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Abstract

To date, most investigations on surprisal and
entropy effects in reading have been conducted
on the group level, disregarding individual dif-
ferences. In this work, we revisit the predictive
power of surprisal and entropy measures esti-
mated from a range of language models (LMs)
on data of human reading times as a measure of
processing effort by incorporating information
of language users’ cognitive capacities. To do
so, we assess the predictive power of surprisal
and entropy estimated from generative LMs
on reading data obtained from individuals who
also completed a wide range of psychometric
tests. Specifically, we investigate if modulat-
ing surprisal and entropy relative to cognitive
scores increases prediction accuracy of reading
times, and we examine whether LMs exhibit
systematic biases in the prediction of reading
times for cognitively high- or low-performing
groups, revealing what type of psycholinguis-
tic subject a given LM emulates. Our study
finds that in most cases, incorporating cogni-
tive capacities increases predictive power of
surprisal and entropy on reading times, and that
generally, high performance in the psychome-
tric tests is associated with lower sensitivity
to predictability effects. Finally, our results
suggest that the analyzed LMs emulate readers
with lower verbal intelligence, suggesting that
for a given target group (i.e., individuals with
high verbal intelligence), these LMs provide
less accurate predictability estimates.1

1 Introduction

Human language comprehension and, by extension,
human reading is incremental in nature: humans
process words sequentially (Rayner and Clifton Jr,
2009), and different words in varying contexts im-
pose different amounts of cognitive processing ef-
fort (Rayner, 1998). Similarly, language models’
conditional probability distributions assign differ-

1Code is available at https://github.com/DiLi-Lab/
LM-cog-profiles
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Figure 1: Predictive power of entropy and surprisal
on reading times. Combined refers to the regression
model where both predictors were included. Higher
∆LL indicates higher predictive power.

ent probabilities for potential continuations for a
given prefix. The relationship between cognitive ef-
fort and predictability measures derived from LMs’
probability distribution was operationalized by sur-
prisal theory (Hale, 2001; Levy, 2008). Since then,
a large body of research has investigated the exact
nature of the relationship between surprisal and
human processing effort, such as determining ap-
propriate linking functions (Meister et al., 2021;
Shain et al., 2024), or its manifestation in differ-
ent languages (Wilcox et al., 2023a; Jäger et al.,
2015; Kuribayashi et al., 2021, i.a.). Moreover, it
has been shown repeatedly that both the quality
of a model from which surprisal is extracted as
well as the amount of data a model is trained on
correlate with the model’s psychometric predictive
power2, i.e., its ability to predict human behavioral
processing data (Frank and Bod, 2011; Fossum and
Levy, 2012; Goodkind and Bicknell, 2018a), albeit

2This hypothesis has been referred to as quality-power
hypothesis by Wilcox et al. (2023a), cf. their introduction for
a comprehensive summary.
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only to a certain extent (Shain et al., 2024; Oh and
Schuler, 2023b,a). So far, most studies have tested
these predictions on the group-level, neglecting
individual cognitive differences that might influ-
ence readers’ capacities to make predictions about
upcoming material. However, an increasing body
of research has demonstrated that an individual’s
characteristics do play an important role in human
language processing (e.g., Estes, 1956; Daneman
and Carpenter, 1980; Levinson, 2012; Van Dyke
et al., 2014). Apart from surprisal, it has been
suggested that reading processes are not purely re-
sponsive, which is mirrored in the surprisal effect
of a word on a reader, but also anticipatory: readers
make implicit assumptions about future words and
allocate time to process it in advance. This antici-
patory effect, which is reflected in the reading be-
havior, is induced by a reader’s expectation about a
word’s surprisal and is operationalized as a word’s
contextual entropy (Linzen and Jaeger, 2016; van
Schijndel and Schuler, 2017; Cevoli et al., 2022;
Pimentel et al., 2023).

In this work, we revisit the relationship between
predictability measures (surprisal and contextual
entropy) and data of human processing effort in
consideration of language users’ individual cogni-
tive differences. More specifically, we assess the
predictive power (PP) of entropy, surprisal, as well
as their interactions with cognitive measures, as
predictors of human reading times in linear-mixed
models. After establishing the baseline predictive
power of surprisal and entropy on our German read-
ing data (HB), we investigate the following novel
hypotheses:

H1: Modulating surprisal and entropy effects rel-
ative to individual cognitive capacities im-
proves their predictive power on reading times
on unseen data.

