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Abstract

In this paper, we introduce EHR-SeqSQL, a
novel sequential text-to-SQL dataset for Elec-
tronic Health Record (EHR) databases. EHR-
SeqSQL is designed to address critical yet un-
derexplored aspects in text-to-SQL parsing: in-
teractivity, compositionality, and efficiency. To
the best of our knowledge, EHR-SeqSQL is not
only the largest but also the first medical text-to-
SQL dataset benchmark to include sequential
and contextual questions. We provide a data
split and the new test set designed to assess
compositional generalization ability. Our exper-
iments demonstrate the superiority of a multi-
turn approach over a single-turn approach in
learning compositionality. Additionally, our
dataset integrates specially crafted tokens into
SQL queries to improve execution efficiency.
With EHR-SeqSQL, we aim to bridge the gap
between practical needs and academic research
in the text-to-SQL domain.

1 Introduction

Text-to-SQL provides a practical opportunity for
non-experts to explore databases, even without
prior knowledge of the database operations. Elec-
tronic Health Records (EHRs) are large-scale rela-
tional databases (RDBs) storing vast and compre-
hensive patient data (Johnson et al., 2016; Pollard
et al., 2018). Medical experts often ask questions
that require highly complex reasoning across mul-
tiple tables and access to a vast number of records
within a single query (Lee et al., 2022). Handling
such complexity in large-scale databases remains
a significant challenge in the current text-to-SQL
research (Li et al., 2023).

Several efforts have been made to construct text-
to-SQL datasets for EHRs. MIMIC-SQL (Wang
et al., 2020) is the first text-to-SQL dataset that tar-
gets a subset of MIMIC-III (Johnson et al., 2016),

*These authors contributed equally to this work.

Figure 1: EHRSQL vs. EHR-SeqSQL EHR-SeqSQL
is a dataset that adapts the single-turn setting of
EHRSQL into a multi-turn setting. The SQL queries in
EHR-SeqSQL include the special tokens to refer to the
previous context, which can be executed in the database
with simple post-processing.

one of the widely-used open-source EHR databases,
consisting of 26 tables. DrugEHRQA (Bardhan
et al., 2022) provides the first question answering
dataset that incorporates both structured tables and
unstructured notes from EHRs. EHRSQL (Lee
et al., 2022) is a dataset curated based on a survey
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from various medical experts, reflecting the diverse
information needs of the actual medical field.

Still, there are important yet underexplored ob-
jectives for the practical application of text-to-SQL
models. First, the text-to-SQL system should
incorporate interactivity. Most of the existing
text-to-SQL research assumes a single-turn sce-
nario, whereas the process of exploring information
in real-world situations is often continuous (Iyyer
et al., 2017; Yu et al., 2019a,b). For better user us-
ability, it is desirable for the system to be interactive
as well. Second, the text-to-SQL system should
learn compositionality. Realistically, datasets can-
not capture all the diverse needs of users. There-
fore, it is crucial that the model can handle a wider
range of queries especially when these unseen
queries comprise components (i.e. sub-queries)
that the model has explicitly seen during training.
This is the compositional generalization ability,
which is challenging even for the highly proficient
language models (Qiu et al., 2022). Lastly, the
text-to-SQL system should consider efficiency.
Real-world databases are often significantly larger
than academic ones (Hazoom et al., 2021; Zhou
et al., 2021). Efficient query execution is crucial,
given the magnitude of the databases in actual hos-
pitals (e.g. MIMIC-III dataset includes the medical
history of 46k patients). This becomes even more
significant when we consider a real-time interac-
tion scenario between a text-to-SQL model and a
user (Li et al., 2023).

In this work, we introduce EHR-SeqSQL which
addresses all three objectives. Our contribution is
as follows:

• Construction of a sequential text-to-SQL
dataset for exploring EHR data: As illus-
trated in Figure 1, EHR-SeqSQL is designed for
multi-step interactions, built by decomposing
the diverse and complex queries of EHRSQL
and setting each question as the interaction goal.
To the best of our knowledge, EHR-SeqSQL is
the first multi-turn text-to-SQL dataset target-
ing structured medical records. We make our
dataset public to encourage future research.

• Validating the effectiveness of EHR-SeqSQL
in the compositional generalization: We de-
signed two experiments to evaluate the compo-
sitional generalization ability. The results show
that decomposing questions enables the model
to better generalize to unseen interaction goals

during training. Furthermore, it demonstrated
the potential for generalization on longer se-
quences not encountered during training.

• Proposing special tokens for SQL: We intro-
duce a highly effective way to enhance query
execution efficiency in multi-step interactions
with the use of the novel special tokens for
SQL. These tokens significantly increase time
efficiency during query execution as well as
improve the performance of text-to-SQL mod-
els. These tokens are not only domain-agnostic
but also more effective as the database size in-
creases.

2 Related Work

2.1 Multi-turn Text-to-SQL
There are only a few datasets that are specifically
designed for context-dependent text-to-SQL tasks.
ATIS (Hemphill et al., 1990) was the first to in-
clude a series of user questions aimed at interacting
with a flight database. Recently, Yu et al. (2019a,b)
proposed cross-domain context-dependent text-to-
SQL datasets, based on the questions from Spi-
der (Yu et al., 2018) serving as interaction goals.
While their motivation aligns closely with ours,
their questions and the grounding databases are
predominantly simplistic. In real-world scenarios,
however, users typically have much more complex
requirements, and databases often contain a sig-
nificantly larger number of rows (Lee et al., 2022;
Li et al., 2023). EHR-SeqSQL is designed upon
this objective, based on the questions collected
from an actual survey and grounding the real-world
database, MIMIC-III (Johnson et al., 2016). To the
best of our knowledge, this is the first multi-turn
text-to-SQL dataset in the healthcare domain.

2.2 Compositional Generalization
Compositional generalization, a major challenge
in semantic parsing, enables a model to manage di-
verse and unfamiliar user queries using components
recognized from training. It is typically achieved by
creating different training and test splits of interest.
Lake and Baroni (2018) discovered that sequence-
to-sequence models struggle to learn compositional
structures, as demonstrated through their primi-
tive and length splits. More recently, template
splits (Finegan-Dollak et al., 2018) and TMCD
splits (Shaw et al., 2020) were proposed to eval-
uate compositional generalization on text-to-SQL
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Figure 2: Overview of the dataset construction process. We transform EHRSQL’s single text-SQL pairs into
multi-turn pairs for EHR-SeqSQL by first breaking down the original SQL into subqueries (Stages 1 and 2), then
merging common patterns with the BPE algorithm (Stage 3). Natural language questions (NLQs) are created for
each subquery using templates and paraphrased for clarity using ChatGPT.

datasets. Notably, recent efforts (Gan et al., 2022a;
Liu et al., 2023b) have proposed compositional gen-
eralization in multi-turn settings, which aligns with
the concepts we use in this paper. However, we aim
to extend their approach by proposing and experi-
menting with two different challenges in multi-turn
compositional generalization: unseen (Section 5.1)
and longer (Section 5.2) interactions.

