language mod-
els (MLM) to predict the next token; few-
shot completions via an open-source foun-
dational LLM; and the "Segment-Any-Text"
(SaT) tool by Frohmann et al. (Frohmann et al.,
2024). These are then compared to instruct-
based flows using commercial (closed, man-
aged) LLMs, to be used as a benchmark. To
evaluate these approaches, we also introduce
a new ground truth (GT) dataset of manually
segmented texts. We explore the performance
of our different approaches on this dataset. We
release both our segmentation tools and the
dataset to support further research into compu-
tational processing and analysis of ancient texts,
which can be found here https://github.
com/ERC-Midrash/rabbinic_chunker.

1 Introduction

Ancient languages lack many of the classic features
that modern languages use to clarify and disam-
biguate how to read them. These include spaces
between words, diacritics, punctuation and more.
This makes it challenging to determine sentence

and clause boundaries. Determining these bound-
aries is a crucial step in any attempt to decipher,
analyze and process ancient texts. In the past this
would be needed simply as a way to enable hu-
mans to read these texts, while in the modern era
this need has expanded as more and more NLP
tools are coming out, some of which require such
sentence segmentation as a prerequisite.

The issue of segmenting text into smaller chunks
is a well-known challenge, with a wide range of
use-cases and applications. Humans are many
times the direct beneficiaries of such a segmen-
tation, in the form of subtitles (Alvarez et al.,
2017; Ponce et al., 2023), Easy Read text (Calleja
et al., 2024), or text summaries created on a per-
segment basis (Cho et al., 2022; Aumiller et al.,
2021; Hazem et al., 2020). Furthermore, in recent
years we see more and more NLP tools that, while
powerful, are limited in the size of text they can
accept as input. Accordingly, for each of these
tools there arises a need to segment a large text into
smaller chunks. These include (but are not limited
to) BERT models (Gong et al., 2020) and LLM
context windows (Shi et al., 2024).

Although segmenting a text does not change the
text itself, the segmentation strategy one selects
will impact the quality of downstream tasks that
take the segmented text as input. Possible neg-
ative impacts include: cutting sentences in half;
reduced readability (e.g., in the case of subtitles);
loss of information and critical context (e.g. in the
case of LLM context and translation), etc. For this
reason, different domains and segmentation chal-
lenges also require different policies. A sentence
segmentation tool, such as discussed in Frohmann
et al. (2024), will not be sufficient for handling the
needs of chunking large texts for feeding BERTs,
where punctuation is assumed to be stable but topic
consistency and coherence is a concern. Different
tools might be needed for the same task but with
changes in the source text properties, such as lan-
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guage and genre (Homburg and Chiarcos, 2016;
Aumiller et al., 2021; Hazem et al., 2020).

In this paper, we explore several approaches to
the segmentation of ancient and historic Hebrew, as
a necessary prerequisite for effective training and
running of fine-tuned BERT models for punctua-
tion, morphological tagging, syntactic parsing, and
more. The segmented chunks are critical both for
creating training samples with which to fine-tune
BERT models for the aforementioned tasks, and
also at inference time, to ensure accurate results
from the models.

As such, our goal is to minimize damage at the
sentence level while bounding the length of these
segments, which we will refer to as "chunks". A
chunk can sometimes be composed of several sen-
tences or, conversely, it may be a syntactically inde-
pendent part of a single sentence. We are not aware
of any work done trying to address this specific
challenge w.r.t. ancient and historic Hebrew, and
thus draw upon related work from other (similar)
domains instead.

Another deficiency in this domain is a lack of
ground truth (GT) datasets by which to evaluate
these approaches. To this end, our work here
also provides the first GT dataset of manually seg-
mented texts for ancient and historical Hebrew, as
far as we are aware. We explore the performance of
our different approaches on this dataset. We release
both our segmentation tools and the dataset to sup-
port further research into computational processing
and analysis of ancient texts.

The structure of this paper is as follows. In Sec-
tion 2 we discuss related work, followed by Sec-
tion 3 where we discuss our GT test set and our
approach to curating it, and Section 4 that outlines
the metrics we used in this paper. With the back-
ground out of the way, we progress to Section 5 to
review the various segmentation tools we put to use
in this paper. Section 6 presents our results, demon-
strating the effectiveness of each of the tools we
explore here. We conclude with Section 7 where
we discuss the takeaways from this work.

