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Abstract

Large Language Models (LLMs) have shown
excellent performance in language understand-
ing, text generation, code synthesis, and many
other tasks, while they still struggle in complex
multi-step reasoning problems, such as math-
ematical reasoning. In this paper, through a
newly proposed arithmetical puzzle problem,
we show that the model can perform well on
multi-step reasoning tasks via fine-tuning on
high-quality synthetic data. Experimental re-
sults with the open-llama-3B model on three
different test datasets show that not only the
model can reach a zero-shot pass@1 at 0.44
on the in-domain dataset, it also demonstrates
certain generalization capabilities on the out-
of-domain datasets. Specifically, this paper
has designed two out-of-domain datasets in the
form of extending the numerical range and the
composing components of the arithmetical puz-
zle problem separately. The fine-tuned models
have shown encouraging performance on these
two far more difficult tasks with the zero-shot
pass@1 at 0.33 and 0.35, respectively.

1 Introduction

Large Language Models (LLMs), as zero-shot and
multi-task learners, have shown extraordinary ca-
pabilities across a variety of natural language tasks
(Vaswani et al., 2017; Schulman et al., 2017; Rad-
ford et al., 2019; Ziegler et al., 2019; Brown et al.,
2020; Kojima et al., 2022; Park et al., 2023; Chowd-
hery et al., 2023; Rafailov et al., 2024). However,
even the most advanced LLMs face challenges
when it comes to tackling complex multi-step rea-
soning problems, such as mathematical and sci-
entific reasoning (Koncel-Kedziorski et al., 2016;
Cobbe et al., 2021; Hendrycks et al., 2021; Wei
et al., 2022; Chen et al., 2022; Gao et al., 2023;
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Trinh et al., 2024). This comes from three main rea-
sons: firstly, mathematical reasoning often requires
quantitative multiple steps of deduction, since a sin-
gle logical error is enough to derail a much larger
solution (Lightman et al., 2023). Secondly, the lack
of high-quality data limits LLMs’ ability to gen-
eralize and excel in mathematical reasoning tasks.
Lastly, LLMs encounter difficulty in extrapolation,
as they struggle to apply reasoning skills when
solving unseen mathematical problems.

Many prior research has explored along these
challenges. GPT-4 (Achiam et al., 2023), LLaMA
(Touvron et al., 2023a,b), Gemini (Team et al.,
2023), Minerva (Lewkowycz et al., 2022), Llemma
(Azerbayev et al., 2023), Mistral (Jiang et al.,
2023), WizardMath (Luo et al., 2023), MAM-
MOTH (Yue et al., 2023), ToRA (Gou et al., 2023)
and Deepseek (Bi et al., 2024; Guo et al., 2024;
Lu et al., 2024) have emerged as dominant mod-
els in popular mathematical reasoning benchmarks
such as GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021), CMATH (Wei et al., 2023)
and AGIEval (Zhong et al., 2023). Moreover, pro-
cess supervision and verifiers (Cobbe et al., 2021;
Li et al., 2023; Uesato et al., 2022; Lightman et al.,
2023; Yu et al., 2023) at the step level have also ob-
tained widespread attention. However, mathemati-
cal extrapolation, particularly in terms of abstract
forms, is often overlooked.

In this paper, we address the aforementioned
challenges by introducing a novel and challenging
arithmetical puzzle problem and making an initial
attempt to solve them. Specifically, we propose a
puzzle that needs multi-step calculations to gener-
ate a correct solution. Meanwhile, a data synthesis
pipeline is developed to automatically generate a
vast amount of high-quality data for supervised
fine-tuning (SFT). And a series of LLMs based
on open-llama-3B (Touvron et al., 2023a) are fine-
tuned on this synthetic dataset. Furthermore, to
demonstrate the reasoning abilities in extrapolation,
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Example of the Synthetic Data
—prompt—
34, 18, 31, 41, 19, 55: -110

—response—
31-34=-3, 19+41=60, 60/-3=-20, -20/18=-2,
-2*55=-110

Table 1: Example of our synthetic data.

we have designed two out-of-domain benchmarks
in the form of extending the numerical range and
the composing components of the arithmetical puz-
zle problem. For the purpose of fair evaluation,
we have restricted our models to greedy sampling
in a zero-shot setting and provided a correspond-
ing verifier. Our data scaling experiments demon-
strate that as the amount of synthetic data grows,
in-domain zero-shot pass@1 increases from 0.22
to 0.44, while the out-of-domain zero-shot pass@1
increases from 0.14/0.17 to 0.33/0.35.