3 Data Construction

We aim to convert text-SQL pairs of EHRSQL to
multi-turn text-SQL pairs that embrace interactivity
and query execution efficiency. Note that EHRSQL
contains text-SQL samples for two different EHR
sources, namely MIMIC-III (Johnson et al., 2016)
and eICU (Pollard et al., 2018). We use the MIMIC-
III version of EHRSQL, given its complex schema
and wider adoption by the NLP community. Ques-
tions for eICU and the questions that cannot be
transformed into a proper SQL query are not the
scope of this dataset but can be addressed in the
future work.

Our data construction process is divided into two
stages: SQL decomposition and natural language

question (NLQ) generation. Initially, we break
down each SQL query of EHRSQL into a sequence
of subqueries to create more granular meanings of
queries. Next, we create a corresponding NLQ for
each subquery. Compared to NLQ decomposition,
SQL decomposition enables systematic breakdown
of a question without any loss of information, due
to the strict, rule-based nature of SQL syntax. The
overall process is shown in Figure 2 and we provide
detailed explanations in the following sections.

3.1 SQL Decomposition
Stage 1. Decomposing Nested Query Since
most SQL queries in EHRSQL have a nested struc-
ture, we decompose the queries based on their nest-
ing levels. This method allows each subquery to
contain more granular meanings of the original
query and facilitate the multiple turns of interac-
tion. We start by asking the inner query first, and
then the outer query is asked while referring to the
result of the inner query. This decomposition ap-
proach guarantees the executability of queries at
each turn and allows anaphoric expressions in the
subsequent turns.

In addition, we devised two special tokens for
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ATIS SParC CoSQL EHR-SeqSQL
# of Interactions 1,658 4,298 3,007 9,195

# of Turns 11,653 12,726 15,598 31,669
Avg. # of Turns 7.0 3.0 5.2 3.5

Avg. # of Tables / DB 27 5.1 5.1 26
Domain Airline Cross Cross Medical

Compositional Split ✗ ✗ ✗ ✓

SQL Execution Efficiency ✗ ✗ ✗ ✓

Table 1: Comparison of EHR-SeqSQL with other multi-turn text-to-SQL datasets.

SQL to leverage the previous turn’s subqueries
and results: prev_query and prev_result.
These tokens are accompanied by a specific turn
index (e.g. prev_query1, prev_result2).
Specifically, prev_query token refers to the gen-
erated query of the specified turn, whereas the
prev_result token refers to the execution re-
sult of the specified turn. Two tokens are substi-
tuted with either the referred query or its execution
result before execution. The effectiveness of these
tokens is later discussed in Section 5.3.

Stage 2. Decomposing SQL Clauses After
Stage 1, multi-turn questions are obtained, where
each can be asked with reference to the answer
to previous questions. Still, these questions of-
ten convey multiple conditions that users might
ask in separate questions. For example, the ques-
tion “What was the last hospitalized admission time
that patient 17694 was admitted via transfer from
emergency room?” contains the specific conditions
about the admission time, the patient, and the ad-
mission route. Therefore, we further decompose
queries on the clause-level: WHERE, ORDER BY,
and HAVING clauses and aggregation functions
(e.g. MAX, MIN, SUM) in the SELECT clause.
In cases where multiple clauses appear together, we
parse in the order of SQL execution. Exceptions
were made only when the original semantics of the
query became ambiguous after being decomposed.
More details are in Appendix A.1.

Stage 3. Merging Subqueries by Frequency
We noted that frequently appearing consecutive
subqueries are most likely decomposed due to the
specific database schema characteristics or SQL
structures rather than each being queries users
would naturally ask. In Stage 3, we employ a recur-
sive application of the Byte Pair Encoding (BPE)
algorithm to merge frequent consecutive subquery
pairs. This recursive approach allows for the amal-

gamation of not only two but up to three or more
subqueries, thereby simplifying complex patterns
and enhancing query interpretability. Further de-
tails are given in Appendix A.2.

3.2 NLQ Generation

Stage 1. Rule-based SQL-to-NLQ Generation
While previous SQL-to-NLQ studies (Gan et al.,
2022b; Wu et al., 2021) decomposed SQL at the
clause level for sub-questions and concatenated
clauses later, such simple concatenation has a risk
of unnaturalness. Thus we create NLQ templates
for each corresponding SQL subqueries for the
quality of NLQ. To efficiently annotate NLQs
for each corresponding SQL subqueries, we first
normalize subqueries by replacing specific table
names, column names, and condition values to ab-
stract terms such as table and col (see Figure 2).
We then manually create NLQ templates for each
normalized subqueries. These templates include
slots for table names, column names, condition val-
ues, SQL functions (e.g. GROUP BY, AVG), and
time expressions. Then the actual question is gen-
erated from the NLQ templates by the slot-filling
process. More details are in Appendix A.3.

Stage 2. Paraphrase Generation We further
paraphrase the NLQ templates to enhance linguis-
tic variability within the dataset, using ChatGPT
for its superior performance in understanding and
generating text (Guo et al., 2023). We ensured that
all the slot values and turn indices were preserved
after paraphrasing. Additionally, we employed the
self-consistency method and a duplicate question
detection model to ensure the quality of the para-
phrases, following Lee et al. (2022). On average,
we obtained 10.39 paraphrases for each NLQ tem-
plate. Finally, we randomly assign the paraphrased
template to each question and fill the slots with the
original condition values.
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Quality Check The authors meticulously con-
ducted two-step quality check at both the turn level
and the interaction level. All question templates
used during the generation process were checked
against the following criteria: 1) Completeness:
All information in the SQL is also explicitly stated
in the NLQ, and 2) Naturalness: Questions are
formulated to be as natural as possible after the
template masks are realized. Every question and
SQL template was crafted to meet these standards.
We then conducted quality checks on 1,000 ran-
domly selected interactions from the final dataset
at both the turn and interaction level. At the turn
level, we checked for clarity of each question on
the turn level, since they contain coreferences. At
the interaction-level, whether the interactions accu-
rately represent the original intent of the EHRSQL
questions is evaluated. We revised the templates or
introduced more templates wherever issues were
identified. This process was repeated until every
sampled interaction met our stringent quality stan-
dards at both the turn and interaction levels.

3.3 Data Statistics

Table 1 presents the statistics of multi-turn text-
to-SQL datasets. EHR-SeqSQL has the largest
number of interactions and turns compared to all
existing multi-turn text-to-SQL datasets. Notably,
this is the first work to introduce special tokens
within SQL queries to improve execution efficiency.
Furthermore, we also provide a new split and addi-
tional test set to evaluate the compositional gener-
alization, as detailed in Section 5.

Questions in our dataset are categorized into four
types: independent, referential, filtering, and modi-
fying. These categories are not mutually exclusive
and a question may belong to more than one cate-
gory. Independent questions are those without any
prior context. Referential questions refer to previ-
ous questions or answers while filtering questions
narrow the previous question’s scope by adding
conditions. Modifying questions are particularly
challenging as they only mention the altered con-
dition and omit all the same conditions. Table 7
shows the distribution of the questions.