2 Related Work

Several approaches have been used in the past for
sentence-level segmentation. One approach is to
segment the text using masked language models
(e.g., BERT models) to predict punctuation marks.
This has been done in various contexts. The ba-
sic idea is to use the punctuation marks as natu-

ral locations in which to segment the text. These
ideas worked well for segmenting Easy Read texts
(Calleja et al., 2024) and subtitle generation (Ponce
et al., 2023), yet it is not clear a-priori that they
would work well for other use-cases. Specifically,
it is unclear how the various BERT models would
behave when facing ancient and historic Hebrew.
Some Hebrew models, which we tested here, were
trained only on more modern texts, while others
were trained on texts where the punctuation is
inconsistent and unreliable. Thus, the degree to
which this approach can be useful is an open ques-
tion, which we explore here.

Then there are the approaches that use Genera-
tive AI, specifically instruct and few-shot flows. In
both of these, the flow prompts the GenAI tool to
reproduce the original text with added markers that
indicate where to segment it. These are state-of-
the-art approaches and very commonly used in the
literature for many tasks, well beyond segmenta-
tion. One challenge which these approaches have
had in the past is that, when asked to reproduce
the original text, the GenAI tool does not return a
perfect reproduction of the text. Instead, it adds,
subtracts or rephrases some of the original text. To
manage this issue at scale researchers have pro-
posed auxiliary scoring methods that provide an
approximate evaluation of the segmentation quality
(Calleja et al., 2024). This issue was also experi-
enced by us in this work. We make note of how it
impacted the overall viability of such approaches
in Section 6.

In addition to all the above, it is important to note
that ancient and historic Hebrew do not always con-
form to current grammar rules and conventions.
Specifically, sentences can formally come out to be
hundreds of words long, making a perfect segmen-
tation an impossible goal at times. See more on this
in Section 3, where we discuss how this impacts
the construction of a GT dataset.

Finally, it is worth noting here how our work re-
lates to existing notation works in ancient Hebrew,
specifically the ETCBC project (Eep Talstra Cen-
tre for Bible and Computer, 2023). The ETCBC
project provides linguistically annotated texts of the
Hebrew Bible, offering researchers a comprehen-
sive database with morphological, syntactic, and
semantic features encoded in a hierarchical text
model that facilitates computational analysis of bib-
lical Hebrew texts. Our work here tackles Rabbinic
texts which have a different set of challenges than
that of the Bible. Whereas the bible is already pre-
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versified into relatively short verses, the texts we
tackle are much longer, and can reach hundreds of
words. We hope that our work here will enable us
in the future to use auto-segmented ancient texts
and move to the next level of developing features
along the same line as done in ETCBC.

3 Methodology - Ground Truth Dataset

3.1 Approach

The idea of a ground truth for text segmentation
is a fuzzy concept, for several major and distinct
reasons.

First, there can be a clash between the natural
dynamics of the language and our segmentation
goals. On the one hand, for segmentation to be
useful, each segment must be capped in length. On
the other hand, language in general, and ancient
languages in particular, do not have a theoretical
bound on sentence length. In Rabbinic texts, for ex-
ample, it is very common to embed lengthy quotes
within a sentence, such that any break between
what comes before the quote and what comes af-
ter is detrimental to the grammatical structure of
the sentence. As such, it is not always possible
to segment the text in a manner that both meets
the hard length constraints required and simultane-
ously does no "harm" to the sentence. This, in turn,
complicates the process of generating a GT.

Second, to add to the previous point, ancient
languages often do not abide by a clear set of gram-
mar rules. As such, it is not always clear where the
correct place is to segment the texts, even in cases
where length constraints are not an issue.

In light of these two challenges, what is needed
is a gradient on which to scale the quality of a
segmentation technique. Specifically, we define
three levels of segmentation markers:

• Break (B) - Positions that are clear segmenta-
tion points. These correspond roughly to ends
of sentences, marked in modern Hebrew by a
period, a question mark or exclamation point.

• Partial (P) - Positions which reflect a natu-
ral pause in the sentence or a completion of
an idea. These correspond roughly to semi-
colons, colons before a list or a lengthy quote,
etc.

• Maybe (M) - Positions which should not be
used for segmentation in general, but are
clearly superior segmentation positions than

one word prior or subsequent to them. Many
times these can correspond to where a comma
would be placed, but not limited to such cases.

