
Proceedings of the 1st Workshop on AI and Scientific Discovery: Directions and Opportunities, pages 58–69
May 3, 2025 ©2025 Association for Computational Linguistics

LLM-Assisted Translation of Legacy FORTRAN Codes to C++: A
Cross-Platform Study

Nishath Rajiv Ranasinghe1, Shawn M. Jones1, Michal Kucer1, Ayan Biswas1,
Daniel O’Malley1, Alexander Buschmann Most1, Selma Liliane Wanna1,

Ajay Sreekumar2

1Los Alamos National Laboratory, Los Alamos NM 87545,
2School of Information, University of Arizona, 103 E 2nd St 4, Tucson, AZ 85721

Correspondence: ayan@lanl.gov

Abstract
Large Language Models (LLMs) are increas-
ingly being leveraged for generating and
translating scientific computer codes by both
domain-experts and non-domain experts. For-
tran has served as one of the go to programming
languages in legacy high-performance comput-
ing (HPC) for scientific discoveries. Despite
growing adoption, LLM-based code transla-
tion of legacy code-bases has not been thor-
oughly assessed or quantified for its usability.
Here, we studied the applicability of LLM-
based translation of Fortran to C++ as a step to-
wards building an agentic-workflow using open-
weight LLMs on two different computational
platforms. We statistically quantified the com-
pilation accuracy of the translated C++ codes,
measured the similarity of the LLM translated
code to the human translated C++ code, and
statistically quantified the output similarity of
the Fortran to C++ translation.

1 Introduction

A Large volume of scientific computational soft-
ware implemented in HPC environments has been
written in programming languages such as Fortran
and C due to their superior performance. However,
recent advancements in computer hardware are not
fully utilized by older generations of Fortran, and
these legacy codes often encounter difficulties with
memory allocations. There is a lack of human re-
sources to maintain and improve these code-bases
for mission critical applications in the future (Ship-
man and Randles, 2023; Pietrini et al., 2024).

Propriety (e.g. ChatGPT) and open weight (e.g.
Llama (Touvron et al., 2023)) LLMs have vastly
improved code generation (Wang and Chen, 2023)
and code translation between modern programming
languages (Jiao et al., 2023) due to widespread
availability of training examples, but not without
difficulties (Pan et al., 2024). As efforts expand
to translate scientific software from legacy pro-
gramming languages to more modern languages via

agentic workflows, there is a need for systematic
methods to evaluate the effectiveness of machine
generated scientific software.

However, very few studies exist for LLM-
assisted code translation from Fortran to C++, pri-
marily due to a lack of quality training data sets.
A recent study (Lei et al., 2023), compiled pairs
of OpenMP Fortran and equivalent C++ codes to
evaluate LLM code translation and evaluated their
results using both quantitative (e.g., CodeBLEU
score (Ren et al., 2020)) and qualitative approaches
(e.g., human evaluation). There is also a lack of
LLM-based Fortran to C++ code translation tools
that can be readily deployed to assist developers
in mission critical and secure environments. Fur-
thermore, earlier attempts to translate code from
Fortran to C++ have not accounted for successful
compiles or output evaluation of the translated code
(Theurich et al., 2001).

In this study, we make several contributions.
We conduct an analysis of translating open-source
code-bases using open-weight models. Our work-
flow (Figure 1) is designed to be agnostic of
any specific LLM or computational platform (e.g.,
vLLM), building towards a set of standardized eval-
uation measures for machine-generated code trans-
lation. We evaluate the similarity to the human-
translated target code using the common Code-
BLEU measure (Ren et al., 2020), how much of
the translated code compiles (compilation accuracy
(Wen et al., 2022a)), and how well the output of
the compiled translated code matches the original
compiled Fortran code (output similarity). We also
categorize any compile errors to demonstrate dif-
ferent behaviors among LLMs. To our knowledge,
this is the first attempt to statistically quantify code
translation accuracies of open-weight LLMs be-
tween computational platforms, the first such study
involving Fortran, and the first to apply all of these
evaluation techniques together.

58



Figure 1: Regardless of LLM, our workflow evaluates several parts of the LLM’s code translation, starting by
comparing it to a human-translated ground truth with CodeBLEU, then moving to evaluate how well the translation
compiles and executes. Finally, the workflow compares the output between the original Fortran code and the
translated code’s C++ executable.