H2: Individuals with higher cognitive capacity rely
less on predictive processing strategies, and
hence exhibit lower surprisal or entropy ef-
fects.

H3: LMs are better at predicting reading times for
certain cognitive profiles.

To address these hypotheses, we utilize the Indi-
vidual Differences Corpus (InDiCo; Haller et al.,
2023), which contains both reading data and scores
of a comprehensive psychometric assessment tar-
geting various cognitive capacities, including ver-
bal and non-verbal working memory, verbal and
non-verbal cognitive control, verbal and non-verbal

intelligence and reading fluency. We deploy five
pre-trained generative LMs from three language-
families—GPT-2 base and large, Llama 2 7B and
13B, and Mixtral—to estimate both surprisal and
contextual entropy and quantify their predictive
power by including them as predictors in linear
regressors, which are fitted to predict by-word read-
ing times from InDiCo. If the regressors’ log-
likelihood improves after including these predictors
and their interaction with the psychometric scores,
we take this as corroboration of their predictive
power.

We find that adding interaction terms between
predictability measures (surprisal and entropy) and
most cognitive scores significantly improves the
quality of reading time predictions, and that in gen-
eral, individuals with higher cognitive capacities
exhibit smaller predictability effects. Lastly, there
is evidence that LMs’ abilities to predict reading
times vary between high- and low-performing indi-
viduals within certain cognitive capacities. Specifi-
cally, all tested models emulate the processing be-
haviour of individuals with low verbal intelligence.

Our work is a first step towards investigating
i) the differences in surprisal and entropy effects
across different cognitive profiles, and ii) what type
of cognitive biases might be inherent in the way
LMs process language.

2 Related work

2.1 Surprisal and predictive power

Surprisal is a measure of predictability of a word in
its context and has shown to be proportional to cog-
nitive effort in human sentence processing (Hale,
2001; Levy, 2008). It is quantified as the nega-
tive log probability of a word given its preceding
context. Since the formalization of surprisal the-
ory, many studies have corroborated its linear rela-
tionship with reading times (Demberg and Keller,
2008; Shain, 2021; Hoover et al., 2023; Pimentel
et al., 2023), not just in English but also across
languages (Pimentel et al., 2021; Wilcox et al.,
2023a,b; de Varda and Marelli, 2022; Jäger et al.,
2015; Kuribayashi et al., 2021). Moreover, re-
searchers have investigated the degree to which
surprisal is predictive of human reading times (i.e.,
assessing the predictive power (PP) of surprisal
on human reading times) deploying different LMs.
Wilcox et al. (2020) found that the better an LM’s
next-word expectation (i.e., the lower its perplex-
ity), the higher its PP. Along the same line, Wilcox
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et al. (2023a) demonstrated that an increasing LM
quality, quantified by decreasing cross-entropy dur-
ing training, leads to surprisal values that better
predict RTs. Similarly, Goodkind and Bicknell
(2018b) showed that the PP of surprisal increases
linearly with the quality of LMs. This finding has
since been refuted by Oh and Schuler (2023b) who
revealed that large models, despite lower perplexity,
provide worse PP of RTs. Oh and Schuler (2023a)
further demonstrated that LMs provide the best fit
to RTs when trained on around 2 billion tokens;
beyond that point, additional training data causes
the PP to decrease again.

2.2 Contextual entropy and predictive power
Linzen and Jaeger (2016) examined how sentence
processing is affected by readers’ uncertainty about
the predictions they make during processing. They
found that what they term single-step entropy (con-
textual entropy, cf.§3) does not affect RTs. How-
ever, they computed single-step entropy only over
upcoming constituents based on verb subcatego-
rization frames; it was later shown that entropy
is indeed predictive of RTs (van Schijndel and
Schuler, 2017). Cevoli et al. (2022) looked at the in-
teraction of surprisal and entropy when predicting
RTs: the impact of surprisal on reading behavior
should vary as a function of entropy, such that sur-
prising words inflict particularly high processing
load when entropy is low. Wilcox et al. (2023b) ex-
amined whether contextual entropy is predictive of
reading times and discovered that adding entropy
as additional predictor (while keeping surprisal) in-
creases PP, while replacing surprisal with entropy
leads to a decrease in PP. However, Pimentel et al.
(2023) also showed that using contextual entropy
as a predictor in a linear-mixed model can be as
good as surprisal when analyzing anticipatory ef-
fects reflected in word skipping rates, as opposed
to responsive effects captured by gaze duration, for
instance.