4 Experimental Setup

4.1 Task

The objective of the model is to generate a SQL
query given the interaction history and current ques-
tion. We experiment with two versions of interac-

tion history: one that includes only the previous
questions, denoted as QQ, and another that includes
both the previous questions and their corresponding
SQL queries, denoted as QS. For the QS setting,
the model is trained with the interaction history
using the ground-truth queries, while during the
inference phase, the model’s own predictions are
used in order to simulate a real-world application.

4.2 Baselines
4.2.1 Fine-tuning Models
We employ both a fine-tuning approach and an in-
context learning approach for our baselines. For
the fine-tuning approach, we use the T5 models
(Raffel et al., 2020), the general-purpose sequence-
to-sequence models as our baseline models. We did
not use the state-of-the-art models (Cai et al., 2022;
Xiao et al., 2022; Qi et al., 2022; Zheng et al., 2022;
Scholak et al., 2021; Li et al., 2021) for SParC or
CoSQL due to their SQL grammar being confined
to Spider or standard SQL which is not compatible
with our dataset.

4.2.2 In-context Learning Models
We use ChatGPT, LLaMA-7B (Touvron et al.,
2023), and Code-LLaMA-7B (Roziere et al., 2023)
for our in-context learning models. Instead of a
zero-shot approach, we employ few-shot prompt-
ing. We retrieve similar exemplars for each test in-
stance using the BM25 algorithm to use as prompt.
For every experiment with in-context learning set-
ting, we use 20-shot. For EHRSQL, which is single-
turn, computing the similarity for each question is
sufficient. However, for EHR-SeqSQL, which is
multi-turn and context-dependent, it’s necessary
to consider both the current question and the in-
teraction history. Therefore, we use 10 retrieved
examples related to the current question and an-
other 10 related to the entire interaction history.
More details such as prompt and few-shot retrieval
in our in-context learning baseline are in Appendix
E.

4.3 Evaluation
The two commonly used metrics in text-to-SQL
are Exact Match Accuracy (EM) and Execution
Accuracy (EX). However, the EM metric can some-
times be overly strict because it doesn’t take into
account predictions that have different SQL syntax
but yield the same execution result as the ground-
truth query. Thus we use the EX score to measure
the model performance based on query execution
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Split Random Compositional
Train Test TestL Train Test TestL

# of Question Temp 167 166 166 121 46 46
# of Interactions 8,546 649 100 6,375 2,820 100

# of Turns 29,438 2,231 1,417 22,134 9,535 1,564
Avg. # of Turns 3.44 3.44 14.17 3.47 3.38 15.64
Max # of Turns 9 9 25 8 8 27

Table 2: Statistics for Random and Compositional splits. TestL is a test set with longer interactions, designed to
evaluate model’s compositional generalization as detailed in Section 5.2.

results. Before execution, the special tokens are
replaced with the generated queries or their execu-
tion result through post-processing, thus any errors
from the referenced turn will be propagated.

Additionally, for the multi-turn setting, we adopt
Interaction Match (IM) and Question Match (QM)
following Yu et al. (2019b) on EX. IM measures
the accuracy of the entire interaction while QM
measures the accuracy of each turn. We utilize
different metrics based on the experiment purpose.

5 Experiments

We now empirically demonstrate the benefits of
EHR-SeqSQL in terms of two types of composi-
tional generalization (§ 5.1, § 5.2), as well as the
effectiveness of the special tokens (§ 5.3).

5.1 Generalization to Unseen Interaction
Goals

Compositional Split We first aim to evaluate
whether training models in a multi-turn setting can
lead to the acquisition of compositional generaliza-
tion abilities. To explore this aspect, we split our
dataset in a compositional manner, namely compo-
sitional split. This split differs from the random
split in EHRSQL where the distributions of SQL
structures in the training and test sets are nearly
identical. In contrast, compositional split includes
unseen SQL structures in the test set, though these
structures can be decomposed into smaller parts
that are all present in the training data.

More concretely, we first define the terms com-
positions and components and use the concepts to
automatically split the dataset. Compositions repre-
sent SQL templates in EHRSQL, where condition
values, SQL functions (i.e. SUM, AVG, etc), time
expressions (i.e. subqueries constraining last year,
in 2023, etc) are masked. Components refer to the
decomposed SQL template clauses derived from
Stage 2, as explained in Section 3.1. Each com-

position, which corresponds to an interaction goal,
contains a set of components that exist as individual
SQL subqueries in the dataset. Table 11 provides
concrete examples of components and composi-
tions. We employ a greedy algorithm to split the
dataset, similar to Shaw et al. (2020). Table 2 pro-
vides the statistics of the random and compositional
splits. More details are given in Appendix B.

Metric We only measure IM to compare the per-
formance of a model trained on EHRSQL and a
model trained on EHR-SeqSQL. Given that an in-
teraction in EHR-SeqSQL corresponds to a ques-
tion in EHRSQL, correctly predicting every ques-
tion within an interaction is equal to correctly pre-
dicting a single question in EHRSQL.

Result The experimental results are shown in
Table 3. In a random split, all models exhibit
strong performance with both EHRSQL and EHR-
SeqSQL. Still, there is a noticeable performance
difference between models specifically trained for
SQL generation and those that are not, such as
LLaMA and Code-LLaMA, which show relatively
worse performance.

However, in the compositional split, models
generally perform better with the EHR-SeqSQL
dataset, which indicates superior generalization
ability in multi-turn setting. T5 models, in par-
ticular, show a significant performance increase,
ranging from 7.63%p (from 67.8% to 75.43%), to
30.34%p (from 52.15% to 82.49%). T5-base fine-
tuned in QQ setting has the best performance. This
suggests that a task-specific fine-tuning enables ef-
fective extraction of necessary information only
from NLQs without being distracted by other con-
textual factors. Interestingly, T5-3B shows lower
performance than T5-base, and this performance
gap is particularly pronounced in our proposed
compositional split. This might be due to the com-
positional split having significantly less training
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Model
Random Compositional

EHRSQL
EHR-SeqSQL

EHRSQL
EHR-SeqSQL

QQ QS QQ QS
T5-Base 94.25±0.54 94.69±0.01 95.38±1.48 52.15±0.85 82.49±1.80 75.38±1.94

T5-3B 90.68±9.47 93.07±3.71 92.38±4.9 54.90±3.51 71.39±1.05 70.07±1.85

ChatGPT 91.22 80.74 91.37 67.80 60.50 75.43
LLaMA-7B 59.32 61.79 41.60 17.34 12.73 26.42

Code-LLaMA-7B 64.56 76.58 70.72 32.30 48.62 47.30

Table 3: Model performances in two different splits. For the fine-tuning models, we trained each model with three
different random seeds. We report the average score and the standard deviation.

data and the evaluation data being perceived as
out-of-distribution due to its compositional nature.
This result is consistent with previous observa-
tions (Kale and Rastogi, 2020; Zhang et al., 2023;
Shaw et al., 2020) which found that smaller models
(T5-base or T5-large) can outperform their larger
counterpart, T5-3B, outside the general domain or
when dealing with out-of-distribution data.