2 Background

Despite the emergence of numerous modern pro-
gramming languages, Fortran remains integral in
legacy scientific applications, HPC, and areas re-
quiring intensive numerical computations, such as
climate modeling (Méndez et al., 2014), computa-
tional fluid dynamics (Derlaga et al., 2013), solv-
ing inverse problems (Cuer and Bayer, 1980), full
waveform inversion (Komatitsch and Tromp, 2002),
subsurface flow (Mills et al., 2007), space appli-
cations (Ocampo and Senent, 2006), crystallog-
raphy (Grosse-Kunstleve et al., 2002), radiation
transport (Waters et al., 2007) and structural analy-
sis (Nardelli, 1995). Unfortunately, Fortran is no
longer a popular language (Shipman and Randles,
2023) and finding assistance from the community
for future development is challenging. We chose
C++ as a target language because it has more com-
munity support, but it also has a number of desir-
able features for scientific computing in the HPC
environment, including its highly efficient feature
set, template techniques (Veldhuizen and Jernigan,
1997), the standard template library (Musser and
Saini, 1995), and advanced memory management
(Attardi et al., 1998). Unfortunately, efforts to trans-
late legacy code-bases from Fortran to C++ have
encountered several challenges stemming from dif-
ferences in language paradigms, syntax, and stan-

dard libraries.
LLMs have emerged as an efficient and robust

method for translating code between programming
languages. Many LLMs exist (de Groot, 2024), and
there are different computational platforms (Emani
et al., 2022) for executing LLMs. In this work,
we evaluate two such platforms: vLLM and Sam-
baNova. vLLM is a library providing a common
interface for efficiently serving different LLMs
across different hardware architectures utilizing
the PagedAttention algorithm (Kwon et al., 2023).
SambaNova is an AI accelerator platform that pro-
vides specialized hardware for executing LLMs
(Prabhakar et al., 2024). We compare both in this
paper.

3 Related Work

Fortran to C++ translation has traditionally been
conducted manually by experienced programmers.
There have been few efforts to convert these legacy
code-bases from Fortran to C++ using source-to-
source translation tools (Grosse-Kunstleve et al.,
2012; Feldman, 1990). However, the translated
codes from these sources lack readability and re-
quire manual changes to implement memory man-
agement functionality (Theurich et al., 2001).

Previous systematic studies of code translation
between pairs of modern programming languages

59



such as C, C++, Go, Java, and Python using LLMs
have been met with varying degree of compila-
tion success from 2.1 to 47.3% for code specific
(codeGEN, CodeGenX, StarCoder) and text based
general purpose (GPT-4, Llama-2, TB-Airboros,
TB-Vicuna) LLMs with GPT-4 having the most
success (Pan et al., 2024). Recent efforts to create
larger code bases of example training data sets for
popular and niche programming languages have
improved the LLM assisted translations between
more modern languages (Yan et al., 2023). A recent
study (Chen et al., 2024) utilized an LLM based
agentic method that seamlessly integrates multiple
verification processes into iterative cycles for trans-
lating Fortran to C++. This approach employs a
questioner-solver module to delegate referencing
and decision-making tasks to separate LLMs, a
multi-turn dialogue collection that effectively cap-
tures the nuanced aspects of translating and finally
fine-tuning of three open-weight LLMs using the
data produced to improve the accuracy of the mod-
els. Our study differs from theirs (Chen et al., 2024)
by evaluating the capabilities of open-weight LLMs
that can be readily deployed in a mission critical
environment to translate Fortran to C++ on differ-
ent computational architectures. We also differ by
our choice in evaluations. We include compilation
accuracy, the translated code’s similarity to human
translated codes, and a comparison of the similar-
ity of outputs between our ground truth Fortran
codes and the translated code from the LLM. Un-
like other studies, we also apply the open-source
Rosetta code repository (Rosetta Code Community,
2025) as a data source for evaluating the translation
of Fortran to C++.

4 Methodology

4.1 Data

To evaluate how well each LLM’s translation
matches a human translation, we required not only
Fortran code, but ground truth C++ translations.
We acquired two datasets containing pairs of For-
tran and equivalent C++ codes. Rosetta Code
(Rosetta Code Community, 2025) provides cod-
ing examples for the same programming task in
multiple languages. We created a web scraper to
produce a dataset of 243 Fortran and their corre-
sponding C++ examples from the Rosetta Code
website in October 2023. We retained only those
examples for which there was at least one Fortran
and corresponding C++ example per programming

task. Our second dataset consists of 101 examples
from the DataRaceBench (DRB) benchmark (Liao
et al., 2017) obtained from the OpenMP Fortran to
C++ dataset (Lei et al., 2023) that contains the same
code implemented in different languages in support
of the benchmark. From each dataset, we selected
fully developed 344 computer programs with vary-
ing degrees of complexity, to ensure ground truth
Fortran and C++ programs compile.

4.2 LLMs
Model parameters in LLMs are preset configura-
tions that determine the model’s architecture and
training process, such as the number of layers,
learning rate, and batch size. The number of pa-
rameters varies between LLMs. However, prior
work (Hoffmann et al., 2022) demonstrated that the
performance of LLMs does not necessarily linearly
increase with the number of parameters.

We chose LLMs that are well regarded by in-
dustry, can be deployed in a mission-critical en-
vironment, allow for local deployment to satisfy
privacy concerns, have a diversity of model param-
eter sizes for comparison, and are also supported by
the vLLM and SambaNova Cloud platforms (Sam-
baNova). Table 1 shows the LLMs we selected
based on this criteria.