For example, taking a statement from the 3nd
century Hebrew treatise Mishnah, Tractate Avot,
Chapter 1, Unit 2:

היה הוא הגדולה כנסת משירי היה הצדיק Nשמעו
ועל התורה על עומד Mהעול Mדברי שלשה על אומר
!Mחסדי גמילות ועל העבודה ("Simeon the Just was
one of the last men of the Great Assembly. He
used to say: the world stands upon three things: the
Torah, the Temple service, and the practice of acts
of piety.")

One (possible, legitimate) segmentation would
be as follows:

הצדיק! Nשמעו [M] (Simeon the Just)
הגדולה! כנסת משירי היה [B] (was one of the last

men of the Great Assembly.)
אומר! היה הוא [P] (He used to say:)
עומד! Mהעול M Mדברי שלשה על [P] (the world

stands upon three things:)
התורה! על [M] (the Torah)
העבודה! ועל [M] (the Temple service)
!Mחסדי גמילות ועל [B] (and the practice of acts of

piety.)
Note, especially, the usage of "M" markups. An

ideal text segmentation would not segment the text
at these positions, as they break up the sentence
and "destroy meaning" in the process. However,
it is clearly worse to break up the sentences in a
position one word earlier or later. Therefore, we
consider a segmentation tool which would segment
at these positions as less than ideal, but which is
picking up on language semantics and thus better
than a random segmentation tool.

3.2 Text Selection

For the work we did in this paper, we completed
the annotation of 25 texts, each 200–400 words in
length. Table 1 presents the breakdown into dif-
ferent periods, as well as some high-level statistics
on the number of words and different markers in
our dataset. The core dataset consists of over 4000
words of Hebrew/Aramaic sources from the period
of the "Geonim", dated 8th-10th century. To this
we add an additional 3177 words of "Rishonim"
texts from the High Middle Ages, in order to test
whether the extent to which our results are valid for
later medieval Hebrew texts as well. This dataset
was annotated by a single annotater, with ten years
of study in a rabbinic seminary and highly skilled
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in parsing rabbinic texts. While this is a small test-
set and with only a single annotator, it is the first of
its kind to the best of our knowledge. In the future,
we plan on expanding the coverage of the dataset,
as well as gathering annotations from additional
annotators to allow for evaluation of interannotator
agreement. The latest version of the ground truth
dataset can be found here https://github.com/
ERC-Midrash/rabbinic_chunker.

Geonim Rishonim Total
# Texts 11 14 25
# Words 4088 3177 7265
#B 109 132 241
#P 198 178 376
#M 1086 775 1861

Table 1: Ground Truth Test Set - Breakdown

4 Analysis Metrics

4.1 Approach

In order to analyze the performance of a given text
segmentation tool, when comparing it with a GT
segmentation, we would naturally want both high
precision and high recall. Segmentation with high
precision would imply we segment only where ap-
propriate, and high recall would imply we capture
most meaningful segmentation positions. An im-
portant thing to note here is that high recall, after a
certain stage, provides diminishing returns, since
the downstream NLP tasks that the segmentation
will support are met once we do not exceed some
upper length limit of segment length. Thus, in this
paper we focus on precision, constrained by the
requirement that the produced chunks that are rea-
sonably sized. In our experience, having run fine-
tuned Hebrew BERT models across many ancient
Hebrew texts, we have found that input chunks of
up to 50 words work far better than longer chunks.
After the 50-word point, accuracy starts to drop
precipitously. Thus, our goal is an upper bound of
≈ 50 words per chunk.

When measuring performance, the question
arises: which segmentation markings in the GT
should we consider for purposes of evaluation?
The reasonable options, using the markup scheme
described in Section 3.1, are {B}, {B,P}, or all
three {B,P,M}. These represent progressively
more permissive/flexible segmentation of the same
text. Naturally, the performance scores of any tool

will be directly impacted by this decision, with pre-
cision monotonically growing and recall decreasing
as we move from strict to permissive segmentation.
We discuss this impact in the analysis section below
(Section 6).

4.2 Notation

Let L be the set of all layer combos we are in-
terested in evaluating. As just discussed, L =
{B, {B,P}, {B,P,M}}. For any l ∈ L we de-
fine Precisionα

l to be the precision of segmenta-
tion algorithm α over the GT when considering
only segmentation markers in l. The same goes for
Recallαl .