2.3 Individual differences in sentence
processing

Theories of sentence processing generally assume
that the cognitive mechanisms involved in language
processing are qualitatively identical across speak-
ers. However, this perspective has been challenged,
with evidence emerging that differences in cogni-
tive abilities among language users do indeed have
a significant impact on processing (Vuong and Mar-
tin, 2014; Nicenboim et al., 2015; Farmer et al.,

2017, i.a.). For instance, Kuperman and Van Dyke
(2011) demonstrated that measures related to cog-
nitive control interact with word length and lexical
frequency effects on fixation times, and Nicenboim
et al. (2015) showed that readers ranking lower
in working-memory tests exhibit more regressive
saccades in regions with high memory load.

Several studies have also investigated individual
differences in surprisal effects, in particular in the
realm of native and non-native reading (Berzak and
Levy, 2023; Schneider et al., 2023). For instance,
Berzak and Levy (2023) demonstrated that higher
L2 proficiency is associated with increased sensitiv-
ity to a word’s predictability in context (surprisal).
Moreover, Škrjanec et al. (2023) showed that spe-
cialized surprisal from domain-adapted LMs im-
proves reading-time predictions for expert readers.

3 Methods

Surprisal. Given a vocabulary Σ and an aug-
mented vocabulary Σ̄ = Σ∪{EOS}, which contains
a special EOS (end-of-sentence) token, the surprisal
(Shannon, 1948) of a given sequence is defined as

s(un)
def
= − log p(un | u<n), (1)

where p(· | u<n) is the true distribution over words
u ∈ Σ̄ in context u<n. In other words, surprisal of
a word is the negative log-probability conditioned
on its left context.

Contextual entropy. The contextual entropy of
a Σ̄-valued random variable Un at index n is the
expected value of its surprisal, formalized as

H(Un | U<n = u<n)
def
= Eu∼p(·|u<n) [sn(u)]

= −
∑

u∈Σ̄

p(u|u<n) log2 p(u|u<n).
(2)

It is a specific version of the Shannon entropy
H(U)

def
= −∑

u∈U p(u) log p(u) that is condi-
tioned on the left context of U (Shannon, 1948).
As we do not have access to the true distribution
p(· | u<n), we approximate both measures using
an auto-regressive language model pθ.

3.1 Assessing predictive power
We utilize linear-mixed models (LMMs) M to pre-
dict a reading time measure yij , obtained from a
subject j on word i, from a set of standardized
word-level and subject-level predictors xij , i.e.,
M : xij 7→ yij .

For our analyses, we want to quantify the pre-
dictive power of a given predictor of interest xq
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(e.g., surprisal). To do so, we first define a base-
line model Mb : xb

ij 7→ yij that includes a set
of baseline predictors xb

ij , and a target model
Mt : xb

ij ⊕ xqij 7→ yij that additionally includes
the predictor of interest xqij , where ⊕ represents the
concatenation of two sets of predictors. Following
previous work (Wilcox et al., 2020; Meister et al.,
2021; Wilcox et al., 2023a; Pimentel et al., 2023,
i.a.), we operationalize the predictive power as the
mean difference in log-likelihood (∆LL) between
the target and the baseline model, i.e.,

∆LL =
1

IJ

[
I∑

i=1

J∑

j=1

logMt(yij | xb
ij ⊕ xq

ij)

−
I∑

i=1

J∑

j=1

logMb(yij | xb
ij)

]
,

(3)

where I is the number of words and J is the number
of subjects. To avoid overfitting, we perform 10-
fold cross validation. A positive ∆LL indicates a
better fit of the target model to the data.