4.3 Workflow
Figure 1 shows the evaluation process we applied
to each Fortran code and LLM. We start by build-
ing each full prompt by combining each Fortran
code with the prompt in Figure 2. Using this full
prompt, we requested that each LLM convert the
Fortran code to C++. Because LLMs are known to
vary their responses due to their stochastic nature,
we issued the same prompt multiple times for each
Fortran code. We set up vLLM (Kwon et al., 2023)
using onsite hardware at the Los Alamos National
Laboratory (DGX hardware equipped with 8 A100s
NVIDIA GPUs along with 2 AMD EPYC 7742 64-
Core Processors) and issued the same prompt 128
times per Fortran code per LLM. We utilized tem-
perature of 0.8, min-p of 0.05, top-p of 0.95, and
set the maximum generation length to 8192 tokens
across the LLM models. We also used the Ope-
nAI Python API library to prompt Llama models
hosted by SambaNova Cloud, which is equipped
with SambaNova SN40 Reconfigurable Dataflow
Units (RDUs) (Prabhakar et al., 2024). Due to
rate limits on the SambaNova Cloud, we only exe-
cuted the same prompt 25 times per Fortran code

60



Table 1: The LLMs used in this study.

LLM # parameters Computational platform
Open code interpreter 33B vLLM
Llama 3.1 70B vLLM
Mistral Large Instruct 2407 123B vLLM
Llama 3.3 70B vLLM
Llama 3.1 8B SambaNova Cloud
Llama 3.1 70B SambaNova Cloud
Llama 3.1 405B SambaNova Cloud
Llama 3.3 70B SambaNova Cloud

Figure 2: The prompt used in this study.

per LLM. We utilized temperature of 0.8, top-p of
0.9, and context length of 4096 across the Llama
models in the SambaNova Cloud. From each com-
pletion, we recorded the C++ code and compared
it to the ground truth C++ code from our datasets
via CodeBLEU score (Ren et al., 2020). From
there, we evaluated the Fortran code’s compilation
accuracy and output similarity.

4.4 Similarity to human translated code
CodeBLEU (Ren et al., 2020) measures how well
a machine translation matches a human translation
for the same code. The CodeBLEU score contains
four dimensions of comparison: matching n-grams,
matching weighted n-grams, Abstract Syntax Tree
matching, and data-flow analysis. We apply the
human ground truth translation from each dataset
to arrive at a CodeBLEU score. We perform bias
analysis of the translated C++ codes across various
LLMs, as an indicator of the code translation qual-
ity. We use CodeBLEU scores of the human trans-
lated C++ codes with their corresponding machine
translated codes. In our scenario, since we run the
same translation command prompt for a given code
multiple times and we might get variations in the

code translation, our bias analysis takes into ac-
count this stochasticity in LLM-based code genera-
tion. To perform this, for each LLM, we first calcu-
late individual average CodeBLEU scores for each
ground truth Fortran file across the trials. Since
CodeBLEU depicts similarity, we calculate bias
(that represents error) as Bias = 1−CodeBLEU .
With this formulation, now we can use these aver-
aged bias scores to approximate a distribution using
a non-parametric Kernel Density Estimate (KDE)
approach(Chen, 2017). In this method, there exist
different choices for its kernel types; such as Gaus-
sian, triangular, rectangular, and the Epanechnikov
kernel (Gramacki, 2018). Generally, variations due
to kernel types are considered to be less signifi-
cant compared to the choice of kernel bandwidth
(Silverman, 1998). Silverman’s rule of thumb for
bandwidth selection generally produces smooth
and good-quality density estimation (Biswas et al.,
2016). We use this approach in our work and gen-
erate the KDE plots, as shown in Figure 3a for
vLLM based translated codes and Figure 3b shows
the KDE plots for the SambaNova Cloud based
translated codes.

61



Table 2: Classification of compiler errors used in this work.

Compile Error Category Error topic String matches from g++ compiler
Syntax Error Missing operators, missing delimiters, expected

incorrect usage of tokens, before
or anything else resulting from poor programming
syntax

error: no match for ‘operator>=

stray “’ in program
error: void value not ignored as it ought to be
error: ‘std::std’ has not been declaredcannot be used as a function
error: assignment of read-only locationerror: invalid initialization
of non-const reference of type
error: lvalue required as increment operand
error: no matching function for call to
error: missing terminating " character
error: too many arguments to function

Type Error An issue with use of data types invalid conversion
cannot convert

Linker Error The implied use of external libraries is not a member of ‘std’
error: aggregate ‘std::stringstream ss’ has incomplete type and
cannot be defined
undefined reference

Declaration Error Declaring variables before use error: too many initializers
was not declared
has not been declared

Semantic Error Proper application of functions or operators invalid operands
invalid use of

Scope Error Using variable outside of their established scope not in this scope
is not captured