Our major contributions can be concluded as:
(1) We propose a novel arithmetical puzzle prob-
lem with corresponding data synthesis pipeline and
out-of-domain benchmarks, to verify the multi-step
reasoning and extrapolation capabilities of LLMs
fine-tuned on synthetic data. (2) Experiments in-
dicate that increasing the amount of high-quality
synthetic data leads to performance enhancements
across in-domain and out-of-domain datasets. (3)
A comprehensive case study has been performed.

2 Problem Definition

2.1 Arithmetical Puzzle Problem

Arithmetical puzzle problem denotes a mathemati-
cal puzzle involving arithmetic operations and re-
quires logical reasoning and numerical manipula-
tion to derive a solution. The 24 Puzzle and Arith-
metic Grid Puzzle are well-known examples of
arithmetical puzzle problems.

In this paper, we propose a challenging arith-
metical puzzle. Its objective is intricate yet pre-
cise: to deftly manipulate a set of given integers
through a calculated sequence of arithmetic oper-
ations, to achieve a predetermined target integer.
The problem strictly limits each integer to be used
by one time exactly. For example, for the integers
3, 6, 7, 51, 58 and the target integer 4, one possible
solution is: 58−51 = 7, 6−7 = −1, 3×−1 = −3,
−3+7 = 4, as shown in Figure 5 in Appendix A.4.

Algorithm 1 Data Synthesis Algorithm
1: Sdataset starts with an empty set
2: while sizeSdataset

≤ sizelimit do
3: Sample {Xi | 1 ≤ i ≤ N,Xi ∼ U(1, V )}
4: L starts with an empty list
5: S ← {Xi}
6: for i = 1 to N − 1 do
7: Randomly select ai, bi ∈ S
8: Randomly select opsi ∈ {+,−,×,÷}
9: ci ← ai opsi bi

10: S ← S − {ai} − {bi}
11: S ← S ∪ {ci}
12: L← L+ {ai.opsi.bi, ci}
13: end for
14: T ← cN−1

15: if {L, T} /∈ Sdataset then
16: Sdataset ← Sdataset ∪ {L, T}
17: end if
18: end while

2.2 Data Synthesizing
Given the arithmetical puzzle described above in
Section 2.1, we create a data synthesizing pipeline
to efficiently generate the proposed dataset.

Denote the set of candidate integers as X =
{X1, X2, . . . , XN} and the target number as T ,
where N is the total number of candidate integers
in a puzzle sample. Each candidate integer Xi is
independently sampled from a uniform distribution
Xi ∼ U(1, V ), where V is the upper bound of
the sampled integers. To avoid data overlapping,
we have strictly ensured that for each puzzle, the
candidate integers are a set of distinct numbers.
The arithmetic operators involved in this problem
are ops = {+,−,×,÷} and all operations are
limited to integer operations. For example, when
solving the puzzle with a division operator, the op-
eration should be considered in integer division like
14/3 = 4. The detailed steps of synthesizing data
for this puzzle is described in Algorithm 1.

Besides, to construct the SFT dataset, the prompt
is deliberately designed to excludes any natural lan-
guage cues and instead focuses on purely symbolic
language. See Table 1 for an example of the con-
structed prompt and response.