On the other hand, ChatGPT suffers a perfor-
mance drop in the QQ setting, which is suspected
to be due to the absence of predicted SQL queries
within the prompt, which leads ChatGPT to have
less information on target representation. Still, a
multi-turn setting leads to a significant performance
increase in the QS setting. It’s worth noting that
ChatGPT has better compositional generalization
ability in a single-turn setting than fine-tuned mod-
els. LLaMA shows very low performance in every
setting, indicating it is not well-suited for gener-
ating SQL. Code-Llama performs relatively better
and demonstrates clearly better performance with
our dataset. Overall, our experiments show that
training with EHR-SeqSQL allows the models to
generalize well even with unseen questions.

5.2 Generalization to Longer Interactions

Longer Interaction Generation In this section,
we aim to explore whether the models trained with
EHR-SeqSQL can comprehend longer interactions,
reflecting another form of compositional general-
ization ability. To test this, we created a new test
set (TestL) composed of much longer interactions
with multiple follow-up questions. This setup is
intended to replicate real-world scenarios where
users ask a series of questions to incrementally ex-
plore a topic of interest (Yu et al., 2019b). For each
test set of random split and compositional split, we
created 100 longer interaction instances by connect-
ing related interactions. Details about the longer

Model Random Compositional
QM↑ IFF↑ QM↑ IFF↑

T5-Base
QQ 54.13 5.70

(15.17) 50.58 5.08
(16.64)

QS 71.33 4.51
(8.03) 61.58 3.72

(8.31)

ChatGPT
QQ 92.94 11.24

(15.17) 73.66 5.98
(16.64)

QS 94.57 12.21
(15.17) 79.67 6.81

(16.64)

Table 4: Model performances on longer interactions.
For the IFF score, the perfect scores in parentheses.

interaction generation process can be found in Ap-
pendix C.1. The statistics for TestL for each test set
can be found in Table 2. These interactions are, on
average, five times longer than those in the training
data. The TestL with a random split challenges gen-
eralization for longer sequences, whereas the TestL
with a compositional split further complicates this
by testing generalization to unseen questions, pre-
senting a scenario that is not only more challenging
but also more reflective of practical applications.

Metric In this experiment, we investigate
whether a model trained on the interactions with
three turns on average can generalize to interac-
tions with an average of 14 turns. Given this signif-
icant increase in complexity, IM metric is deemed
excessively strict. Instead, we report QM to mea-
sure the ratio of correctly answered turns. We fur-
ther measure the Index of the First Failure (IFF), to
capture where the model first generates an incorrect
response. The methodology for calculating the IFF
score is detailed in Appendix C.2.

Result The experiment results are presented in
Table 4. Similarly with the findings in Section 5.1,
scores from TestL with random split outperform
that from TestL with compositional split. This is
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likely because the model should generalize to the
unseen interaction goals as well as longer inter-
actions in TestL with compositional split. Inter-
estingly, IFF scores from all models are higher
than the average length of interactions in the train-
ing data. This suggests that the models can learn
interaction-level compositionality and generalize to
longer turns after being trained with EHR-SeqSQL.
However, for the QS setting, T5-base model had
a disadvantage in taking long interactions due to
its input length constraint, which led to the lowest
IFF score. Contrasting with fine-tuned T5 models,
ChatGPT notably excelled in QM and IFF scores,
achieving 12.21 in the QS setting, near the ideal
15.17, demonstrating its adaptability to longer in-
teractions.

5.3 Effects of Special Tokens for SQL

In this section, we evaluate the effect of two spe-
cial tokens–prev_query and prev_result.
These two tokens allow models to easily reference
either the previous query or its execution result
and thereby alleviate the decoding burden. Ad-
ditionally, prev_result can further reduce the
execution overhead by preventing duplicated sub-
queries from being executed multiple times. We
assess the utility of these tokens from two aspects:
model performance and query execution efficiency.

5.3.1 Effects on Model Performance
Details First, we evaluate the impact of the spe-
cial tokens on model performance. We compare a
model trained with queries with the original EHR-
SeqSQL, which include the special tokens, to an-
other trained with its standard SQL query version.
We ensure that all other training factors, such as
model architecture and hyperparameters remain
consistent between the two models. To prevent the
test set from being too simple, which could poten-
tially undermine the impact of the special tokens,
we use a compositional split.

Result As shown in Table 5, the incorporation
of special tokens consistently enhances the perfor-
mance across all settings, regardless of the model
variant or the type of interaction history. In the QQ
setting, where the absence of prior query history
makes the contextual questions more challenging,
the special tokens contribute to a substantial per-
formance increase. This is because those tokens
simplify referencing previous questions. Specifi-
cally, at the question level, the use of these special

Model
SQL SQL†

QM↑ IM↑ QM↑ IM↑

T5-Base
QQ 75.37 52.49 89.97 82.49
QS 82.10 64.35 86.46 75.38

ChatGPT
QQ 72.07 45.14 75.15 60.50
QS 88.22 72.55 88.23 75.43

Table 5: Comparison of model performance trained
with the standard SQL queries and queries with our
special tokens (SQL†).

Patient SQL SQL†

Avg↓ Med↓ Avg↓ Med↓
1k 0.20 0.09 0.09 0.01
10k 3.25 1.17 1.15 0.15
46k 31.57 4.60 6.00 0.52

Table 6: Execution time of SQL queries measured
in databases of different sizes. Units are deciseconds
(10−1).

tokens leads to a performance increase of 14.6%p
(from 75.37 to 89.97), and 30%p (from 52.49 to
82.49) at the interaction level. In the QS setting,
on the other hand, the reference is more straight-
forward because the previous SQL information is
given. Still, special tokens enhance model perfor-
mance by reducing the complexity of the target
representation. ChatGPT demonstrates a robust
performance even without the special tokens in the
QS setting. We speculate this is because ChatGPT
is trained on diverse data, which likely includes the
standard SQL. Therefore, it might be familiar with
standard text-to-SQL tasks, which is also consistent
with the recent finding (Liu et al., 2023a).

5.3.2 Effects on Execution time
Details We further evaluate the impact of our
special tokens with respect to query execution ef-
ficiency. Specifically, we compare the execution
time of the queries from EHR-SeqSQL and that of
their standard SQL version. The original database
consists of the medical records of 1,000 patients
and has a size of 95MB. Following the DB con-
struction process in Lee et al. (2022), we designed
two additional larger databases, one with the med-
ical records of 10,000 patients and another with
all 46,520 patients that MIMIC-III provides. The
size of these databases is 921MB and 5.06GB re-
spectively. The results are reported on the queries
from the test set in a random split, which covers all
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types of SQL queries in EHR-SeqSQL1. We only
considered the subset of queries that contain the
special token, prev_result.