Template Error Invalid use of C++ templates wrong number of template arguments
File and I/O Error the code refers to nonexistent filesystem resources No such file or directory
Memory Error Incorrect use of memory operations invalid use of

delete
Other Error Anything else not covered with the string matching

above

4.5 Success of compilation
Compilation accuracy of the translated C++ mea-
sures how many translations successfully compile
without errors (Wen et al., 2022b). We compiled
each translated C++ using the g++ v5.3.0 com-
piler on Red Hat Enterprise Linux Workstation re-
lease 7.9. If a C++ translation failed to compile,
we recorded the compiler output and did not pro-
ceed further with that translation (Figure 1). We
reviewed the compiler output and categorized each
error as shown in Table 2. The

4.6 Similarity of outputs
Output similarity compares the output of each For-
tran program to that of its C++ translation gen-
erated from the LLM. We compiled each Fortran
program and ran the resulting executable to cap-
ture its output. Then, we did the same with each
LLM-generated C++ translation that successfully
compiled. Outputs from scientific programs consist
of text and numeric data. Humans may look at two
outputs and consider them the same where a di-
rect string match would score them radically differ-
ent (e.g., b(50,50)= 0.00000000 vs. b(50,50)=
0.0 and Fib for 30 832040 vs. Fib for 30
= 832040.0). We first tokenized each output us-
ing the NLTK (Bird et al., 2009) word_tokenize
function to produce a list of strings. Then, we at-
tempted to convert each token to a floating point

number using the Python float function. If the
token could be converted, we rounded it to a pre-
cision of 4 decimal places. If not, then we left the
token as a string. We, then applied a Jaro-Winkler
(Jaro, 1989; Winkler, 1990) score to each set of
tokens to measure their similarity.

Thus, by the end of the workflow we have eval-
uated each translation in comparison to a human
translation, how well it compiles, and whether it
produces the same output as the Fortran submitted
to the system at the beginning.

5 Results and Discussion

5.1 Similarity to human translated code

CodeBLEU scores demonstrate how well an LLM’s
code translation matches a human translation of the
same code. Figure 3 shows the bias of CodeBLEU
scores between LLMs. Scores on the x-axis pro-
vide a distance between LLM generated C++ trans-
lations and their human ground truth equivalents.
Higher scores that indicate that the translation is far-
ther than the ground truth and thus a poorer match.
At first glance Figure 3 appears to show that there is
not much difference between LLMs, but the peaks
give a more nuanced story.

Figure 3a shows that Llama 3.1 70B leads with
the highest rate of translations that do not match
human ground truth. OpenCodeInterpreter 33B

62



(a) vLLM (b) SambaNova

Figure 3: Kernel density estimate plots demonstrating the distribution of total bias (1 - CodeBLEU Score) for each
Fortran translation demonstrates different distributions per execution platform.

(a) vLLM (b) SambaNova

Figure 4: Compilation accuracy of each LLM by execution platform shows that the increase in the number of model
parameters is proportional to the increase in compilation accuracy.

(Zheng et al., 2025) has the lowest peak outper-
forming Mistral Large. However, Mistral does have
a small peak lower on the x-axis, indicating many
more that might be closer to human ground truth.

SambaNova has a similar peak in Figure 3b,
indicating a higher number of LLM translations
that do not match human ground truth. Llama
3.1 8B’s CodeBLEU bias is highest. Thus, its
translations are least consistent with human trans-
lations. In contrast, Llama 3.1 405B has the lowest
peak, but appears only marginally better in consis-
tency than other models. These results with the
commonly-used CodeBLEU metric demonstrate
that larger models provide translations closer to hu-
man ground truth, but the amount of similarity in
these distributions necessitate our other measures
to more clearly separate performance.

5.2 Success of compilation
Figure 4 shows the compilation accuracy results
for each computational platform and LLM. In both
cases, we see an increase in the number of suc-
cessful compiles as one increases the number of
parameters in the LLM. Additionally, as seen in
Figure 4a, while the LLMs served by vLLM appear
to generate more successfully compilable code,
OpenCodeInterpreter generates completions from
which we cannot extract code. In contrast, Sam-
baNova’s results in Figure 4b show no instances
where LLM completions produced code that could
not be extracted. Additionally, we see that, for
vLLM, Llama 3.1 70B and Llama 3.3 70B have
comparable performance. This is not the case with
these two LLMs on SambaNova Cloud, where
Llama 3.1 405B and Llama 3.3 70B have similar
performance.

63



(a) vLLM (b) SambaNova

Figure 5: Each Fortran code is plotted along the x-axis while the count of tries for a corresponding C++ translation
is placed on the y-axis. Translations that compiled successfully are shown in green, and those that failed are marked
in red. Note same Fortran code is not always shown at the same point in the x-axis. Compilation accuracy of each
translated Fortran program differs per model with some LLMs having more difficulty translating certain codes than
others. We note that LLMs with a higher number of parameters have more success per Fortran code.