2.3 Dataset
We split the dataset into training and in-distribution
and out-of-distribution test dataset by controlling
the total number of candidate integers N and the
upper bound of the sampled integers V . We set
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Algorithm 2 Verifier Algorithm

1: {Xi | 1 ≤ i ≤ N} ← Xprompt

2: T ← Tprompt

3: Eqs← Solutiongenerated

4: S ← {Xi}
5: Flagverifier ← False
6: for eqi ∈ Eqs do
7: if eqi is a legel equation then
8: ai, opsi, bi, ci ← ParseEq(eqi)
9: if ai, bi ∈ S then

10: S ← S − {ai} − {bi}
11: S ← S ∪ {ci}
12: else
13: break
14: end if
15: else
16: break
17: end if
18: end for
19: if cN−1 = T then
20: Flagverifier ← True
21: end if

V = 60 for the training dataset, and sampled the
candidate integers with N = 5, 6, 7. Three training
datasets with different sizes scaling from 1 mil-
lion to 10 millions and 100 millions are generated.
And another 7500 samples (2500 samples for each
N ) under the same setting are generated as the
in-distribution test dataset. Figure. 1 shows the
distribution of N and X in these three training
datasets. And the corresponding distribution of the
tokenized prompt and response length is shown in
Figure. 2.

To further evaluate the model’s performance on
extrapolation, we have also designed two bench-
marks of out-of-distribution dataset:

Numerical OOD test datasets. The upper
bound of the sampled integers V is raised to 100
and 1000 separately to test the model’s generaliza-
tion ability with unseen larger numbers. Specifi-
cally, 6000 samples are generated for each value
of V with 2000 samples for each N . An additional
filtering pipeline is applied to ensure that for each
sample, there exists at least one integer Xi that sat-
isfies 60 < Xi < 100 for the dataset with V = 100
and 100 < Xi < 1000 for that with V = 1000.

Form OOD test dataset. In mathematics, ab-
stract forms often extend, such as expanding from
a two-variable linear equation to one with three
variables. For the proposed arithmetic puzzle, the

extrapolation of abstract forms can be achieved
by changing the number of candidate integers N .
Clearly, when N increases, the exploration space
leading to a feasible solution would expand expo-
nentially, which results in an increased demand for
precise reasoning steps. From another perspective,
when the total number of the candidate integers
changes, it actually requires the model’s ability to
absorb and adapt to the puzzle’s abstract forms.
Therefore, to test the model’s generalization ca-
pability from this point of view, we create another
benchmark for OOD test dataset with 5000 samples
generated with setting N to 8. To control variables,
all the candidate integers in this dataset are sampled
with the same upper bound V = 60 as the training
dataset.

3 Model

3.1 Framework
We adopt the llama architecture (Touvron et al.,
2023a) and employ low-rank adaptation (LoRA)
tuning (Hu et al., 2021) based on the implemen-
tation of TRL full stack library (von Werra et al.,
2020). LoRA achieves a remarkable reduction of
89% in our trainable parameters, from 3B to 0.3B.

3.2 Implementation Details
We train our model by fine-tuning open-llama-3B.
We systematically apply left-padding to the query
text and right-padding to the answer text to control
the overall context length. All experiments are
conducted with 8× NVIDIA A100-SXM4-80GB
GPUs. The specific hyperparameter settings are
listed in Table 3 in Appendix A.1.

4 Experiments

4.1 Evaluation
For the fine-tuned model, we use the greedy de-
coding strategy in a zero-shot setting to generate
responses. To measure the model’s performance
on the proposed puzzle, a corresponding verifier is
designed to automatically evaluate the correctness
of the responses. Specifically, a solution is deemed
correct if it satisfies the following rules:

• No extra or illegal characters.
• There are only N − 1 equations and all the

corresponding calculations are correct.
• F (X1, . . . , XN | ops) = T .
• All {Xi | i ∈ {1, 2, . . . , N}} and the interme-

diate calculation results are only used once.
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Figure 1: Distributions of N and X for different training set sizes (1M / 10M / 100M samples). N denotes the total
number of candidate integers of our puzzle, X = (X1, X2, . . . , XN ) denotes the candidate integers.

Figure 2: Distributions of the tokenized prompt and response lengths for different training set sizes (1M / 10M /
100M samples).