Result The result is shown in Table 6. We ob-
served an 18% decrease in average execution time,
in the original database. On a single query basis,
the execution time is reduced at most to 99.89%,
where the original SQL query has five nested
queries inside. The effectiveness of the special to-
ken tends to increase with the size of the database.
In the largest database, the special token yielded an
average time reduction of 81.0%. Given that real-
world databases typically contain huge amounts
of data, we anticipate that the special token will
yield a significant practical impact in multi-turn
text-to-SQL environments.

6 Conclusion

We present EHR-SeqSQL, the first and the largest
sequential text-to-SQL dataset designed for EHR
databases, aimed at improving interactivity, com-
positionality, and efficiency in text-to-SQL parsing.
Our experiments show that the question decom-
position significantly enhances the model’s gener-
alization capabilities for unseen interaction goals
and extends its applicability to longer, untrained
interactions. Moreover, the introduction of novel
SQL-like tokens, which reuse query and execution
results from prior queries, enhances execution effi-
ciency and improves the model performance. We
believe our dataset will serve as a valuable testbed
for assessing contextual and interactive text-to-SQL
tasks and bridge the gap between industry needs
and academic research.

Limitations

Our dataset is designed to exclude ambiguous or
unanswerable questions, focusing instead on the
primary objectives of evaluating the model’s perfor-
mance in the text-to-SQL task. It includes convert-
ing natural language utterances into appropriate
SQL queries and assessing the model’s capacity
for compositional generalization, generating un-
seen combinations of subqueries observed during
training. This design choice allows our dataset
to rigorously test the model’s performance. How-
ever, we recognize that ambiguous or unanswerable
questions are also significant in real-world scenar-
ios. Future research could expand into this area,

1We excluded the execution time that is nearly zero.

potentially enhancing the model’s robustness.
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A Data Construction Details

Category Example # of questions

Independent Q1. What is the specific item id of the hemoglobin lab test? 14,005
(44.22%)

Dependent

Referential
Q1. Display the hospitalization ids of patient 76173.
Q2. How many times each drug was prescribed within A1 since 2101?

11,560
(36.50%)

Filtering
Q1. What are the calcium, total lab test values tested during A1?
Q2. Retrieve the last tested case in A2.

5,947
(18.78%)

Modifying
Q1. During A1, what was the last measured value of A2?
Q2. What about the first measured case?

507
(1.16%)

Table 7: Category of the questions within EHR-SeqSQL.

A.1 Details in Stage 2 in Section 3.1

In stage 2, we decompose the subqueries based on the SQL clauses. Decomposed clauses are parsed
according to the logical order of execution of an SQL statement - WHERE, ORDER BY, HAVING,
and SELECT. However, there are certain cases that are excluded from this decomposition. First,
if a WHERE clause contains any aliases of table or column names without specifying the original
name, it is not decomposed for clarity. For example, see SELECT DISTINCT T1.C1 FROM (
PREV_QUERY5 ) AS T1 WHERE T1.valuenum = 73.0. If decomposed, the meaning of
T1 would be ambiguous since we do not know the meaning of T1, which is not a column name in
MIMIC-III. Thus we ensured the conditions or clauses with table aliases are always used with the
subquery where the alias is defined. Second, we do not decompose the clauses for optional data
cleansing SQL clauses. For example, see SELECT microbiology events.org_name FROM
microbiologyevents WHERE microbiologyevents.spec_type_desc = ‘foot
culture’ AND microbiologyevents.org_name IS NOT NULL. In this SQL query, the
bolded subquery is intended to ensure all the selected rows have contents, excluding any NULL values. It
is an optional condition and a SQL writing style choice which is not included in the original question, so
we choose not to decompose such clauses. Also, the ten shortest question templates from EHRSQL are
maintained without further splitting or modifications, which are not likely to be asked through multiple
sentences. These include questions asking about the drug intake method, the cost of a lab test, or the
number of current patients. We do not decompose GROUP BY but combine it either with SELECT or
HAVING, since they are not explicitly expressed in the natural language questions (Guo et al., 2019; Wu
et al., 2021).

A.2 Details in Stage 3 in Section 3.1

The BPE algorithm was applied to merge the subqueries from both Stage 1 and Stage 2. Specifically,
we first derived SQL templates by masking condition values in the SQL queries obtained in Stage 2.
Each template was treated as a token in the BPE algorithm, and the syntactically mergeable pairs among
the most frequent token bigrams were repeatedly merged. A syntactically mergeable pair refers to a
pair of queries that were originally a single SQL query but were separated due to our decomposition
strategy. Since BPE algorithm calculates frequency without considering the relationship of token bigrams,
we added this constraint to make every resultant SQL query to be executable. Then, we sampled half
of each randomly to maximize the complexity of each subquery and the diversity of each interaction.
Considering the total number of turns in each stage, we merged bigrams that appear more than 100 times
in the subqueries from Stage 1 and bigrams that appear more than 150 times in the subqueries from Stage
2. The final SQL queries for EHR-SeqSQL are acquired throughout three stages.
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interaction
goal

What were the top four frequent drugs that patients were prescribed
within the same month after having been prescribed with nateglinide last year?

idx SQL Query SQL Template NLQ Template Generated NLQ
1 SELECT

admissions.subject_id,
prescriptions.startdate,
FROM prescriptions
JOIN admissions ON
prescriptions.hadm_id
= admissions.hadm_id
WHERE
prescriptions.drug
= ’nateglinide’
[time_filter_global1]

SELECT table.column,
table.column FROM
table JOIN table
ON table.column =
table.column WHERE
table.column =
[val_placeholder]
[time_filter_global1]

List all [SE-
LECT.col:admission.subject_id]
and their [SE-
LECT.col:prescriptions.startdate]
associated with
[val_placeholder:nateglinide]
[time_filter_global1:last year].

List all patient ids and their pre-
scription time associated with
nateglinide last year.

2 SELECT
admissions.subject_id,
prescriptions.drug,
prescriptions.startdate,
FROM prescriptions
JOIN admissions ON
prescriptions.hadm_id
= admissions.hadm_id
WHERE
[time_filter_global1]

SELECT table.column,
table.column,
table.column FROM
table JOIN table
ON table.column =
table.column WHERE
[time_filter_global1]

List all [SE-
LECT.col:admission.subject_id]
and their [SE-
LECT.col:prescriptions.drug]
and [SE-
LECT.col:prescriptions.startdate]
[time_filter_global1:last year].

List all patient ids and their drugs
and prescription time last year.

3 SELECT T2.drug,
DENSE_RANK() OVER
( ORDER BY COUNT(*)
DESC ) AS C1 FROM (
[PREV_QUERY1] ) AS T1
JOIN ( [PREV_QUERY2] )
AS T2 ON T1.subject_id
= T2.subject_id
WHERE T1.startdate
<T2.startdate
[time_filter_within]
GROUP BY T2.drug

SELECT table.column,
DENSE_RANK() OVER (
ORDER BY COUNT(*) DESC
) AS column FROM (
[PREV1] ) AS table
JOIN ( [PREV2] ) AS
table ON table.column
= table.column
WHERE table.column
<table.column
[time_filter_within]
GROUP BY table.column

List the frequency rankings of
[PREV:2] that patients received
[time_filter_within:within the
same month] after the [PREV:1].