Figure 5 demonstrates the distribution of compi-
lation accuracy for all Fortran codes. These sand-
charts represent each Fortran code on the x-axis.
The y-axis represents each translation of that code
into C++. Green shows translations that success-
fully compile. Red shows failures. By executing
each LLM multiple times we can see the level of
variation in their responses and note that not all
translation failures occurred equally. Some trans-
lations were always successfully compiled while
others were more varied. We also note the same
pattern of improving compilation accuracy among
all Fortran codes as the number of parameters in-
creases across models. vLLM shows more con-
sistent translations (green rising closer to the top)
while SambaNova shows a dramatic improvement
for Llama 3.1 405B over Llama 3.3 70B that was
not apparent in the raw numbers shown in Figure
5b.

Figure 6 shows the distribution and categoriza-
tion of of compile failures. In Figure 6a, most of the
compile errors generated from the LLMs served in
vLLM are linker errors, representing the assumed
inclusion of libraries not specified via an #include
directive. In contrast, in Figure 6b the majority of
the compile errors shown for LLMs served in Sam-
baNova Cloud are syntax errors. Again, we see

that Llama 3.3 70B and Llama 3.1 405B have com-
parable performance, though their compile error
distribution varies.

5.3 Similarity of outputs

Figure 7 shows the distribution of Jaro-Winkler
scores comparing the outputs of the ground truth
Fortran programs to the outputs of their LLM C++
translations. We note the same familiar pattern
of increasing number of parameters leads to bet-
ter mean similarity of inputs. Mistral Large with
vLLM in Figure 7a and Llama 3.1 405B with Sam-
baNova in Figure 7b both outperform Llama 3.3
70B in this case. Mistral Large, however produces
a tighter distribution of similar outputs.

6 Conclusion

We conducted an analysis of how well open-weight
LLMs translate open-source code-bases from For-
tran to C++. We presented an LLM-independent
and platform-independent workflow for our eval-
uation. This workflow evaluates several elements
of translation quality. We consider the similarity
between human ground truth and machine trans-
lation, if the translated C++ code compiles, what
errors are encountered if the compile fails, and
finally how well the resulting C++ translation’s ex-

64



(a) vLLM (b) SambaNova

Figure 6: Distribution of compile error categories for each C++ translation shows that LLMs produce different
errors in their translated code.

ecutable produces the same output as the original
Fortran code.

We ran this workflow with LLMs on both the
vLLM and SambaNova Cloud platforms. Because
LLMs do not always produce the same output each
time, we ran 128 instances of the same translation
on vLLM and 25 on SambaNova to ensure we had a
sizeable sample space. Unsurprisingly, we discov-
ered that those LLMs with higher model parameter
counts tend to produce better results. Our code-
BLEU analysis reveals that Mistral Large served on
vLLM and Llama 3.1 405B served on SambaNova
Cloud produce codes that better matches human
translations. Our compilation evaluation demon-
strates that Mistral Large on vLLM and Llama 3.1
405B on SamaNova Cloud have higher counts of
compilable code, with Llama-3.3 70B being compa-
rable. We demonstrated that not all Fortran codes
were translated consistently, showing that some
LLMs produced C++ translations that more consis-
tently compiled for a given Fortran code. We also
found that the translated codes from vLLM that
failed to compile mostly had linker errors while
those from SambaNova largely contained syntax
errors, even for the same LLM model. Finally, we
showed that, for successful compiles, the output of
the translated executables better matched the out-
put of the original Fortran with Mistral Large on
vLLM and Llama 3.1 405B on SambaNova Cloud,
with Llama 3.3 70B being comparable on both plat-
forms.

The implications for scientific computing are
mixed. The state of the art shows the code bases in
Fortran can be translated to C++ readily, but also
demonstrate that no LLM on either platform was
free of error. We still require a human-in-the-loop
for code translation.

7 Limitations

While our study presents a workflow for systematic
evaluation of open-weight LLMs for Fortran-to-
C++ code translation, there are several limitations
that must be acknowledged: Our evaluation work-
flow is not yet packaged into a standalone tool
that can provide Fortran-to-C++ translations along
with compilation statistics and output similarity.
Automating this workflow would make scientific
discovery more accessible for researchers working
in HPC environments. We did not present our at-
tempts to improve compilation accuracy through
agentic workflows by incorporating the error mes-
sages generated from compiling the codes pro-
duced by the LLM into a automatic dialog with
the LLM. Our initial efforts in that direction were
shown to increase the compilation accuracies of the
translated codes and we are pursuing the agentic
workflows in a future study.

Additionally, our study could be enhanced by
incorporating more complex and extensive For-
tran code-bases, such John Burkardt’s data set
(Burkardt, Accessed: 2025-01-30) which are highly

65



(a) vLLM (b) SambaNova

Figure 7: Distribution of Jaro-Winkler scores for output similarity comparison between original Fortran executables
and LLM C++ executables. Green triangles represent means while green lines are medians.

relevant to scientific computing. Furthermore,
Chen et al. (Chen et al., 2024) showed that fine-
tuning LLMs on Fortran to C++ datasets could
improve each model’s CodeBLEU scores by 1.5
to 3.3 times with up to a 92% increase in success-
ful compilations. Focusing our study’s analysis on
models which have been fine-tuned for Fortran to
C++ translation could help create more useful tools
for developers.