The detailed steps of evaluating the solution for this
puzzle is described in Algorithm 2.

4.2 Results

As mentioned in Section 2.3, we have generated
three training datasets with different sizes to ex-
plore the data scaling effects on the fine-tuned
model. The pass@1 rate on different in-distribution
and out-of-distribution test datasets are shown in
Table 2. When the model is fine-tuned with 100M
samples, it achieves the highest score with a zero-
shot pass@1 of 0.44 in the in-distribution test
dataset, and 0.33 and 0.35 in the two OOD datasets,
respectively.

Furthermore, we have shown the training curves
of the model fine-tuned on these three datasets in
Figure 3. From Figure 3, a faster decaying rate is
clearly observed in the training loss when increas-
ing the training data size, which is consistent with

the rapid increase of the pass@1 rate evaluated on
the in-distribution dataset. The same enhancement
of the performance also occurs in the two OOD test
datasets as shown in Table 2.

Additionally, we have also conducted tests of
this puzzle on the base model (open-llama-3B) and
several other open-source and closed-source mod-
els with both few-shot and CoT prompting. The
results and some of the generated cases are shown
in Appendix A.2, demonstrating the necessity of
fine-tuning with regard to solving such puzzle prob-
lems.

4.3 Case Studies

We further demonstrate the different solutions pro-
vided by models trained with 1M / 10M / 100M
training data on the form OOD test dataset for sev-
eral challenging queries. As shown in Figure 4
in Appendix A.3, the model trained on 1M sam-
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Figure 3: The training loss and zero-shot pass@1 on ID dataset for different training set sizes (1M / 10M / 100M
samples).

Dataset Range Number of Integers Fine-tuned on 1M Fine-tuned on 10M Fine-tuned on 100M

ID [1,60]
5 0.224 0.428 0.471
6 0.208 0.363 0.432
7 0.205 0.360 0.425

Total ID [1,60] 5,6,7 0.216 0.383 0.443

Numerical OOD [1,100]
5 0.163 0.239 0.364
6 0.137 0.199 0.331
7 0.126 0.186 0.315

Total Numerical OOD [1,100] 5,6,7 0.141 0.205 0.326

Numerical OOD [1,1000]
5 0.131 0.181 0.229
6 0.030 0.051 0.063
7 0.111 0.163 0.220

Total Numerical OOD [1,1000] 5,6,7 0.091 0.132 0.170
Form OOD [1,60] 8 0.169 0.231 0.352

Table 2: Zero-shot pass@1 of the model fine-tuned with different training set sizes (1M / 10M / 100M samples) on
ID, numerical OOD, and form OOD test datasets. The best results are highlighted.

ples is still limited to a fixed number of reasoning
steps, whereas the models trained on 10M / 100M
samples exhibit a higher-level understanding of the
problem and perform an adequate number of rea-
soning steps. However, compared to the model
trained on 100M samples, the model trained on
10M samples may still encounter computational or
logical errors in the final step of reasoning.

5 Conclusion

Large language models (LLMs) are intrinsically
zero-shot and multi-task learners. However, mathe-
matical reasoning still poses challenges for LLMs,
we propose that the reasons can be mainly catego-
rized into three folds: (1) Requirement of multi-
step derivation; (2) Lack of high quality data for
fine-tuning; (3) Difficulty in extrapolation. In this
paper, we design an arithmetical puzzle and make
an early attempt to solve these challenges. We de-
velop a 24-point puzzle-like problem which asks

for multi-step calculations to arrive at the correct
answer. A corresponding data synthesis pipeline is
proposed to generate an arbitrary amount of high-
quality data, on which a series of LLMs are fined-
tuned. In order to verify the extrapolation capa-
bility of our models, we have designed two out-
of-domain benchmarks and show that our model
achieves competitive performance. Furthermore, a
data scaling experiment is conducted and it is con-
cluded that by increasing the amount of training
data, both the training loss and in/out-of-domain
performance of the fine-tuned model improve ac-
cordingly.
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6 Limitations

In this study, we have explored the mathematical
extrapolation of Large Language Models (LLMs)
and discovered that, with high-quality synthetic
data, LLMs demonstrates certain generalization ca-
pabilities in mathematical extrapolation. However,
LLMs have not yet fully mastered this capability,
and it remains uncertain if this ability can be ex-
tended to other complex mathematical tasks. In
the future, our research will focus on investigating
and enhancing this capability, aiming to empower
LLMs to explore unsolved mathematical problems
through leveraging our existing knowledge.