List the frequency rankings of A2
that patients received within the
same month after A1.

4 SELECT T3.drug FROM (
[PREV_QUERY3] ) AS
T3 WHERE T3.C1 <=
[n_rank]

SELECT table.column
FROM ( [PREV3]
) AS table WHERE
table.column <=
[n_rank]

List the top [n_rank:four] [SE-
LECT.col:prescriptions.drug] in
[PREV:3].

List the top four drugs in A3.

Table 8: SQL-to-NLQ Generation Process.

A.3 List of NLQ templates
In Section 3.2, we mentioned the process for rule-based SQL-to-NLQ generation. Detailed steps of this
process can be found in Table 8. We used specific SQL templates paired with NLQ templates for this
process, as presented in Table 9. Each placeholder in the NLQ template is determined by the DB schema
and the values present in the actual SQL query. A few examples showcasing the pairing of DB schema
and NL expressions are available in Table 10. The placeholders related to value, operation, and time are
used in the same way as described by Lee et al. (2022).

A.4 Prompt for paraphrasing
Figure 3 shows the prompt for paraphrasing the questions at an interaction level. For each NLQ template,
key expressions (such as condition values, reference indices, etc.) that must be strictly preserved were
indicated in order to maintain consistency. During the data construction process, we utilized the ChatGPT
API to paraphrase template questions. Prior to paraphrasing, all specific values within each template
are replaced with representative, generic values for their respective slots. Once paraphrased, these
generic values are then realized back to their original form. This process naturally prevents any sensitive
information from being sent to the ChatGPT server.

B Details on the Compositional Split

The concept of compositions and components is based on the SQL query since it is the common factor
across an EHRSQL instance and its corresponding EHR-SeqSQL instance. Table 11 provides three
examples of composition and components. There are EHRSQL questions which is an interaction goal of
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SQL template NLQ template
SELECT ( [PREV0] ) - ( [PREV1] ) What is the difference between the [PREV0] and [PREV1]?

SELECT ( [PREV0] ) [comparison] ( [PREV1] ) Is [PREV0] [comparison] than [PREV1]?

SELECT [agg_function](table.column) FROM ( [PREV] ) AS table What is the [SELECT.col] of [PREV]?

SELECT COUNT( DISTINCT table.column ) FROM ( [PREV] ) AS table Count the number of patients in [PREV].

SELECT COUNT( DISTINCT table.column ) FROM table #cond_parsed Count the number of [PREV-1].

SELECT COUNT( DISTINCT table.column ) FROM table WHERE [time_filter_global1] Count the number of [PREV-1].

SELECT COUNT(*) FROM table WHERE table.column = ( [PREV] ) Count the number of [SELECT.col] associated with [PREV].

SELECT COUNT(*) FROM table WHERE table.column = [val_placeholder] Count the number of [val_placeholder].

SELECT COUNT(*) FROM table WHERE table.column IN ( [PREV] ) Count the number of [SELECT.col] associated with [PREV].

SELECT COUNT(*)>0 FROM table WHERE table.column = [val_placeholder] Has [val_placeholder] been admitted to the hospital?

SELECT COUNT(*)>0 FROM table WHERE table.column IN ( [PREV] ) Are there any [SELECT.col] in [PREV]?

SELECT SUM(table.column) FROM table WHERE table.column IN ( [PREV] ) What is the [SELECT.col] associated with [PREV]?

SELECT SUM(table.column) FROM table WHERE table.column IN ( [PREV] ) What is the total amount of [PREV-1]?

SELECT table.column FROM ( [PREV] ) AS table WHERE table.column [n_times] Which [SELECT.col] is [n_times] in [PREV]?

SELECT table.column FROM ( [PREV] ) AS table WHERE table.column <= [n_rank] List top [n_rank] [SELECT.col] in [PREV].

SELECT table.column FROM table List all [SELECT.col] from [FROM.table].

SELECT table.column FROM table WHERE [age_group] List all [SELECT.col] associated with patients aged [age_group].

SELECT table.column FROM table WHERE table.column = ( [PREV] ) What is the [SELECT.col] of [PREV]?

SELECT table.column FROM table WHERE table.column = [val_placeholder] List all [SELECT.col] of [val_placeholder].

SELECT table.column FROM table WHERE table.column IN ( [PREV] ) List all [SELECT.col] associated with [PREV].

SELECT table.column, table.column FROM table List all [SELECT.col.0] and [SELECT.col.1].

[PREV] [time_filter_exact1] What was the [time_filter_exact2] measured case from [PREV-1]?

[PREV] [time_filter_global1_dec1] Retrieve only the cases [time.verb] [time_filter_global1_dec1] from [PREV].

[PREV] [time_filter_global1_dec2] Retrieve only the cases [time.verb] [time_filter_global1_dec2] from [PREV].

[PREV] [time_filter_global1] Retrieve only the cases [time.verb] [time_filter_global1] from [PREV].

[PREV] AND [age_group] Retrieve only the cases associated with patients aged [age_group] from [PREV_QEURY].

[PREV] AND table.column = ( [PREV] ) Retrieve only the cases associated with [PREV] from [PREV].

[PREV] AND table.column IN ( [PREV] ) Retrieve only the cases associated with [PREV] from [PREV].

[PREV] AND table.column IS NULL What is the current one in [PREV]?

[PREV] WHERE [age_group] Retrieve only the cases associated with patients aged [age_group] from [PREV].

[PREV] WHERE [time_filter_global1] Retrieve only the cases [time.verb] [time_filter_global1] from [PREV].

[PREV] WHERE table.column = ( [PREV] ) Retrieve only the cases associated with [PREV] from [PREV].

[PREV] WHERE table.column IN ( [PREV] ) Retrieve only the cases associated with [PREV] from [PREV_QEURY].

Table 9: SQL & NLQ template.

DB schema NL expression
admissions.admittime admission time
admissions.dob date of birth
admissions.dod date of death
admissions.subject_id patient
chartevents.charttime chart time
chartevents.itemid vital sign item id
chartevents.valuenum value of vital sign
cost.hadm_id hospital stay
diagnoses_icd.charttime time of diagnosis
diagnoses_icd.icd9_code diagnosis ICD-9 code
inputevents_cv.amount volume of intake
inputevents_cv.itemid input event item id
labevents.itemid lab test
labevents.itemid lab test item id
labevents.valuenum value of lab test
microbiologyevents.org_name organism name
microbiologyevents.spec_type_desc microbiology test
outputevents.itemid output event item id
prescriptions.drug drug
prescriptions.startdate prescription time
procedures_icd.charttime time of procedure
procedures_icd.hadm_id hospital stay
procedures_icd.icd9_code procedure ICD-9 code
procedures.icd9_code procedure

Table 10: Examples of DB schema & NL expression pairs.
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Interaction Goal Template Composition Set of Components
Is the value of
glucose of patient
71192 last measured
on the first hospital
visit less than the
second to last value
measured on the
first hospital visit?

Is the value of
{lab_name} of
patient {patient_id}
[time_filter_exact2]
measured
[time_filter_global2]
[compari-
son] than the
[time_filter_exact1]
value measured
[time_filter_global1]?

