
Findings of the Association for Computational Linguistics: ACL 2024, pages 11130–11142
August 11-16, 2024 ©2024 Association for Computational Linguistics

ToxVidLM: A Multimodal Framework for Toxicity Detection in
Code-Mixed Videos

Krishanu Maity1,⋆, A.S. Poornash1,⋆ , Sriparna Saha1 and Pushpak Bhattacharyya2

1Department of Computer Science and Engineering, Indian Institute of Technology Patna
2Department of Computer Science and Engineering, Indian Institute of Technology Bombay

{krishanu_2021cs19, poornash_2101cs01, sriparna}@iitp.ac.in, pb@cse.iitb.ac.in

Abstract

In an era of rapidly evolving internet technol-
ogy, the surge in multimodal content, including
videos, has expanded the horizons of online
communication. However, the detection
of toxic content in this diverse landscape,
particularly in low-resource code-mixed
languages, remains a critical challenge. While
substantial research has addressed toxic
content detection in textual data, the realm
of video content, especially in non-English
languages, has been relatively underexplored.
This paper addresses this research gap by
introducing a benchmark dataset, the first of
its kind, consisting of 931 videos with 4021
code-mixed Hindi-English utterances collected
from YouTube. Each utterance within this
dataset has been meticulously annotated for
toxicity, severity, and sentiment labels. We
have developed an advanced Multimodal Mul-
titask framework built for Toxicity detection in
Video Content by leveraging Language Models
(LMs), crafted for the primary objective
along with the additional tasks of conducting
sentiment and severity analysis. ToxVidLM
incorporates three key modules – the Encoder
module, Cross-Modal Synchronization module,
and Multitask module – crafting a generic
multimodal LM customized for intricate video
classification tasks. Our experiments reveal
that incorporating multiple modalities from the
videos substantially enhances the performance
of toxic content detection by achieving an
Accuracy and Weighted F1 score of 94.29%
and 94.35%, respectively.

Disclaimer: The article contains profanity, an
inevitable situation for the nature of the work
involved. These in no way reflect the opinion
of the authors.

∗ Denotes an equal contribution to this work by the re-
spective authors and are jointly the first authors.

The code and dataset will be made available at
https://github.com/justaguyalways/ToxVidLM_ACL_2024

1 Introduction

In an age where social media platforms empower
users to become content creators, the digital land-
scape has witnessed an unprecedented proliferation
of information dissemination. By 2023, it is esti-
mated that 82% of internet traffic will be video
content (Wilson, 2022). As a result, platforms
like YouTube and Dailymotion have become major
sources of information. A remarkable statistic un-
derscores the colossal impact of these platforms: on
YouTube alone, users collectively view more than a
billion hours of video content each day2. The viral
nature of video content is a double-edged sword:
it facilitates rapid news propagation yet simultane-
ously accelerates the dissemination of toxic speech.
We adhere to the definition of toxic speech pro-
vided by Dixon et al. (2018), which characterizes
it as "discourteous, disrespectful, or unreasonable
language likely to compel someone to exit a discus-
sion".

This expansive realm of videos on platforms like
YouTube encompasses an array of topics, with the
majority of content being innocuous. However,
there exists a darker side – videos that blatantly con-
travene community guidelines and foster harmful
narratives (O’Connor, 2021). The non-removal of
toxic content from these platforms can have severe
repercussions, including the formation of hostile
online environments with echo chambers of hateful
users, potential loss of revenue, fines, and legal
entanglements3. While some platforms deploy hu-
man moderators to identify and remove harmful
content, the sheer volume of daily user-generated
content poses an overwhelming challenge. Face-
book, for instance, engages approximately 15,000
moderators to review content flagged by both AI
algorithms and users but still faces approximately

2https://blog.youtube/press/
3https://www.wsj.com/articles/germany-to-social-

networks-delete-hate-speech-faster-or-face-fines-
1498757679
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300,000 content moderation mistakes every day4.
Furthermore, the toll on human moderators is not
limited to their professional obligations but extends
to the risk of emotional and psychological trauma.
This issue is further compounded by legal regu-
lations that mandate the swift removal of hateful
content. Non-compliance with these laws could
result in substantial fines.

Current research in the domain of toxic speech
detection primarily focuses on text-based mod-
els (Kennedy et al., 2020; Roy and Mali, 2022;
Obaid et al., 2023; Maity et al., 2022b; Das et al.,
2022; Maity et al., 2023), with limited exploration
of image-based methodologies (Yang et al., 2019;
Gomez et al., 2020; Kiela et al., 2020; Maity et al.,
2022a) and very few works on video data (Wu and
Bhandary, 2020; Rana and Jha, 2022; Das et al.,
2023; Jha et al., 2024). Detecting harmful actions
in videos requires the fusion of multi-frame video
and speech processing signals, making direct adap-
tation of image-based hate detection methods inad-
equate. Existing toxic content detection methods
predominantly rely on text-based modalities, with
limited exploration of video content and a focus
on monolingual languages like English. However,
the surge in code-mixed language use, especially
in multilingual countries like India, where people
frequently blend Hindi and English in their commu-
nication (known as code-mixing (Myers-Scotton,
1997)), presents a unique challenge for machine
learning tool development, as highlighted by (Vyas
et al., 2014). While studies have addressed toxic
content detection in code-mixed social media texts,
a significant research gap remains in code-mixed
videos.