7 Ethics Statement

In this research, we adhere to strict ethical guide-
lines and principles. The study has been designed
and implemented with respect for the rights, pri-
vacy, and well-being of all individuals involved.
All of our data is synthesized using our proposed
data synthesis algorithm, ensuring compliance with
relevant regulations and standards. Our findings
and conclusions are reported accurately and objec-
tively, avoiding any misrepresentation or manipu-
lation of data. The entire process and outcomes
are free from intellectual property and ethical legal
disputes.
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A Appendix

A.1 Hyperparameter Settings

In the SFT stage, we follow common fine-tuning hyperparameter settings for our model. We set learning
rate to 1e−4 and adopt the cosine learning rate scheduler. We use low-rank adaptation (LoRA) tuning with
a rank of 5, α of 32, and dropout of 0.05. And we employ Adamw optimizer with β1 = 0.9, β2 = 0.95
and ϵ = 1e− 9. Eight NVIDIA A100-SXM4-80GB GPUs are used to train the model with a batch size of
50 and the maximum epoch set to 5. Detailed settings are listed in Table 3.

Hyperparameter Value Hyperparameter Value
Learning Rate 1e− 4 Epochs 5

Learning Rate Scheduler Cosine Optimizer Adamw
Warmup Step 0 Optimizer β1 0.9
GPU Nums 8 Optimizer β2 0.95

Batch Size Per GPU 50 Optimizer ϵ 1e− 9
Max Query Length 36 Precision AMP

Max Answer Length 130 LoRA Rank 8
Max Generated Length 167 LoRA α 32

Precision bfloat16 LoRA Dropout 0.05
Vocabulary Size 32002 Seed 1234

Table 3: Hyperparameter Settings.

A.2 Evaluation of the Base Model

We evaluate the base model (open-llama-3B) on the proposed arithmetical puzzle problem. As shown in
Table 4 and Table 5, with either the few-shot prompting (2-Shot, 8-Shot) or Chain-of-Thought (CoT), the
base model performs poorly on the puzzle. We propose this is due to the symbolic form of our prompt,
the model needs to understand the underlying pattern in order to solve the arithmetical puzzle. Without
fine-tuning on the synthetic data, the model may struggle to comprehend such type of prompt.

Approach ID OOD-N OOD-F OOD-1000
2-Shot Prompting 0 0 0 0
8-Shot Prompting 0 0 0 0
Chain-of-Thought 0 0 0 0

Table 4: Evaluation of the base model with few-shot and Chain-of-Thought prompting. As expected, the base model
performs poorly across all the prompting techniques.

Chain-of-Thought Prompting Generated Response of the Base Model
Let’s play an arithmetic puzzle game. The first thing to do is to find the number of ways to get 8.
First, we are given a set of numbers: There are 4 ways to get by adding 8 to 37, 11, 26, 15.
8, 37, 11, 26, 15. The objective is to There are 4 ways to get 8 by subtracting 8 from 37, 11, 26, 15.
use operations like addition, There are 4 ways to get 8 by multiplying 8 from 37, 11, 26, 15.
subtraction, multiplication, and There are 4 ways to get 8 by dividing 8 from 37, 11, 26, 15.
division to obtain the number 8, There are 4 ways to get 8 by adding 8 from 37, 11, 26, 15.
using each number exactly once. There are 4 ways to get 8 by subtracting 8 from 37, 11, 26, 15.
Please provide the reasoning There are 4 ways to get 8 by multiplying 8 from 37, 11, 26, 15.
process step by step. There are 4 ways to get 8 by dividing 8 from 37, 11, 26, 15.