Further improvements could be made with
prompt design and in this study, we used the same
prompt for every LLM. It is possible that further ex-
ploration of prompt design could uncover that dif-
ferent models perform better with different prompts
(Liu et al., 2023; Knobloch et al., 2025). Our
study focused solely on open-weight LLMs such as
Llama and Mistral. While comparisons do exist for
both natural language translation as well as coding
(without translating), our literature review found a
lack of studies comparing open-weight LLMs to
proprietary models like GPT and Gemini for code
translation. Including these models, along with the
source-to-source translation tools (Feldman, 1990;
Grosse-Kunstleve et al., 2012) which were popu-
lar for Fortran to C++ in the past could provide a
clearer benchmark for our results. Additionally, in
this study, we did not test the capabilities of the
new generation of reasoning models (OpenAI’s o1,
o1-mini, o3-mini; DeepSeek-R1; and Anthropic
Claude 3.7 Sonnet) to translate Fortran to C++.
However, our workflow delivers a plug-and-play

solution to test any LLMs code translation capa-
bilities on any computational platform without any
modifications.

In this study, we did not consider improving
code translation accuracy using few-shot learning
via Retrieval Augmented Generation (RAG) as it
is studied elsewhere (Bhattarai et al., 2024).

8 Acknowledgments

This work was supported by the Computational
Systems and Software Environments subprogram
of National Nuclear Security Administration’s
(NNSA’s) Advanced Simulation and Computing
program through Los Alamos National Laboratory
(LANL). LANL is operated by Triad National Secu-
rity, LLC, for the National Nuclear Security Admin-
istration of U.S. Department of Energy (Contract
No. 89233218CNA000001). This research used re-
sources provided by the Darwin testbed and DGX
pod at LANL which is funded by the Computa-
tional Systems and Software Environments subpro-
gram of LANL’s Advanced Simulation and Com-
puting program (NNSA/DOE). We are also grateful
to SambaNova Systems, Inc for providing access
to SambaNova Cloud and technical support. This
work is approved for unlimited release with an LA-
UR number LA-UR-25-22376.

66



References
Giuseppe Attardi, Tito Flagella, and Pietro Iglio. 1998.

A customisable memory management framework
for c++. Software: Practice and Experience,
28(11):1143–1184.

Manish Bhattarai, Javier E. Santos, Shawn Jones, Ayan
Biswas, Boian Alexandrov, and Daniel O’Malley.
2024. Enhancing code translation in language mod-
els with few-shot learning via retrieval-augmented
generation. Preprint, arXiv:2407.19619.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Ayan Biswas, Guang Lin, Xiaotong Liu, and Han-Wei
Shen. 2016. Visualization of time-varying weather
ensembles across multiple resolutions. IEEE trans-
actions on visualization and computer graphics,
23(1):841–850.

John Burkardt. Accessed: 2025-01-30. John
burkardt’s homepage. https://people.sc.fsu.
edu/~jburkardt/.

Le Chen, Bin Lei, Dunzhi Zhou, Pei-Hung Lin, Chun-
hua Liao, Caiwen Ding, and Ali Jannesari. 2024.
Fortran2cpp: Automating fortran-to-c++ migration
using llms via multi-turn dialogue and dual-agent
integration. Preprint, arXiv:2412.19770.

Yen-Chi Chen. 2017. A tutorial on kernel density esti-
mation and recent advances. Biostatistics & Epidemi-
ology, 1(1):161–187.

Michel Cuer and Roger Bayer. 1980. Fortran rou-
tines for linear inverse problems. Geophysics,
45(11):1706–1719.

Marie de Groot. 2024. Are those 700,000 large lan-
guage models (llms) on hugging face really neces-
sary? Medium, published June 28, 2024; accessed
January 30, 2025.

Joseph M Derlaga, Tyrone Phillips, and Christopher J
Roy. 2013. Sensei computational fluid dynamics
code: a case study in modern fortran software devel-
opment. In 21st AIAA Computational Fluid Dynam-
ics Conference, page 2450.

Murali Emani, Zhen Xie, Siddhisanket Raskar, Varuni
Sastry, William Arnold, Bruce Wilson, Rajeev
Thakur, Venkatram Vishwanath, Zhengchun Liu,
Michael E. Papka, Cindy Orozco Bohorquez, Rick
Weisner, Karen Li, Yongning Sheng, Yun Du, Jian
Zhang, Alexander Tsyplikhin, Gurdaman Khaira,
Jeremy Fowers, Ramakrishnan Sivakumar, Victoria
Godsoe, Adrian Macias, Chetan Tekur, and Matthew
Boyd. 2022. A comprehensive evaluation of novel
ai accelerators for deep learning workloads. In 2022
IEEE/ACM International Workshop on Performance
Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems (PMBS), pages 13–25.

Stuart I Feldman. 1990. A fortran to c converter. In
ACM SIGPLAN Fortran Forum, volume 9, pages 21–
22. ACM New York, NY, USA.