Main Contributions: This paper strives to ad-
dress these challenges by introducing a compre-
hensive approach for detecting toxic speech in
video content, leveraging the multi-modal nature of
video data and advanced deep learning techniques.
Through the development of efficient models, it
aims to contribute to the creation of safer online
environments and facilitate compliance with evolv-
ing legal regulations concerning toxic content. Our
contributions are twofold:

i) We introduce ToxCMM, an openly accessi-
ble dataset extracted from YouTube that is meticu-
lously annotated for toxic speech, with utterances
presented in code-mixed form. Each sentence
within the videos is annotated with three crucial la-

4https://www.forbes.com/sites/johnkoetsier

bels, namely Toxic (Yes / No), Sentiment (Positive
/ Negative / Neutral), and Severity levels (Non-
harmful / Partially Harmful / Very Harmful). This
extensive dataset comprises 931 videos, encom-
passing a total of 4021 utterances. The release
of the ToxCMM dataset is intended to foster fur-
ther exploration in the realm of multi-modal toxic
speech detection within low-resource code-mixed
languages.

ii) We have innovated ToxVidLM, a multimodal
multitask framework for detecting toxic videos and
analyzing their sentiment and severity. ToxVidLM
integrates three key modules: the Encoder mod-
ule, the Cross-Modal Synchronization Module, and
the Multitask module, to create a versatile Multi-
modal LM tailored for video classification tasks.
Our framework incorporates a sophisticated gated
modality fusion mechanism, empirically proven
to outperform standard fusion techniques in abla-
tion studies. We propose a method for synchroniz-
ing the text modality with other modalities, yield-
ing promising results as demonstrated in our stud-
ies. Notably, our framework is adaptable to vari-
ous publicly available pre-trained models, serving
as modality encoders, making it applicable to di-
verse problem statements. Our most effective mul-
titask model achieves notable weighted F1-Scores
of 94.35%, 86.84%, and 83.42% for Toxicity detec-
tion, Severity levels, and Sentiment identification,
respectively.

2 Related Works

The widespread availability of multi-modal data
has led to the utilization of multi-modal deep learn-
ing techniques, enhancing the accuracy of diverse
tasks such as visual question answering (Singh
et al., 2019), summarization (Ghosh et al., 2024b,a)
and the detection of fake news and rumors (Khat-
tar et al., 2019). In recent times, multi-modal hate
speech detection has gained traction, where text
posts are augmented with additional contextual in-
formation such as user and network data (Founta
et al., 2019) or images (Yang et al., 2019; Gomez
et al., 2020; Kiela et al., 2020; Maity et al., 2022a)
to bolster detection accuracy. These multi-modal
approaches often involve the utilization of uni-
modal methods like CNNs, LSTMs, or BERT for
text encoding and deep CNNs like ResNet or Incep-
tionV3 for image encoding. Subsequently, multi-
modal fusion is performed through techniques like
simple concatenation, gated summation, bilinear
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transformation, or attention-based methods. Addi-
tionally, the application of multi-modal transform-
ers such as ViLBERT and Visual BERT has been
explored (Kiela et al., 2020).

While research on the detection of offensive or
toxic videos is scarce, particularly in the context
of languages such as Portuguese (Alcântara et al.,
2020), Thai (Maity et al., 2024) and English (Wu
and Bhandary, 2020; Rana and Jha, 2022; Das et al.,
2023), it is worth noting that the existing work in
this area predominantly revolves around monolin-
gual languages. Maity et al. (2024) leverages tex-
tual data to propose a dual-channel network to clas-
sify hate and sentiment in low-resource settings.
Notably, the two studies (Alcântara et al., 2020;
Wu and Bhandary, 2020) exclusively considered
textual features by extracting video transcripts for
classification. In contrast, (Rana and Jha, 2022)’s
research takes both textual and audio features for
offensive video detection. However, this study
confronts issues related to dataset accessibility, in-
sufficiently detailed data curation and annotation
processes, and a lack of precise dataset statistics.
Das et al. (2023) developed a more comprehen-
sive approach by integrating all three modalities
(text, Image, and audio) for hate video detection in
English.

To the best of our knowledge, our study pio-
neers the introduction of a multi-modal toxic video
dataset in the context of low-resource code-mixed
languages, further distinguished by the annotation
of sentence-level labels. We are confident that our
dataset, along with the benchmark models devel-
oped using it, will significantly assist content mod-
erators in distinguishing genuine cases of hateful
content while concurrently reducing false alarms.

3 Toxic Code-Mixed Multimodal
(ToxCMM) Dataset Creation

Data Collection: We selected YouTube as our pri-
mary data source, given its popularity as a video
hosting platform. Our focus was on code-mixed
language conversations, primarily in Hindi and En-
glish. To collect relevant content, we utilized the
YouTube API to scrape Indian web series and Hindi
"roasted" videos. We subdivided the downloaded
videos into smaller sub-videos to annotate them at
the sentence level and maximize the inclusion of
toxic content. Initially, we obtained 1023 videos,
but after a thorough review, we retained 931 videos
as the remaining ones were mostly in English, not

the intended Hindi-English code-mixed format. To
generate transcripts for each video, we used the
Whisper (Radford et al., 2023) transcribing model,
configured with word timestamps from the OpenAI
library. We then manually improved the transcript
quality by removing unclear words and symbols
resulting from speech disruptions or stammering.
Extracting individual utterances from the videos
involved cataloging their start and end times.