5 Automatic Text Segmentation Tools

Our research explores several distinct approaches
to automatic segmentation of unpunctuated (an-
cient) texts, each leveraging capabilities of dif-
ferent language models and neural architectures.
Each of these approaches offers different advan-
tages in terms of accuracy, computational require-
ments, and generalizability across different types of
texts1. Our implementation of the tools described
here are publicly available in our repohttps://
github.com/ERC-Midrash/rabbinic_chunker.

5.1 Few-Shot Learning with DictaLM2.0

The first approach uses DictaLM2.0, an open-
source LLM specifically trained on Hebrew texts
(Shmidman et al., 2024a). We use the base model,
rather than the instruct-tuned model, in order to
leverage the full raw strength of the model. Thus, in
order to elicit desired output from the model, we im-
plement a few-shot learning protocol (Brown et al.,
2020). The model is presented with several exam-
ples of input texts and correctly segmented versions
of these texts. This is then followed by the target
text requiring segmentation, after which the model
proceeds with a completion. This method takes ad-
vantage of DictaLM2.0’s specialized knowledge of
Hebrew language patterns, while requiring minimal
fine-tuning or additional training.

In this paper we provided the LLM four ex-
amples (shots). Each "shot" was comprised of a
JSON object with two entries - "raw" to reflect

1Our approach in this paper was to explore the type of
segmentation information already embedded among various
existing models. An alternative approach would be to train
models from scratch aimed at chunking, which would enable
us to take a variety of approaches, e.g., hierarchical chunking.
As explained, this is outside the scope of this work.

https://github.com/ERC-Midrash/rabbinic_chunker
https://github.com/ERC-Midrash/rabbinic_chunker
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https://github.com/ERC-Midrash/rabbinic_chunker
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the input text, and "chunked" to reflect the ex-
pected segmented text, which was the same text
but with double-slash ("//") markings as indication
for where we would expect a segmentation point.
See Appendix A.1 for the full specification of the
shots used.

5.2 Next-Token Prediction using Masked
Language Models (MLMs)

Our second approach follows a similar structure to
other works (e.g., Calleja et al. (2024)), leverag-
ing the masked language modeling (MLM) head of
pre-trained BERT models. Given a long text, we
use a sliding window fitted to the model context
window. Within that window, taking each word
in turn, we mask the word, and predict the sub-
sequent token. When delimiter tokens (periods
and/or colons, depending on the configuration we
test) appear among the top predictions, we mark
these positions as potential segment boundaries.
Once a delimiter appears in the top K (K = 5, 15
for different runs) options, we select the earliest
point to cut and move the window. This continues
until the text is fully processed.

In this paper, we use the following BERT mod-
els:

• HeBERT (Chriqui and Yahav, 2021) - The
first dedicated Hebrew BERT model, trained
with a 30K-token vocabulary

• AlephBERT (Seker et al., 2021) - An ex-
panded dedicated Hebrew BERT model,
trained with a 52K-token vocabulary, and a
much larger corpus.

• DictaBERT (Shmidman et al., 2023) - Cur-
rently the highest-performing BERT for mod-
ern Hebrew (Shmidman et al., 2024b), trained
with a 128K-token vocabulary.

• BEREL (Shmidman et al., 2022) - A BERT
model specifically trained for Historic He-
brew/Aramaic texts (128K-token vocabu-
lary)2.

5.3 Segment Any Text (SaT)

Frohmann et al. (2024) trained models with the ex-
press goal of providing a "universal approach for

2Note that while BEREL might have seen the GT texts in
its training data, the texts BEREL was trained on were almost
exclusively without punctuation marks. Thus, it will not have
had prior hints to the correct segmentation of the GT dataset.

robust, efficient and adaptable sentence segmenta-
tion", referred to as SaT. They specifically aim to
improve over the previous tool, WtP ("Where’s the
Point"), which was presented in (Minixhofer et al.,
2023). Improvements include handling of short
sentences and code-switching, as well as speeding
up the model by moving from character-based to
token-based processing.

The authors provided a working github project
containing their models and code for running their
tool (segment-any text, 2025). For our experiments
here, we selected their sat-12l-sm model, a 12-layer
multilingual model which the authors report had the
best multilingual performance (96.0 macro-average
F1 score, as reported at the time of writing this
paper).