Artur Gramacki. 2018. Nonparametric kernel density
estimation and its computational aspects, volume 37.
Springer.

Ralf W Grosse-Kunstleve, Nicholas K Sauter, Nigel W
Moriarty, and Paul D Adams. 2002. The computa-
tional crystallography toolbox: crystallographic al-
gorithms in a reusable software framework. Applied
Crystallography, 35(1):126–136.

Ralf W Grosse-Kunstleve, Thomas C Terwilliger,
Nicholas K Sauter, and Paul D Adams. 2012. Auto-
matic fortran to c++ conversion with fable. Source
code for biology and medicine, 7:1–11.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Oriol Vinyals, Jack W. Rae,
and Laurent Sifre. 2022. Training compute-optimal
large language models. In Proceedings of the 36th
International Conference on Neural Information Pro-
cessing Systems, NIPS ’22, Red Hook, NY, USA.
Curran Associates Inc.

Matthew A Jaro. 1989. Advances in record-linkage
methodology as applied to matching the 1985 census
of tampa, florida. Journal of the American Statistical
Association, 84(406):414–420.

Wenxiang Jiao, Wenxuan Wang, Jen-Tse Huang, Xing
Wang, and Zhaopeng Tu. 2023. Is chatgpt a good
translator? yes with gpt-4 as the engine.

Benjamin Knobloch, Christine Sweeney, Ayan Biswas,
and Shawn M. Jones. 2025. Metadata tracking and
analysis of llm-based source-to-source code transla-
tion. In Proceedings of the 2025 Conference on Data
Analysis.

Dimitri Komatitsch and Jeroen Tromp. 2002. Spectral-
element simulations of global seismic wave propa-
gation—i. validation. Geophysical Journal Interna-
tional, 149(2):390–412.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Bin Lei, Caiwen Ding, Le Chen, Pei-Hung Lin, and
Chunhua Liao. 2023. Creating a dataset for high-
performance computing code translation using llms:
A bridge between openmp fortran and c++. In 2023
IEEE High Performance Extreme Computing Confer-
ence (HPEC), pages 1–7. IEEE.

67

https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619
https://people.sc.fsu.edu/~jburkardt/
https://people.sc.fsu.edu/~jburkardt/
https://arxiv.org/abs/2412.19770
https://arxiv.org/abs/2412.19770
https://arxiv.org/abs/2412.19770
https://medium.com/@mariejeannegroot/are-those-700-000-large-language-models-llms-on-hugging-face-really-necessary-3efcd8f6fbe0
https://medium.com/@mariejeannegroot/are-those-700-000-large-language-models-llms-on-hugging-face-really-necessary-3efcd8f6fbe0
https://medium.com/@mariejeannegroot/are-those-700-000-large-language-models-llms-on-hugging-face-really-necessary-3efcd8f6fbe0
https://doi.org/10.1109/PMBS56514.2022.00007
https://doi.org/10.1109/PMBS56514.2022.00007
https://api.semanticscholar.org/CorpusID:257631519
https://api.semanticscholar.org/CorpusID:257631519


Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus
Schordan, and Ian Karlin. 2017. Dataracebench: a
benchmark suite for systematic evaluation of data
race detection tools. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’17, New York,
NY, USA. Association for Computing Machinery.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM computing surveys, 55(9):1–35.

Richard Tran Mills, Chuan Lu, Peter C Lichtner, and
Glenn E Hammond. 2007. Simulating subsurface
flow and transport on ultrascale computers using pflo-
tran. In Journal of physics: conference series, vol-
ume 78, page 012051. IOP Publishing.

David R Musser and Atul Saini. 1995. The STL Tutorial
and Reference Guide: C++ Programming with the
Standard Template Library. Addison Wesley Long-
man Publishing Co., Inc.

Mariano Méndez, Fernando G. Tinetti, and Jeffrey L.
Overbey. 2014. Climate models: Challenges for for-
tran development tools. In 2014 Second Interna-
tional Workshop on Software Engineering for High
Performance Computing in Computational Science
and Engineering, pages 6–12.

M Nardelli. 1995. Parst95–an update to parst: a system
of fortran routines for calculating molecular struc-
ture parameters from the results of crystal structure
analyses. Applied Crystallography, 28(5):659–659.

Cesar Ocampo and Juan Senent. 2006. The design
and development of copernicus: A comprehensive
trajectory design and optimization system. In 57th
International Astronautical Congress, pages C1–4.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna,
Divya Sankar, Lambert Pouguem Wassi, Michele
Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha,
and Reyhaneh Jabbarvand. 2024. Lost in transla-
tion: A study of bugs introduced by large language
models while translating code. In Proceedings of the
IEEE/ACM 46th International Conference on Soft-
ware Engineering, ICSE ’24, New York, NY, USA.
Association for Computing Machinery.

Rocco Pietrini, Marina Paolanti, and Emanuele Frontoni.
2024. Bridging eras: Transforming fortran legacies
into python with the power of large language models.
In 2024 IEEE 3rd International Conference on Com-
puting and Machine Intelligence (ICMI), pages 1–5.
IEEE.