3.1 Data Annotation

To better clarify the annotation process, we split
the annotation section into two subsections: (i) An-
notation Training and (ii) Main Annotation.
Annotation training: Three PhD scholars over-
saw the annotation process, well-versed in toxic
and offensive content, and the actual annotations
were conducted by three undergraduate students
proficient in both Hindi and English. Initially, we
hired a group of masters students in linguistics who
volunteered via our department email list and com-
pensated them with gift vouchers and an honorar-
ium. To train our annotators, we required gold stan-
dard samples with annotations for toxicity, severity,
and sentiment labels. Our expert annotators ran-
domly selected 150 samples (a small video of one
sentence) and assigned suitable target classes. We
considered two toxicity classes (Non-toxic/toxic),
three sentiment classes (positive/neutral/negative),
and the severity score on a three-point scale (0, 1,
2) for each video sample. Score 0 signifies that
there is no indication of toxicity and 1 indicates
that the post contains indications of toxicity. How-
ever, they are not severe, and a score of 2 indicates
that the post contains strong evidence of toxicity
(e.g., physical threats or excitement to commit sui-
cide). Expert annotators engaged in discussions
to resolve any differences and created 150 gold-
standard samples with rationale and target annota-
tions. These 150 annotated examples were divided
into three sets, each containing 50 samples, to fa-
cilitate a three-phase training process. After each
phase, expert annotators collaborated with novice
annotators to correct any inaccuracies in the anno-
tations, and the annotation guidelines were updated
as needed. Following the conclusion of the third
round of training, the top three annotators were
selected to annotate the entire dataset containing
4021 samples.

Main annotation: We began with a small batch
of 100 samples, gradually increasing it to 500 as an-
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Table 1: Class-wise data statistics of our developed ToxCMM dataset

# Video #Utterances Toxicity Severity Sentiment
Non-Toxic Toxic 0 1 2 Positive Neutral Negative

931 4021 2324 1697 2324 834 863 469 1401 2151

(a) (b)

Utterance: Sir, yeh sabse chuthiya sawaal hai, sir
Translation: Sir, this is the most foolish question.

Toxic:- Yes ; Severity :- 1 ; Sentiment :- Negative

Utterance: Suchi, pressure aaya hai, bad me phone karta hoon
Translation: Really, I am in pressure now, call you later.

Toxic:- No ; Severity :- 0 ; Sentiment :- Negative

(c)

Utterance: apne aape mar jaayega madharchod
Translation: Motherfucker will die on his own.

Toxic:- Yes ; Severity :- 2 ; Sentiment :- Negative

Figure 1: Some samples from annotated ToxCMM dataset; The yellow highlighted words are in English.

notators improved. To ensure consistency, we cor-
rected errors from previous batches, and for final
labels, majority voting was employed. In cases of
disagreements among annotators, expert input was
sought. Annotators were instructed to be unbiased
in their assessments. The quality of annotations
was assessed using Fleiss’ Kappa scores (Fleiss,
1971), resulting in IAA scores of 0.74 for toxic-
ity classification, 0.67 for sentiment classification,
and 0.64 for severity detection, confirming dataset
quality and reliability. Figure 1 shows some sam-
ples from annotated ToxCMM dataset. Sample (b)
shows a non-toxic video with negative sentiment.
In contrast, both samples (a) and (c) are identified
as toxic videos with negative sentiments. However,
sample (a) is deemed less severe, while sample (c)
is considered more severe due to its explicit use
of profanity, aggressive language, and the wish for
harm or death upon someone.

3.2 Dataset Statistics

The ToxCMM dataset comprises a total of 4021
utterances, with 1,697 categorized as toxic and the
remaining 2,324 labelled as non-toxic. Class-wise
statistics for the ToxCMM dataset are provided in
Table 1. Each utterance in this dataset contains an
average of 8.68 words, with an average duration
of 8.89 seconds. On average, each utterance in the
dataset contains about 68.20% Hindi words, which
means that more than two-thirds of the words are
in Hindi, while the remaining words are in English.

4 Methodology

Problem Formulation: We formulate our problem
as follows: Given an utterance video clip denoted
as V, our task is essentially a classification prob-
lem. We aim to determine whether the video con-
tains toxic content, as well as assign sentiment and
severity labels to it. Each video, V , is expressed
as a sequence of frames, F = {f1, f2, . . . fn},
accompanied by its associated audio A that is
sampled at 16kHz to construct a sequence of fea-
tures A = {a1, a2, . . . al} and a transcript of the
video, T = {w1, w2, . . . wm}, which consists of
a sequence of words. Our goal is to construct a
deep learning-based video classifier, denoted as
C : C(T ;F ;A) → y, where y signifies the actual
label of the video for a given task.

In this section, we describe our developed LM-
based multimodal-multitask framework ToxVidLM
(see Figure 2) for toxic video detection and its sen-
timent and severity analysis. To enhance compre-
hension of our proposed method, we partition it
into three distinct components: namely, the En-
coder module, Cross Modal Synchronization Mod-
ule, and the Multitask module.

4.1 Encoder Module
Current transformed-based language models (LMs)
exhibit substantial capability but are commonly
constrained to processing textual data exclusively.
In this section, we elucidate our approach to encod-
ing information from diverse modalities.

Audio Encoder We conducted experiments us-
ing two state-of-the-art (SOTA) models, namely
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Figure 2: Architecture of proposed ToxVidLM model.

Whisper (Radford et al., 2023) and MMS (Pratap
et al., 2023), to encode the audio signals and derive
meaningful representations from the audio data.

Video Encoder: To handle the spatial and
temporal information in the videos, we consider
two vision-based models, VideoMAE (Tong et al.,
2022) and Timesformer (Bertasius et al., 2021).