. . .

Table 5: An example of Chain-of-Thought prompting and the generated response of the base model.
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We further test several open-source (Llama-2-7B (Touvron et al., 2023a), Deepseek-Coder-33B (Guo
et al., 2024)) and closed-source models (GPT4 (Achiam et al., 2023)) with few-shot prompting. As shown
in Table 6, these models also perform poorly on our benchmarks. In Table 7, we provide an example of
the CoT prompting and the generated responses from these models.

Model ID OOD-N OOD-F OOD-1000
GPT4 0.002 0.001 0 0.001

Llama-2-7B 0 0 0 0
Deepseek-Coder-33B 0.001 0 0.001 0

Table 6: Evaluation results of Llama-2-7B, Deepseek-Coder-33B, and GPT4 on our proposed benchmarks.

Few-Shot Prompting Model Response

A puzzle problem. The first
two lines are examples. Please
solve the third line:
36, 32, 57, 55, 11:30S11/36=0,
0+32=32, 55+32=87, 87-57=30
17, 6, 20, 48, 30:-40S17+48=65,
30/6=5, 20+5=25, 25-65=-40
8, 37, 11, 26, 15:8S

GPT4

Sure, I’ll solve the third line of the puzzle using the pattern
established in the first two lines:
Firstly, divide the fifth number by the first number, which will
yield an integer part:
15 / 8 = 1 (ignore the decimal part)
Next, add the result to the second number:
1 + 37 = 38
After that, add this result to the fourth number:
38 + 26 = 64
Final step, subtract the third number from this result:
64 - 11 = 53
However, the expected output provided is 8, but following the
pattern above, the answer seems to be 53. It’s possible that there
are some other rules or factors at play, or therecould be an error
in the input or expected output.

Llama-2-7B

Sure, I’d be happy to help you solve the third line of the puzzle!
The equation is:8,37,11,26,15:8S
To solve this equation, we can start by simplifying the fraction:
8/8 = 1
So, the solution to the equation is:
11,26,15 = 52
I hope this helps! Let me know if you have any other questions.

DeepSeek-
Coder-33B

The third line of the puzzle problem is:
17, 6, 20, 48, 30:-40S17+48=65, 30/6=5, 20+5=25, 25-65=-40
The operations and numbers are:
1. 17 + 48 = 65
2. 30 / 6 = 5
3. 20 + 5 = 25
4. 25 - 65 = -40
Let’s solve these operations:
1. 17 + 48 = 65
2. 30 / 6 = 5
3. 20 + 5 = 25
4. 25 - 65 = -40
So, the solution to the third line is:
17 + 48 = 65
30 / 6 = 5
20 + 5 = 25
25 - 65 = -40
This line of the puzzle problem is solved.

Table 7: An example of few-shot prompting and the generated responses of GPT4, Llama-2-7B, and Deepseek-
Coder-33B. We provide the models with two examples before the puzzle. As shown, all of the models fail to solve
the given problem. GPT4 seems to understand the requirement of the puzzle, while the other two fail.
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As shown in Table 7, Llama-2-7B fails to understand the requirement of the puzzle and just outputs two
meaningless equations. Deepseek-Coder-33B treats the second example in few-shot prompting as the
puzzle, and repeats the same calculations three times. It seems that GPT4 has well understood the prompt
and used all the candidate integers only once, the calculations within the generated response are all right,
while the solution is wrong. Actually, such kind of problem is very challenging, as the model needs to
infer the requirement of the puzzle from the provided examples and then figure out the correct solution.

A.3 Case Study

Prompt: 21, 55, 40, 54, 17, 15, 20, 60:20

Response 1M(✗): 55/15=3, 21/54=0, 40-17=23, 23-3=20, 0*60=0, 20-0=20 ? 