5.4 Benchmark: Instruction-Based
Segmentation using Closed LLMs

All the methods mentioned thus far are open and
free for use. Our final approach utilizes state-of-the-
art closed-source language models (GPT-4o and
Claude Sonnet) in an instruct flow. One of the main
challenges in instruct-based flows is Prompt Engi-
neering (PE), which is notoriously brittle (Errica
et al., 2024). However, in our case we utilize the
likely fact that these models have seen plenty of
punctuated texts during training and are familiar
with punctuation tasks. Our approach is therefore
a 2-step flow: (a) prompt the LLM to punctuate
a given unpunctuated text (see Appendix A.2 for
prompt details) and then (b) segment the punc-
tuated text at major punctuation marks (periods,
colons, semicolons, and question marks).

Using these commercial models is helpful as an
evaluation tool. However, we do not investigate
these models in depth, for two reasons. First, these
require access to paid services, and also lack trans-
parency (e.g., model weights, open to fine-tuning
etc.), thus making them less appropriate for broader
use in the research community. Second, as we shall
discuss in the analysis section, they have proper-
ties that make them unstable and less suitable to
building reliable segmentation flows.

6 Performance Analysis

6.1 The Trouble with Generative LLMs

Generative models are known to be difficult to con-
trol via prompts when very precise output is re-
quired. In the case of segmentation, we find (as
others have commented as well) that using gen-
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erative models is fraught with instability, as the
LLMs at times inject or delete parts of the text they
are asked to segment. While these issues can be
handled with further work (modified instructions,
modified examples in few-shot, guided decoding,
and additional techniques), they are for the most
part heuristic improvements that cannot be ensured
with total certainty. Table 2 lists the number of
texts, out of 25, for which the flow did not add or
remove any text. All performance analysis in the
rest of Section 6 relates only to this subset of texts.

Genre Count
Total 25
AlephBERT 25
heBERT 25
Dictabert 25
BEREL 25
DictaLM2.0 17
SaT-12L-sm 25
gpt4o 22
claude-sonnet-3.5 v1 (20240620) 20
claude-sonnet-3.5 v2 (20241022) 12

Table 2: List of segmentation tools and the num-
ber of GT texts that they segment correctly, i.e., w/o
adding/removing text to the input text. Generative mod-
els demonstrate instability in this flow, making them
less suitable to be used as part of a streamlined flow.

Figure 1

6.2 Segmentation Evaluation: Chunk Size
In our problem formulation, we want to have seg-
mentation occur at reasonable places while ensur-
ing that segments are not too long. Let us begin
by reviewing the distribution of segment lengths as
output by the different tools.

Figure 2

Figure 3

Fig. 1-4 show the performance of BEREL,
DictaBERT, AlephBERT and HeBERT respec-
tively, w.r.t. meeting chunk length constraints. In
these, we collect all the chunks from across all 25
test samples and plot chunk length histograms. As
we can see, all BERT-based models maintain our
upper-limit of 50 words, with a small number of
outliers. Going deeper in the search for candidate
delimiters (K=15) seems to reduce those outliers
as well. Note that this is not a straightforward re-
sult, as earlier segmentation choices could, at times,
cause later segmentation opportunities to be fewer,
thus lengthening future chunks.

Finally, we compare this performance to that of
the Generative LLMs and SaT (Fig. 6). We can see
that they too abide by the limits we were aiming for,
though it is clear that the LLMs are concentrating
the segment lengths on the shorter side. This might
be due to the fact that they start by fully punctuating
the text using modern standards, which could result
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Figure 4

in shorter sentences and therefore shorter chunks.

6.3 Segmentation Evaluation: Precision
Satisfied that our segmentation tools are bound by
length as required, let us now turn and check how
good they are at finding good positions to segment
the text. We focus first on the performance re-
garding Geonic texts of the first millennium and
then consider whether to what degree this perfor-
mance is maintained when the same methods are
run slightly later medieval Hebrew texts of the Ris-
honim period.

Figure 5 shows how precision of segmentation
behaves for Geonic texts, as a function of tool and
segmentation strictness in GT. Moving from left
to right, we see the results for the closed-model
LLMs, then the few-shot flow over DictaLM2.0.
After that we have SaT-12L-sm, and then finally
we review our three Hebrew BERT models. For
each of the three BERT models we present here,
there are four results, corresponding to the four
variations of using them: whether we use periods
or also colons to predict a segmentation point, and
how deep in the options-stack we look in search
of these delimiters (K = 5 or 15). Figure 7 shows
the same plot, but this time for the entire dataset,
combining Genoim and Rishonim.