Text Encoder: To generate text embeddings,
we leverage the BERT (Vaswani et al., 2017) fam-
ily, renowned for its high effectiveness in various
NLP tasks. Given our focus on Hindi-English
code-mixed text, we have conducted experiments
with three various models in HingBERT (Nayak
and Joshi, 2022) family, like HingMBERT, Hin-
gRoBERTa, HingGPT and IndicBERT (Kakwani
et al., 2020). These models are pre-trained on
Hindi-English code-mixed Roman text.

As per the results obtained, we utilize pre-trained
models such as VideoMAE and Whisper to encode
the input video (V ) and audio (A) inputs, respec-
tively, as outlined below:

Zv = VideoMAE(V ) (1a)

Za = Whisper(A) (1b)

Also, Zv ∈ RSLv×dv and Za ∈ RSLa×da respec-
tively. Here, SLv and SLa represent the sequence
lengths of video and audio inputs, respectively.dv
and da represent the embedding dimension of en-
coded audio and video, respectively. Please see

Appendix B for more details on audio, video and
text encoders used in our study.

4.2 Cross Modal Synchronization Module

Modality encoders are typically trained indepen-
dently, resulting in discrepancies among the gen-
erated representations. Consequently, it becomes
imperative to synchronize these distinct representa-
tions within a unified space to enhance the overall
coherence and effectiveness of multimodal process-
ing. In this section, we present a detailed method-
ology for aligning these representations.

Modality Synchronization The synchroniza-
tion strategy aims to effectively correlate features
extracted from multiple modalities, such as audio
and video, with a primary focus on textual features.
This emphasis is due to the heightened significance
of textual information in addressing our specific
problem statement. Textual features are preferred
over auditory and visual signals due to their com-
paratively lower susceptibility to noise. This em-
pirical observation is consistently reflected in the
obtained results, emphasizing the importance of
robust textual representation.

The procedure for modality synchronization is
delineated as follows:

(1) Abstract Feature Extraction: To mitigate
computational expenses and limit the token count
in the prefix, we utilize a 1-D convolutional layer
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(Conv) to compress the length of multi-modal fea-
tures to a condensed and consistent value. Follow-
ing this, a linear layer (FC) is employed to modify
the hidden size of the features, aligning it with the
dimensions of the token embeddings in the LMs,
as described below:

Cv = FC(Conv(Zv)) (2a)

Ca = FC(Conv(Za)) (2b)

where Cv ∈ RSL
′×dt and Ca ∈ RSL

′×dt are the
abstract features with a fixed length of SL

′
. Here,

dt represents the dimensionality of the embedding
matrix Ellm ∈ RV×dt associated with the textual
LMs (i.e., HingRoberta or HingGPT in our work)
with vocabulary size V.
(2) Multi-Head Cross Attention (MHCA) To es-
tablish a unified representation space guided by the
text modality, we implemented Multi-Head Cross-
Attention (MHCA) on the abstract video and audio
features obtained from the preceding layer. MHCA
involves scaled dot-product attention applied to
three inputs: Query (Q) from one modality, Key
(K) and Value (V) from another. This attention
mechanism computes attention weights by compar-
ing the queries Q with the keys K, updating the
query representations via a weighted sum of the
values V, as described below:

MHCA(Q,K, V ) = Softmax

(
QK T

√
dk

)
V

(3)
where dk is the dimensionality of the key and query
vectors. Using the attention mechanism in Equa-
tion 3, we propose to align the audio and visual
representations with the textual embedding space
as follows:

Cs
v = MHCA(Cv, Et, Et),

Cs
a = MHCA(Ca, Et, Et)

(4)

In our research, we view the attenuated represen-
tations of visual (Cs

v) and audio (Cs
a) modalities

derived from Equation 4 as the soft tokens utilized
by the LM, acting as the input to the Multitask
module.

(3) Gated Fusion To combine soft video and
audio tokens, we employ a gated fusion strategy.
Unlike concatenation or directly assigning weights
to each vector, the gate fusion mechanism enables
varying contributions to the prediction from differ-
ent positions of vectors. The joint representation

resulting from the gate fusion is computed as fol-
lows:

α = σ(PvC
s
v + PaC

s
a + bg),

Jva = α Cs
a + (1− α)Cs

v

(5)

Here, Pv and Pa represent weight matrices for the
visual and acoustic modalities, while bg denotes
scalar bias and σ is the sigmoid activation function.

4.3 Multitask Module
Typically, the LM model processes the input tran-
script T , generating a text token embedding Et

with dimensions SLt × dt. Here, SLt is the max-
imum sequence length of the transcript, and dt is
the embedding dimension. Here we have added
the joint multimodal soft tokens (Jva) obtained
from the Cross-Modal Synchronization Module,
appended with the text tokens separated by the spe-
cial token [SEP], thereby creating a multimodal
input to the LM for a more comprehensive under-
standing of the input video. Subsequently, the se-
quence output from the LM undergoes averaging
and is passed through three task-specific fully con-
nected layers, followed by an output softmax layer,
facilitating the concurrent solution of three tasks:
toxicity, severity, and sentiment detection from a
video.

4.4 Loss Function
The loss function used in all tasks is categorical
cross-entropy. The final loss function (Lossf ) is
a weighted sum of individual task-specific losses
(Losss) for M tasks, where the contribution of
each task’s loss to the overall loss is determined by
the loss weight β as shown in Equation (6).

Lossf =
M∑

k=1

βkLoss
k
s (6)

Where the parameters βi are learnt end-to-end, sig-
nifying task contribution from task i to the multi-
task loss, enabling differential importance for pa-
rameter updates across tasks.