Response 10M(✓): 55/17=3, 21-3=18, 15/54=0, 18-60=-42, 0*-42=0, 0/40=0, 0+20=20

Response 100M(✓): 15/55=0, 21/54=0, 0*40=0, 0*60=0, 0*17=0, 0+20=20, 20-0=20

Prompt: 28, 48, 1, 15, 45, 20, 57, 47:0

Response 1M(✗): 45/48=0, 15*20=300, 47*0=0, 28/57=0, 0*300=0, 0-0=0 ? 

Response 10M(✓): 45/1=45, 48/20=2, 28/47=0, 15/2=7, 57-45=12, 12-7=5, 0*5=0

Response 100M(✓): 47/15=3, 20/48=0, 3/57=0, 0*28=0, 0*1=0, 0*45=0, 0+0=0

Prompt: 46, 3, 49, 27, 39, 20, 53, 58:0

Response 1M(✗): 49/58=0, 20*3=60, 27/46=0, 0*53=0, 0*39=0, 0-0=0 ? 

Response 10M(✓): 39/49=0, 20/53=0, 0*58=0, 0*3=0, 0*46=0, 27*0=0, 0-0=0

Response 100M(✓): 20/53=0, 39/49=0, 0*27=0, 0*3=0, 0*46=0, 0*58=0, 0+0=0

Prompt: 53, 55, 47, 5, 6, 7, 22, 22:55

Response 1M(✗): 53-22=31, 5/47=0, 22/6=3, 31*0=0, 0/7=0, 55-0=55 ? 

Response 10M(✗): 53/22=2, 22/55=0, 7-47=-40, 0+-40=-40, 6-2=4, 4-5=1, 1--40=51

Response 100M(✓): 22/5=4, 47/53=0, 4/7=0, 0*22=0, 0*6=0, 0+0=0, 55-0=55

Prompt: 18, 16, 48, 12, 57, 7, 56, 32:-87

Response 1M(✗): 12-56=-44, 18+-44=-26, 57+32=89, 16+-26=-10, 48/-10=-5, -5- 89=-87 ? 

Response 10M(✗): 18-56=-38, 12+32=44, 48+-38=10, 10-44=-34, 16+-34=-18, -18-57=-75, -75-7=-87

Response 100M(✓): 16-56=-40, 12+57=69, 18+69=87, 32+7=39, 39/48=0, 0*-40=0, 0-87=-87

Prompt: 2, 37, 22, 41, 56, 19, 60, 40:58

Response 1M(✗): 41-22=19, 19+40=59, 59-37=22, 22-19=3, 56/3=18, 18*2=58 ? 

Response 10M(✗): 22/41=0, 0/2=0, 19/60=0, 0*0=0, 0*40=0, 0+37=37, 37+56=85

Response 100M(✓): 41/22=1, 19/60=0, 0+56=56, 37/2=18, 18/1=18, 40/18=2, 2+56=58

Prompt: 18, 3, 33, 51, 28, 18, 59, 4:-79

Response 1M(✗): 18-59=-41, 33+4=37, 37+51=88, 18+-41=-23, 28-88=-60, -23+- 60=-79 ? 

Response 10M(✗): 18-3=15, 15-51=-36, 33+18=51, 59+51=110, 110-28=82, 4+82=86, -36-86=-170

Response 100M(✓): 18-59=-41, 33+18=51, 51+51=102, 28-102=-74, 3/-41=-1, -74+-1=-75, -75-4=-79         

Figure 4: Cases from the form OOD test dataset. The correct steps are highlighted in green, while the incorrect
steps in red. Generally speaking, performance of model fine-tuned with 1M training data is the worst.
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A.4 Visualization of the Proposed Puzzle

Arithmetical Puzzle

3, 6, 7, 51, 58

=

58 51 7- =

6 - 7 =

=

-1

-13 ÷ -3

-3 + 7

Figure 5: Visualization of the proposed arithmetical puzzle. Given the candidate integers 3, 6, 7, 51, 58 and the
target integer 4, the answer is 58− 51 = 7, 6− 7 = −1, 3× (−1) = −3,−3 + 7 = 4.
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