SELECT ( SELECT
labevents.valuenum FROM labevents
WHERE labevents.hadm_id IN
( SELECT admissions.hadm_id
FROM admissions WHERE
admissions.subject_id
= {patient_id}
[time_filter_global1] )
AND labevents.itemid IN (
SELECT d_labitems.itemid
FROM d_labitems WHERE
d_labitems.label = {lab_name}
) [time_filter_exact1] ) < (
SELECT labevents.valuenum FROM
labevents WHERE labevents.hadm_id
in ( SELECT admissions.hadm_id
FROM admissions WHERE
admissions.subject_id
= {patient_id}
[time_filter_global2] ) AND
labevents.itemid IN ( SELECT
d_labitems.itemid FROM d_labitems
WHERE d_labitems.label =
{lab_name} ) [time_filter_exact2]
)

1. SELECT admissions.hadm_id FROM
admissions

2. [PREV_QUERY] WHERE
admissions.subject_id = {patient_id}

3. [PREV_QUERY] AND [time_filter_global1]

4. SELECT d_labitems.itemid FROM
d_labitems

5. [PREV_QUERY] WHERE d_labitems.label =
{lab_name}

6. SELECT labevents.valuenum FROM
labevents

7. [PREV_QUERY] WHERE labevents.hadm_id
IN ( [PREV_RESULT] )

8. [PREV_QUERY] AND labevents.itemid IN (
[PREV_RESULT] )

9. [PREV_QUERY] [time_filter_exact1]

10. [PREV_QUERY] [time_filter_exact2]

11. SELECT ( [PREV_RESULT] ) [comparison]
( [PREV_RESULT] )

What was the maxi-
mum arterial bp [di-
astolic] of patient
18866 yesterday?

What was the
[agg_function]
{vital_name} of
patient patient_id
[time_filter_global1]?

SELECT [agg_function](chartevents.valuenum)
FROM chartevents WHERE
chartevents.icustay_id IN (
SELECT icustays.icustay_id FROM
icustays WHERE icustays.hadm_id
IN ( SELECT admissions.hadm_id
FROM admissions WHERE
admissions.subject_id
= patient_id ) ) AND
chartevents.itemid IN ( SELECT
d_items.itemid FROM d_items WHERE
d_items.label = {vital_name} AND
d_items.linksto = ’chartevents’ )
[time_filter_global1]

1. SELECT admissions.hadm_id FROM
admissions

2. [PREV_QUERY] WHERE
admissions.subject_id = {patient_id}

3. SELECT icustays.icustay_id FROM
icustays

4. [PREV_QUERY] WHERE icustays.hadm_id IN
( [PREV_RESULT] )

5. SELECT d_items.itemid FROM d_items

6. [PREV_QUERY] WHERE d_items.label
= {vital_name} AND d_items.linksto =
’chartevents’

7. SELECT chartevents.valuenum FROM
chartevents

8. [PREV_QUERY] WHERE
chartevents.icustay_id IN (
[PREV_RESULT] )

9. [PREV_QUERY] AND chartevents.itemid IN
( [PREV_RESULT] )

10. [PREV_QUERY] [time_filter_global1]

11. SELECT [agg_function](chartevents.valuenum)
FROM chartevents WHERE
chartevents.icustay_id
IN ( [PREV_RESULT] ) AND
chartevents.itemid IN ( [PREV_RESULT]
) [time_filter_global1]

Is the arterial bp [di-
astolic] of patient
25461 last measured
on the last icu visit
greater than the sec-
ond to last value
measured on the last
icu visit?

Is the {vi-
tal_name} of
patient {patient_id}
[time_filter_exact2]
measured
[time_filter_global2]
[compari-
son] than the
[time_filter_exact1]
value measured
[time_filter_global1]?

SELECT ( SELECT
chartevents.valuenum
from chartevents WHERE
chartevents.icustay_id IN (
SELECT icustays.icustay_id from
icustays WHERE icustays.hadm_id
IN ( SELECT admissions.hadm_id
from admissions WHERE
admissions.subject_id
= {patient_id} )
[time_filter_global1] ) AND
chartevents.itemid IN ( SELECT
d_items.itemid from d_items WHERE
d_items.label = {vital_name} AND
d_items.linksto = ‘chartevents’
) [time_filter_exact1] ) > (
SELECT chartevents.valuenum
from chartevents WHERE
chartevents.icustay_id IN (
SELECT icustays.icustay_id from
icustays WHERE icustays.hadm_id
IN ( SELECT admissions.hadm_id
from admissions WHERE
admissions.subject_id
= {patient_id} )
[time_filter_global2] ) AND
chartevents.itemid IN ( SELECT
d_items.itemid from d_items WHERE
d_items.label = {vital_name} AND
d_items.linksto = ‘chartevents’ )
[time_filter_exact2] )

1. SELECT admissions.hadm_id FROM
admissions

2. [PREV_QUERY] WHERE
admissions.subject_id = {patient_id}

3. SELECT icustays.icustay_id FROM
icustays

4. [PREV_QUERY] WHERE icustays.hadm_id IN
( [PREV_RESULT] )

5. [PREV_QUERY] AND [time_filter_global1]

6. SELECT d_items.itemid FROM d_items

7. [PREV_QUERY] WHERE d_items.label
= {vital_name} AND d_items.linksto =
’chartevents’

8. SELECT chartevents.valuenum FROM
chartevents

9. [PREV_QUERY] WHERE
chartevents.icustay_id IN (
[PREV_RESULT] )

10. [PREV_QUERY] AND chartevents.itemid
IN ( [PREV_RESULT] )

11. [PREV_QUERY] [time_filter_exact1]

12. [PREV_QUERY] [time_filter_exact2]

13. SELECT ( [PREV_RESULT] ) [comparison]
( [PREV_RESULT] )

Table 11: Examples of compositions and components.
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the corresponding interaction in EHR-SeqSQL, and their templates where the same anonymizing logic in
deriving composition is applied.

We use a greedy algorithm to automatically split our data into training and test sets. Starting with all
compositions assigned to the training set, we iteratively allocate a composition that has the maximum
number of unique components to the test set while constraining all the components in the composition to
exist in the training set, until no composition can be further assigned to the test set. You can find that the
components in the last row are all present in the components of the first two rows. Thus, according to
our split algorithm, if both the first two compositions are in the training set, the last composition can be
assigned to the test set.

C Longer Interaction

C.1 Generation Process

As given in Figure 4, we define the concept of related interaction goal by using the context graph. Each
interaction goal has its own context graph, whose nodes are defined by the specific condition values (e.g.
conditions for patient, drug, or lab tests) in the original EHRSQL. Two questions are deemed related if
they have overlapping condition values. Q1 and Q2 are related because they share the same patient 85895.
However, Q1 and Q3 are not directly related without Q2 as a bridge. While we used three independent
questions from the EHRSQL to demonstrate this concept in Figure 4, a longer and context-dependent
interaction used in Section 5.2 is depicted in Figure 5. In this example for longer interaction, five EHRSQL
questions are connected, each paired with an original SQL query. In contrast, EHR-SeqSQL involves
context-dependent interaction spanning twelve turns, each paired with a query with our special tokens for
SQL.