5 Experimental Results and Analysis

Experimental Settings: All experiments were
conducted on a machine equipped with an Intel
Xeon Gold 5218 CPU featuring 64 cores and 128
threads, coupled with four Nvidia Tesla V100
GPUs with VRAM memory of 30 GB per GPU
card. For the experiments’ preparation, the dataset
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was partitioned into testing, validation, and training
sets at ratios of 10%, 10%, and 80%, respectively.
To ensure robustness, the models were trained ten
times with different random splits, and the aver-
age performance was reported. Several network
configurations were tested, with the best results
achieved using the Adam optimizer (Kingma and
Ba, 2014) with a Cosine Annealing Learning Rate
scheduler (Loshchilov and Hutter, 2016), batch size
of 2, a learning rate set to 1e−5, and training for
30 epochs. All models were implemented in the
PyTorch framework5.

Baseline Setup We have implemented the base-
line model as outlined in the study by Das et al.
(2023) which introduced a multimodal dataset de-
signed for Hate-speech classification. In their pro-
posed architecture, each modality is processed sep-
arately through a transformer-based encoder, fol-
lowed by modality-specific fully connected lay-
ers. Subsequently, a Fusion Layer concatenates
the modality-specific representations, which are
then forwarded to a fully connected classifica-
tion layer. The output dimension of this final
layer corresponds to the number of classes in the
classification task. The entire model is trained
using a single cross-entropy loss function. We
have exclusively conducted single-task experi-
ments for the three tasks (Toxicity detection, Sever-
ity detection, and Sentiment classification) in uni-
modal/bimodal/trimodal settings. A diagram illus-
trating baseline models is presented in Figure 3
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Figure 3: A schematic of baselines models as mentioned
in (Das et al., 2023)

5.1 Findings from Experiments

Table 2 shows the results of toxicity, severity and
sentiment classification tasks with different base-
line models. Results of the proposed ToxVidLM
model are shown in Table 3. From all these

5https://pytorch.org/.

Table 2: The outcomes of various transformer-based
baseline models are presented within different modali-
ties, i.e., Video (V), Audio (A), and Text (T) configura-
tions for three tasks (Toxicity, Severity, and Sentiment).
The results are measured in terms of weighted-average-
F1 score (F1) and Accuracy (Acc) values. Bold-faced
values represent the maximum scores attained; TF -
Timesformer, VM - VideoMAE, WP - Whisper, M-
BERT - HingMBERT, GPT2 - HingGPT, RT - Hin-
gRoberta.

Toxic Severity SentimentM Model F1 Acc F1 Acc F1 Acc
Baselines : Unimodal

TF 66.23 66.47 60.38 62.88 57.12 58.24V
VM 68.67 68.73 61.42 64.26 58.69 60.79
MMS 75.81 75.89 67.21 67.35 64.28 64.14A
WP 76.18 76.17 68.97 67.99 65.45 65.01
I-BERT 81.72 81.86 73.22 73.44 68.25 68.48
M-BERT 83.28 83.23 75.35 76.17 71.26 71.15
GPT2 85.67 85.71 75.02 75.93 73.11 72.72

T

RT 86.98 86.95 77.23 76.42 73.41 74.44
Baselines : Bimodal

TF + MMS 76.49 76.53 68.74 68.89 64.31 64.24
VM + MMS 77.25 77.48 69.42 69.28 65.18 65.49
TF + WP 78.72 78.94 70.34 70.57 67.85 67.41

V
+
A

VM + WP 79.23 79.41 71.79 72.71 69.45 69.47
GPT2 + TF 85.87 85.84 75.13 75.91 73.12 73.91
GPT2 + VM 86.71 86.84 76.12 76.98 74.03 74.45
RT + TF 87.01 87.93 76.92 77.19 73.92 74.56

T
+
V

RT + VM 87.11 87.08 77.68 78.11 74.11 74.59
GPT2 + MMS 86.27 86.35 75.03 76.21 73.15 72.87
GPT2 + WP 86.77 86.84 75.73 76.42 74.06 73.94
RT + MMS 87.18 87.19 77.22 78.15 74.08 74.69

T
+
A RT + WP 87.26 87.33 77.42 78.41 74.22 74.93

Baselines : Trimodal
GPT2+TF+MMS 86.92 87.02 75.85 76.61 74.27 74.69
GPT2+VM+MMS 86.72 87.12 75.72 76.48 74.23 74.87
GPT2+TF+WP 86.88 87.27 75.89 76.64 74.31 74.75
GPT2+VM+WP 87.21 87.34 77.14 77.17 74.43 74.78
RT+TF+MMS 87.29 87.39 77.93 78.47 75.09 75.65
RT+VM+MMS 87.58 87.79 77.96 78.72 75.03 75.49
RT+TF+WP 87.82 87.67 78.16 78.36 75.11 75.66

T
+
V
+
A

RT+VM+WP 88.09 88.08 78.19 78.66 75.78 75.82

reported results, we can conclude the following:

(1) Our experimentation involved four text
encoders (HingRoberta, HingGPT, IndicBERT,
HingMBERT), two video models (VideoMAE,
Timesformer), and two audio encoders (Whisper,
MMS) to discern optimal performers for toxic
video detection in Hindi-English code-mixed lan-
guage. Analysis of the outcomes, presented in
Table 2, reveals the superior performance of Hin-
gRoberta/HingGPT, VideoMAE, and Whisper as
the best encoders for text, video, and audio modal-
ities, respectively. These top-performing models
are subsequently incorporated into our proposed
framework.