Raghu Prabhakar, Ram Sivaramakrishnan, Darshan
Gandhi, Yun Du, Mingran Wang, Xiangyu Song,
Kejie Zhang, Tianren Gao, Angela Wang, Xiaoyan
Li, Yongning Sheng, Joshua Brot, Denis Sokolov,
Apurv Vivek, Calvin Leung, Arjun Sabnis, Jiayu
Bai, Tuowen Zhao, Mark Gottscho, David Jack-
son, Mark Luttrell, Manish K. Shah, Zhengyu Chen,

Kaizhao Liang, Swayambhoo Jain, Urmish Thakker,
Dawei Huang, Sumti Jairath, Kevin J. Brown, and
Kunle Olukotun. 2024. Sambanova sn40l: Scal-
ing the ai memory wall with dataflow and compo-
sition of experts. In 2024 57th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO),
page 1353–1366. IEEE.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Rosetta Code Community. 2025. Rosetta code: Pro-
gramming chrestomathy site. Accessed: 2025-03-03.

SambaNova. Sambanova cloud. Accessed: March 8,
2025.

Galen M Shipman and Timothy C Randles. 2023. An
evaluation of risks associated with relying on for-
tran for mission critical codes for the next 15 years.
Technical report, Los Alamos National Laboratory
(LANL), Los Alamos, NM, United States.

B. W. Silverman. 1998. Density Estimation for Statistics
and Data Analysis, 1st ed. edition. Routledge.

G. Theurich, B. Anson, N.A. Hill, and A. Hill. 2001.
Making the fortran-to-c transition: how painful is it
really? Computing in Science Engineering, 3(1):21–
27.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Todd L Veldhuizen and M Ed Jernigan. 1997. Will
c++ be faster than fortran? In International Con-
ference on Computing in Object-Oriented Parallel
Environments, pages 49–56. Springer.

Jianxun Wang and Yixiang Chen. 2023. A review on
code generation with llms: Application and evalu-
ation. In 2023 IEEE International Conference on
Medical Artificial Intelligence (MedAI), pages 284–
289.

Laurie S Waters, Gregg W McKinney, Joe W Durkee,
Michael L Fensin, John S Hendricks, Michael R
James, Russell C Johns, and Denise B Pelowitz. 2007.
The mcnpx monte carlo radiation transport code. In
AIP conference Proceedings, volume 896, pages 81–
90. American Institute of Physics.

Yuanbo Wen, Qi Guo, Qiang Fu, Xiaqing Li, Jianxing
Xu, Yanlin Tang, Yongwei Zhao, Xin Hu, Zidong Du,
Ling Li, Chao Wang, Xuehai Zhou, and Yunji Chen.
2022a. Babeltower: Learning to auto-parallelized
program translation. In International Conference on
Machine Learning.

68

https://doi.org/10.1145/3126908.3126958
https://doi.org/10.1145/3126908.3126958
https://doi.org/10.1145/3126908.3126958
https://doi.org/10.1109/SE-HPCCSE.2014.7
https://doi.org/10.1109/SE-HPCCSE.2014.7
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1109/micro61859.2024.00100
https://doi.org/10.1109/micro61859.2024.00100
https://doi.org/10.1109/micro61859.2024.00100
https://rosettacode.org
https://rosettacode.org
https://cloud.sambanova.ai/
https://doi.org/10.1201/9781315140919
https://doi.org/10.1201/9781315140919
https://doi.org/10.1109/5992.895184
https://doi.org/10.1109/5992.895184
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1109/MedAI59581.2023.00044
https://doi.org/10.1109/MedAI59581.2023.00044
https://doi.org/10.1109/MedAI59581.2023.00044
https://api.semanticscholar.org/CorpusID:250360888
https://api.semanticscholar.org/CorpusID:250360888


Yuanbo Wen, Qi Guo, Qiang Fu, Xiaqing Li, Jianx-
ing Xu, Yanlin Tang, Yongwei Zhao, Xing Hu, Zi-
dong Du, Ling Li, Chao Wang, Xuehai Zhou, and
Yunji Chen. 2022b. BabelTower: Learning to auto-
parallelized program translation. In Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning
Research, pages 23685–23700. PMLR.

William .E. Winkler. 1990. String comparator met-
rics and enhanced decision rules in the fellegi-sunter
model of record linkage. Available online.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and
Wen Wang. 2023. Codetransocean: A comprehensive
multilingual benchmark for code translation. arXiv
preprint arXiv:2310.04951.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2025. Opencodeinterpreter: Integrating code
generation with execution and refinement. Preprint,
arXiv:2402.14658.

69

https://proceedings.mlr.press/v162/wen22b.html
https://proceedings.mlr.press/v162/wen22b.html
https://files.eric.ed.gov/fulltext/ED325505.pdf
https://files.eric.ed.gov/fulltext/ED325505.pdf
https://files.eric.ed.gov/fulltext/ED325505.pdf
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2402.14658