General Trends. As expected, as we move from
top to bottom and restrict segmentation to more
obvious markers, we see a decrease in precision.
From a birds-eye view, we can see that most models
have similar median performance, and experience
the same trends as we move from top to bottom.
Specifically, it seems from this that the open models
compete well with the closed-model LLMs, at least
for the current instruct prompts we used here. Note

also that, as mentioned in Section 6.1 and shown
in Table 2, the generative models results are not for
the full dataset, but rather limited to those where
the model did not modify or corrupt the text.

Best MLM. The best performance among the
MLM solutions was seen with BEREL, the BERT
model trained on Historical Hebrew. Especially
for the most relaxed mode (BPM) it has near-
perfect precision, and outperforms all other so-
lutions. (Note once more that claude-sonnet-v2,
which also seems to do well for BPM, is scored on
only half of the texts, which makes it difficult to
draw conclusions from that performance).

Performance of SaT. The model provided by
Frohmann et al. (2024) seems to do as well and
even better than all MLMs, with the exception of
BEREL. This holds for all three marker-selection
options. As this is a universal model, compared
to the other tools which were all trained specifi-
cally on some variation of Hebrew language, this
is quite impressive and satisfying, considering that
the competition has an "unfair advantage".

The above points hold both when limiting our
view to the earlier Geonic texts, as well as when
expanding our view to include the Rishonim. This
is encouraging, as it means our method will serve
us well not only for ancient Hebrew, but for broader
sections of historic Hebrew as well.

7 Conclusion

In conclusion, we have identified a practical and
high-performing method of segmenting historic He-
brew texts, using the MLM-based method with the
BEREL BERT model for historic Hebrew. We
have shown that it far outperforms SaT, and that
its performance rivals that of the LLMs, without
the instability of the LLMs, and without having
to rely on the commercial/closed nature of the big
LLMs. Furthermore, we release our code so that
this method can be easily run by the NLP commu-
nity any other Hebrew text, plugging in any desired
Hebrew BERT model as desired. Finally, we re-
lease the test dataset, the first of its kind, so that
future segmentation models developed by the NLP
community can be evaluated and compared to the
benchmarks that we report here.
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Figure 5: Precision of each method, as dependent on the GT labels we use, for the 8th-10th century Geonic texts.
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Figure 6
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A Appendix: LLM Prompts

In this appendix, we share the prompts used when
using Generative AI LLMs for segmentation, to
allow full reproducibility.

A.1 DictaLM2.0 Few-shot prompt
Figure 8 provides the shots we used for the few-
shot flow with DictaLM2.0 (Shmidman et al.,
2024a). For each shot we provided the raw text
(using the "raw" key) and the segmented text (us-
ing the "chunked" key"). Segmentation points were
marked using double-slash ("//"). Few-shot flows
work by providing the LLM the shots as context,
and then the input text as a new input, and then
allowing the LLM to continue by completing the
output. LLMs have been found to pick up on pat-
terns in the "shots" and then apply them directly to
the new input text.

It is important to note that few-shot flows are
very brittle. Specifically, they will react differently
even when the order of the shots is changed, or the
key names (in our case - "raw" and "chunked") are
changed. Thus, for reproducing the results shown
in our paper, please make sure to use the exact
setup we used, as can be found in our github repo.

A.2 Closed LLMs Instruct prompt
For the closed LLMs, we used the following
prompt template:

"please take the following unpunctuated
text, and punctuate it. Punctuation
includes periods, commas, question
marks, semicolons and colons. Other than
punctuating, keep the text exactly as
it is. If a word is clipped at the end,
like , leave it like that. Return the
punctuated text between <punctuation>
tags: $text Punctuated text:"

During runtime, the $text variable is assigned the
value of the inputted text. The "Punctuated text"
text is the prefix of the reply, which for models
such as Claude is a "hint" to nudge the model into
following the instructions.
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(a) shot #1 (b) shot #2

(c) shot #3 (d) shot #4

Figure 8: Shots used in few-shot segmentation flow using DictaLM2.0. Note how we varied the type of input, and
specifically ensured that some cases had segmentation points at the end of the text and some not, so as to encourage
the model away from simplistic segmentation rules such as "end of line".
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