(2) Across all three tasks, unimodal baselines
demonstrate that the text modality consistently out-
performs video and audio modalities. This under-
scores the paramount importance of text modality
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Table 3: Results of proposed ToxVidLM framework with
different modality configurations for three tasks (Toxic-
ity, Severity and Sentiment classification) in single and
multitask settings; TF - Timesformer, VM - VideoMAE,
WP - Whisper, M-BERT - HingMBERT, GPT2 - Hing-
GPT, RT - HingRoberta.

Toxicity Severity SentimentModality Encoder F1 Acc F1 Acc F1 Acc
Single Task

GPT2 + VM 90.15 90.09 83.35 82.99 75.64 75.26T+V
RT + VM 91.11 91.03 83.38 83.87 80.46 80.09
GPT2 + WP 91.27 91.06 84.49 83.89 76.61 76.19T+A
RT + WP 92.64 92.58 84.46 85.06 81.16 81.27
GPT2 + VM+ WP 92.14 91.98 84.86 84.92 78.14 78.23T+V+A
RT + VM + WP 93.85 93.64 86.28 86.51 82.76 82.87

Multi-Task (Toxic + Severity)
GPT2 + VM 91.53 91.31 84.68 84.19 - -T+V
RT + VM 92.07 92.38 84.88 85.56 - -
GPT2 + WP 92.47 92.28 85.79 85.28 - -T+A
RT + WP 93.61 93.58 85.87 86.43 - -
GPT2 + VM+ WP 93.48 93.29 86.54 86.12 - -T+V+A
RT + VM + WP 94.12 93.87 86.56 86.82 - -

Multi-Task (Toxic + Sentiment)
GPT2 + VM 91.64 91.25 - - 76.09 76.44T+V
RT + VM 92.33 92.66 - - 81.57 81.72
GPT2 + WP 92.51 92.34 - - 77.73 77.27T+A
RT + WP 93.78 93.71 - - 82.98 82.64
GPT2 + VM+ WP 93.45 93.23 - - 79.79 79.92T+V+A
RT + VM + WP 94.06 93.94 - - 83.05 82.18

Multi-Task (Toxic + Severity + Sentiment)
GPT2 + VM 92.72 92.65 85.89 85.59 78.22 77.59T+V
RT + VM 93.51 93.01 85.48 85.76 82.38 82.49
GPT2 + WP 92.81 92.59 85.97 85.52 78.19 77.38T+A
RT + WP 93.88 93.73 85.91 86.01 82.45 82.66
GPT2 + VM+ WP 93.72 93.56 86.71 86.39 80.03 80.21T+V+A RT + VM + WP 94.35 94.29 86.84 87.12 83.42 82.43

in toxicity detection within videos. Notably, em-
ploying the HingRoberta model for the text modal-
ity yields the highest F1 score of 86.98% in toxicity
detection, while VideoMAE and Whisper models
achieve accuracy values of 68.67% and 76.18%, re-
spectively, in video and audio modalities. Similar
trends are observed in the other two tasks, namely
severity and sentiment analysis. Hence we priori-
tize text modality as a base in our proposed model’s
performance analysis.

(3) In the context of bimodal baselines, the
text+audio configuration consistently demonstrates
superior performance compared to the other two
combinations across all tasks. Notably, the most
effective baseline considering three modalities
(RT+VM+WP) achieves the highest accuracy of
88.08%, 78.66%, and 75.82% for toxicity, severity,
and sentiment tasks, respectively.

(4) In both single-task and multitask scenarios,
our proposed model (ToxVidLM) consistently out-
performs all baselines by a substantial margin. In
the three-task settings, the (RT + VM + WP) vari-
ants exhibit enhancements in accuracy, surpass-
ing the best baseline model by 6.21%, 8.46%, and
6.61% for toxicity, severity, and sentiment tasks,
respectively. These notable improvements under-

score the effectiveness of our proposed model,
attributed to the incorporation of an innovative
modality synchronization module compared to
baseline approaches.

(5) The multitask (MT) variants of our proposed
model consistently surpass its single-task (ST) vari-
ant across all tasks within the same encoding set-
ting. Notably, in a two-task scenario utilizing
GPT2+VM encoders, the MT variant outperforms
the ST counterpart, demonstrating improvements in
F1-score of 2.57%, 2.54%, and 2.58% for toxicity,
severity, and sentiment tasks, respectively. These
results suggest that incorporating sentiment and
severity knowledge enhances the performance of
the toxicity detection task and contributes to over-
all model improvement. Conversely, no substantial
improvements are observed when comparing mul-
titask settings with two tasks versus three tasks.

Statistical Analysis: A statistical t-test was con-
ducted on the values from ten runs of both the
proposed models and baseline models, yielding
p-values below 0.05, indicating the statistical sig-
nificance of the results. The t-test was implemented
using functions from the scipy library6. We have
highlighted (gray color) the results in Table 2 and
3 which are statistically significant.

5.1.1 Ablation Study

Table 4: Ablation study to show the effect of gated
fusion (GF), multi-head cross attention (MHCA) in pro-
posed ToxVidLM model

Model Toxic Severity Sentiment
F1 Acc F1 Acc F1 Acc

ToxVidLM 94.35 94.29 86.84 87.12 83.42 82.43
- GF 92.63 92.84 84.11 84.59 80.29 80.54
- MHCA 89.87 89.92 81.45 81.56 77.38 77.62
- MHCA - GF 87.72 87.86 78.22 78.44 75.25 75.48

We conducted an ablation study (see Table 4)
on our proposed model, ToxVidLM, to elucidate
the impact of gated fusion (GF) and multi-head
cross attention (MHCA) in toxic video detection.
The removal of GF from ToxVidLM results in a
discernible decrease of 1.72%, 2.73%, and 3.13%
in F1-score for toxicity, severity, and sentiment
tasks, respectively. This decline underscores the
crucial role of the gated fusion module in effec-
tively fusing video and audio modalities, thereby
enhancing overall performance. Upon removing