C.2 IFF Score Calculation

IFF =

{
n+ 1, if all turns are correct
k, otherwise

k denotes the specific turn number in the interaction where the first incorrect response occurs. n
represents the total number of turns in the interaction. The final IFF score for a test set is calculated
as the average IFF score across all interactions. Hence, if the model achieves a perfect score for every
interaction, the IFF score becomes one plus the average number of turns of all interactions.

Note that the perfect IFF score for QQ and QS setting is different in Table 4. This is because we
removed the test sample that exceeds the maximum token length of T5 when the interaction history is
concatenated with the current question for a fair comparison.

Figure 3: Prompt for paraphrasing.
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Figure 4: Related interaction goals and their context graph.

D Fine-tuning Baseline

D.1 Configuration
We fine-tuned the T5-Base and T5-3B using the Adam optimizer, with a global batch size of 32. The
learning rate were set to 1e-4 for T5-Base and 5e-5 for T5-3B, respectively. For the other hypterparameter
configurations, we followed the settings used in EHRSQL. All experiments were carried out on either a
single A100 80G GPU or a A6000 48G GPU. The training process typically took around 10 hours for
T5-Base and around 24 hours for T5-3B.

E In-context Learning Baseline

E.1 Prompt Configuration
Figure 6 demonstrates how we configured the prompt of ChatGPT for both the EHRSQL and EHR-
SeqSQL. Unlike EHRSQL where the target representation is standard SQL, EHR-SeqSQL include
the special tokens, which are first introduced in this work. Thus, we include a simple description for
PREV_QUERY and PREV_RESULT tokens in the prompt. In the QS setting during the inference process,
for the current turn, the interaction history includes both previous questions and queries generated by
ChatGPT.

E.2 Few-Shot Learning Approach for EHR-SeqSQL
We developed a new method for few-shot learning for the multi-turn, context-dependent setting of EHR-
SeqSQL. This method is detailed in Figure 7. To begin, we created two corpora: one for interaction-level
training data and another for turn-level training data. For our few-shot learning approach, we retrieved
examples, with half based on the interaction history and the other half based on the current question. In
our experiments, we used a total of 20 examples for few-shot learning.

F Use Cases of the Special Tokens

Table 12 illustrates an example of the interactions in EHR-SeqSQL where the special token significantly
reduce the length of target representation as well as the execution time. Due to readability and spatial
issues, the standard SQL version of each turn has been omitted from the table. You can see the standard
SQL would be quite lengthy by looking at the SQL† that the used special token refers to.
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Figure 5: Example of Longer Interaction.
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Index Question Target Representation (SQL†) Time
(SQL†)

Standard SQL Time
(SQL)

1 Which icu stay ids are
associated with patient
30826 on the current
hospital visit?

SELECT icustays.icustay_id FROM icustays
WHERE icustays.hadm_id IN ( SELECT
admissions.hadm_id FROM admissions
WHERE admissions.subject_id = 30826 AND
admissions.dischtime IS NULL )

0.334 SELECT icustays.icustay_id FROM icustays
WHERE icustays.hadm_id IN ( SELECT
admissions.hadm_id FROM admissions
WHERE admissions.subject_id = 30826 AND
admissions.dischtime IS NULL )

0.334

2 Could you tell me the
item id for weight,
please?

SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’

0.334 SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’

0.333

3 During result1, what
was the last value of
result2 that was mea-
sured?

SELECT chartevents.valuenum FROM
chartevents WHERE chartevents.icustay_id
IN ( PREV_RESULT1 ) AND
chartevents.itemid IN ( PREV_RESULT2
) ORDER BY chartevents.charttime DESC
LIMIT 1

20.352 SELECT chartevents.valuenum FROM
chartevents WHERE chartevents.icustay_id
IN ( SELECT icustays.icustay_id FROM
icustays WHERE icustays.hadm_id IN
( SELECT admissions.hadm_id FROM
admissions WHERE admissions.subject_id
= 30826 AND admissions.dischtime IS
NULL ) ) AND chartevents.itemid IN (
SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’ ) ORDER
BY chartevents.charttime DESC LIMIT 1

31.362

4 What about the first mea-
sured case?

SELECT chartevents.valuenum FROM
chartevents WHERE chartevents.icustay_id
IN ( PREV_RESULT1 ) AND
chartevents.itemid IN ( PREV_RESULT2
) ORDER BY chartevents.charttime ASC
LIMIT 1

19.684 SELECT chartevents.valuenum FROM
chartevents WHERE chartevents.icustay_id
IN ( SELECT icustays.icustay_id FROM
icustays WHERE icustays.hadm_id IN
( SELECT admissions.hadm_id FROM
admissions WHERE admissions.subject_id
= 30826 AND admissions.dischtime IS
NULL ) ) AND chartevents.itemid IN (
SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’ ) ORDER
BY chartevents.charttime ASC LIMIT 1

30.695

5 What is the variation
between result3 and re-
sult4?

SELECT ( PREV_RESULT3 ) - ( PREV_RESULT4
)

0.000 SELECT ( SELECT chartevents.valuenum
FROM chartevents WHERE
chartevents.icustay_id IN ( SELECT
icustays.icustay_id FROM icustays
WHERE icustays.hadm_id IN ( SELECT
admissions.hadm_id FROM admissions
WHERE admissions.subject_id = 30826
AND admissions.dischtime IS NULL
) ) AND chartevents.itemid IN (
SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’ ) ORDER
BY chartevents.charttime DESC LIMIT 1
) - ( SELECT chartevents.valuenum FROM
chartevents WHERE chartevents.icustay_id
IN ( SELECT icustays.icustay_id FROM
icustays WHERE icustays.hadm_id IN
( SELECT admissions.hadm_id FROM
admissions WHERE admissions.subject_id
= 30826 AND admissions.dischtime IS
NULL ) ) AND chartevents.itemid IN (
SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’ ) ORDER
BY chartevents.charttime ASC LIMIT 1 )

60.722

Table 12: Example of an interaction in EHR-SeqSQL where the target representations (SQL†) contain special tokens.
We also report average execution times in milliseconds(10−3), where the queries are executed three times. Their
standard SQL versions are also reported for comparison.
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Figure 6: Prompt configuration for ChatGPT.

Figure 7: Overview of ChatGPT baseline. In (a), we built two corpora using training data. For turn-level, each
question is stored independently, while in an interaction-level, questions accumulate within each interaction. (b)
shows the retrieval process of the top 20 examples based on BM25 similarity: 10 from using the entire interaction as
a query (history retrieval) and another 10 from using just the current turn (current-turn retrieval). The interaction-
level and turn-level corpus from (a) are used respectively. (c) deals with prompt based on different versions of
interaction history. In the QQ setting, only 20 target representations are given, whereas in the QS setting, more
target representations are shown, depending on the length of the example interactions.
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