6https://docs.scipy.org/doc/scipy-1.6.
3/reference/generated/scipy.stats.ttest_
ind.html
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the MHCA component from ToxVidLM, a substan-
tial performance drop is observed across all tasks,
affirming the significant impact of MHCA in our
proposed model. This proves MHCA is instrumen-
tal in generating text-guided audio and video fea-
tures. Notably, the simultaneous exclusion of both
GF and MHCA components results in a substantial
drop of 6.63% in the F1 score for the toxicity task,
with similar performance reductions observed in
other tasks. This considerable decline underscores
the pivotal role of the cross-modal synchronization
module, emphasizing its capacity to align repre-
sentations from three distinct modalities within a
unified space. Please see the qualitative analysis of
our proposed framework in Appendix A.

6 Conclusion and Future Works

In an ever-evolving internet landscape, where
videos have become the predominant form of con-
tent, the challenge of detecting toxic content, es-
pecially in low-resource code-mixed languages, is
more critical than ever. We introduce ToxCMM,
a pioneering benchmark dataset featuring code-
mixed videos for toxic content detection. Our pro-
posed LM-based advanced multimodal framework
(ToxVidLM) achieved remarkable results, emphasiz-
ing the significance of combining text, audio, and
video modalities. It is worth noting that, among
the individual modalities, transformer encodings
of text prove to be particularly effective in detect-
ing toxic videos. Beyond toxicity, the ToxCMM
dataset includes two additional labels, sentiment,
and severity, offering a comprehensive resource
for further exploration in sentiment analysis within
low-resource code-mixed videos. Our research em-
phasizes AI’s role in fostering a respectful online
environment and promoting civility against toxic
speech in video data.

7 Limitations

Our endeavour aimed to construct a multimodal
framework and introduce a benchmark dataset, Tox-
CMM, tailored for detecting toxic video content
within code-mixed language. However, it is crucial
to acknowledge certain inherent limitations in our
proposed approach and dataset, including:

1. In this study, we did not consider the context
of the video clip; we treated a single utterance as
the input post. Future investigations will incorpo-
rate the entire video clip as input, recognizing the
pivotal role of context in deciphering the actual

meaning of the utterance.
2. Implicit or indirect toxic expressions were

excluded from this study, primarily focusing on ex-
plicit markers. Future work will address the devel-
opment of datasets and models capable of detecting
implicit/indirect toxic posts.

3. The proposed ToxVidLM model fine-tunes two
encoder modules, an LM, and additional modules,
requiring a considerable amount of GPU memory
for training. Due to computational limitations, we
were unable to experiment even with parameter-
efficient fine-tuning methods (PEFT) like LoRA
(Hu et al., 2021) or Quantized-LoRA (Dettmers
et al., 2023) for models containing billions of pa-
rameters like OpenHathi-7B7, Airavata-7B (Gala
et al., 2024), Llama 2-7B (Touvron et al., 2023), or
Mistral-7B (Jiang et al., 2023). However, since our
model is versatile, those with ample GPU resources
can easily substitute larger models into the textual
side, potentially achieving enhanced performance
specifically for video classification tasks.
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A Qualitative Analysis

Figure 4 illustrates qualitative results comparing
the insightfulness of various tasks between ground
truth and model predictions.

(i) In the first sample (a), the textual modality
("Let us tell you our status now") lacks offensive
words but constitutes a toxic utterance with nega-
tive sentiment and a severity score of 1 based on
acoustic and visual expression. The user is threat-
ening someone. Both the best baseline model and
our proposed model with two modalities settings
(ToxVidLM2M ) make incorrect predictions across
all tasks. However, considering three modalities
variants (ToxVidLM3M ) allows accurate prediction
of all classes. This observation underscores our
proposed model’s enhanced comprehension of di-
verse modalities, demonstrating that incorporating
audio and visual cues with text provides a superior
understanding of video data.

(ii) The second example’s true labels are non-
toxic with negative sentiment and a severity score
of 0. Regrettably, both baseline and proposed
models mispredict toxicity and severity labels. Al-
though the surface sentiment appears negative, and
some negative words and angry facial expressions
are present, understanding the actual implicit mean-
ing requires knowledge of the video clip’s previous
context. Since this study focuses on stand-alone ut-
terance labels without considering previous context,
all models make incorrect predictions. Integrating
context represents a potential future direction for
this work.

(iii) In the third example, both baseline
and single-task variants of the proposed model
(ToxVidLMST ) inaccurately predict all labels,
while the multitask model (ToxVidLMMT ) cor-
rectly identifies all classes. This example is toxic
due to offensive language and derogatory assump-
tions about someone’s grandfather. The terms
"sidhi lagti hogi" and "khud hi chadh jate hai" are
disrespectful, implying negative sentiment. Task-
specific layers in the multitask framework aid in
correctly identifying true sentiment, leading to the
accurate identification of toxicity and severity la-
bels in the given post.
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(a) (b)

Utterance: bata de tumko aukat hum abhi
Translation: Let us tell you our status now

Utterance: Khud to kabhi school gaye nahi isliye apni gaand ghiss ghiss ke 
mujhko school me bharti karwaya
Translation: You never went to school yourself; that's why you had to beg to 
enroll me.

(c)

Utterance: Tumhare dada ye jb lene jate hai toh sidhi lagti hogi ya khud hi 
chadh jate hai
Translation: When your grandfather goes to take it, does he stand straight, or 
does he climb up by himself?

Model True Class Predicted Class

Toxic Severity Sentiment Toxic Severity Sentiment

baseline

Yes 1 Negative

No 0 Neutral

MMLLM2M No 0 Neutral

MMLLM3M Yes 1 Negative

Model True Class Predicted Class

Toxic Severity Sentiment Toxic Severity Sentiment

baseline

No 0 Negative

Yes 1 Negative

MMLLM2M Yes 1 Negative

MMLLM3M Yes 1 Negative

Model True Class Predicted Class

Toxic Severity Sentiment Toxic Severity Sentiment

baseline

Yes 1 Negative

No 0 Neutral

MMLLMST No 0 Neutral

MMLLMMT Yes 1 Negative

Figure 4: Human annotation Vs. model’s prediction for qualitative analysis with different settings

B Encoder Description

Audio Encoders: We conducted experiments using
two state-of-the-art (SOTA) models, namely Whis-
per Radford et al. (2023) and MMS(Pratap et al.,
2023), to encode audio signals and extract meaning-
ful representations from the audio data. In our in-
vestigation, Whisper consistently demonstrated su-
perior performance across all experimental settings
compared to MMS. The reasons behind Whisper’s
superiority could be manifold. It might possess
a more refined architecture tailored for audio pro-
cessing, incorporating domain-specific optimiza-
tions or leveraging advanced techniques such as
self-attention mechanisms or convolutional layers
optimized for audio data. Additionally, the training
procedure, hyperparameter settings, or data prepro-
cessing techniques employed for Whisper could
contribute to its superior performance over MMS.

(i) Massively Multilingual Speech
(MMS) (Pratap et al., 2023): Developed
by Facebook AI, MMS is a comprehensive
multilingual pre-trained model for speech. It
undergoes pretraining with Wav2Vec2’s self-
supervised training objective on an extensive
dataset comprising approximately 500,000 hours
of speech data across more than 1,400 languages.

(ii) Whisper: Radford et al. (2023) introduced
Whisper, a novel multilingual speech recognition
model. Whisper is trained on an extensive audio
dataset, incorporating weak supervision for im-
proved performance.

Video Encoders: We explored the efficacy of
two transformer-based video models equipped with
spatiotemporal context by uniformly sampling 16
frames from each video clip and feeding them
into these encoders. Our experiments focused on

comparing the performance of VideoMAE Tong
et al. (2022) and TimeSformer (Bertasius et al.,
2021), with VideoMAE consistently outperform-
ing TimeSformer across all settings.

Despite the advanced design and capabilities of
TimeSformer, our experimental results indicate that
VideoMAE consistently outperforms it across all
evaluated settings. The reasons behind this superi-
ority could stem from various factors such as the
efficiency of VideoMAE’s learning approach, its
ability to capture subtle temporal dependencies, or
the effectiveness of its feature representation in
downstream tasks. Additionally, factors like model
architecture, training strategies, and hyperparam-
eter settings may also influence the comparative
performance of these models.

(i) VideoMAE: Tong et al. (2022) introduced a
data-efficient learning approach for self-supervised
video pre-training. It utilizes Masked Autoen-
coders to efficiently learn representations from
video data, demonstrating effectiveness in enhanc-
ing model performance.

(ii) TimeSformer: (Bertasius et al., 2021) This
model is a novel architecture designed for video
understanding tasks. It extends the Transformer
architecture to capture temporal relationships in
videos by incorporating a spatiotemporal attention
mechanism, demonstrating state-of-the-art perfor-
mance in various video analysis applications.

Text Encoders: (Nayak and Joshi, 2022) in-
troduces several transformer-based models pre-
trained on L3Cube-HingCorpus, the first large-
scale real Hindi-English code-mixed dataset in
Roman script: HingBERT, HingMBERT, Hin-
gRoBERTa, and HingGPT. These models, evalu-
ated on tasks like sentiment analysis, POS tagging,
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NER, and language identification, demonstrate the
effectiveness of real code-mixed data. They also
present HingBERT-LID for language identifica-
tion and HingFT for code-mixed word embeddings,
making all resources publicly available for further
research in Hinglish NLP.
(i) HingBERT: HingBERT is a BERT-based model
pre-trained on the Hinglish corpus using masked
language modeling objectives. It is evaluated on
downstream tasks such as code-mixed sentiment
analysis, POS tagging, NER, and language identifi-
cation (LID) from the GLUECoS benchmark.

(ii) HingMBERT: HingMBERT is a variant of
the multi-lingual BERT model pre-trained on the
Hinglish corpus. It is trained using both Roman
and Devanagari scripts and is assessed on various
downstream tasks including code-mixed sentiment
analysis, POS tagging, NER, and LID.

(iii) HingRoBERTa: HingRoBERTa is a
RoBERTa-based model trained on the Hinglish cor-
pus. It has versions trained on Roman script and a
combination of Roman + Devanagari scripts. The
model is evaluated on downstream tasks such as
code-mixed sentiment analysis, POS tagging, NER,
and LID.

(iv) HingGPT: HingGPT is a generative trans-
former model based on the GPT-2 architecture. It
is trained on the Hinglish corpus to generate full
tweets in code-mixed Hinglish.

We initially utilized all four pre-trained models
for the unimodal baselines and filtered the top 2
models namely HingGPT and HingRoBERTa for
the rest of the experiments. According to the results
obtained from our main framework, HingRoBERTa
outperforms HingGPT in all the corresponding set-
tings, proving it to be the best candidate for our
framework among all the considered models.
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