4 Experiments

Data

We employ German reading time data from In-
DiCo (Haller et al., 2023). This corpus contains
eye-tracking-while-reading and self-paced-reading
data from 61 native German speakers, collected
across four experimental sessions, alongside a
comprehensive battery of individual psychometric
scores in four cognitive domains: cognitive con-
trol, working memory, intelligence, and reading
fluency.3 For our analyses, we use the standardized
scores of 13 psychometric tests. Following previ-
ous work (Wilcox et al., 2023b, i.a.), we employ
first-pass reading time (FPRT), also referred to as
gaze duration: the sum of all fixations on a word
when fixating it for the first time–as a proxy for
processing load. Whereas total fixation duration
can incorporate words from the right context due
to regressive saccades, FPRT most strongly reflects
the initial processing difficulty.4 Given that in our
study, we only deploy auto-regressive LMs (cf.§4),
FPRTs are also more in line with the fact that these
models only have access to a word’s left context.

3For a detailed description of the tests, see Appendix B.
4Contrary to previous work, we do not set the reading time

for words that were skipped to zero, but instead exclude them
from the analysis. See limitations and caveats in Pimentel
et al. (2023) on the influence of skipped words on surprisal
estimation.

Predictors
Word-level predictors. To extract surprisal and
contextual entropy estimates, we deploy the Ger-
man versions of five pretrained transformer-based
LMs of different families and sizes, namely GPT-2
base and large (Radford et al., 2019), Llama 2 7B
and 13B (Touvron et al., 2023), and Mixtral (Jiang
et al., 2024). For details, see Appendix A.1. Cru-
cially, we only consider auto-regressive LMs, as
they most closely align with the incremental nature
of human language comprehension (Hale, 2006;
Rayner and Clifton Jr, 2009).

Since LMs employ tokenizers which split white-
space separated words into sub-word tokens (Sen-
nrich et al., 2016; Song et al., 2021), word-level
surprisal is computed by summing up the surprisal
values of the sub-word tokens, which is equivalent
to computing the surprisal of the joint distribution
of sub-word tokens. Similarly, to obtain the word-
level contextual entropy, we use the sum of the
sub-word token-level contextual entropy values as
proxy for the joint entropy of the sub-word tokens’
distributions.5

We further include lexical frequency and word
length in our analyses since they are known to have
an impact on human reading behavior. Lemma
frequencies were extracted from dlexDB (Heister
et al., 2011), based on the reference corpus underly-
ing the Digital Dictionary of the German Language
(DWDS; Berlin-Brandenburgische Akademie der
Wissenschaften, 2016). Word length is defined as
the number of characters including punctuation.
Henceforth, we denote the word-level predictors
surprisal si, contextual entropy hi, log-lemma fre-
quency fi, and word length li for a word i.

Psychometric scores. The psychometric assess-
ment in InDiCo includes a total of 13 tests targeting
different cognitive domains such as verbal and non-
verbal working memory, cognitive control and in-
telligence, as well as reading fluency. A list of tests
and their abbreviations can be found in Appendix B.
For all test scores, higher scores originally indicate
higher performance except for the Stroop Reaction
Time Effect (Stroop) and the Simon Reaction Time
Effect (Simon). In order to facilitate interpretability,
we take the negative values of these scores such
that a high value indicates high cognitive control.
We standardize all scores in order to facilitate com-
parisons between tests. We denote the score of a

5For details on pooling of surprisal and entropy, see Ap-
pendix A.2.
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Figure 2: ∆LL (mean and 95% CI) for the interactions between psychometric scores and model surprisal or entropy
as additional predictors for reading times. Empty dots indicate that the ∆LL is not significantly different from zero.

given psychometric test c for subject j.

4.1 Baseline analyses (HB)
To corroborate results from previous work, we first
assess the predictive power of entropy and surprisal
in general, not taking into account individual psy-
chometric scores. We define a baseline model Mb

0

with predictors xb0
i including the word-level pre-

dictors word length li, log-lemma frequency fi, a
global intercept β0, and an additional random by-
subject intercept β0j , i.e.,

Mb
0 : yij ∼ β0 + β0j + β1 li + β2 fi, (4)

where yij refers to the log-transformed first-pass
reading time6 of subject j for the ith word in the
stimulus corpus across all texts and following a
log-normal distribution. The target models Mts

0

and Mth
0 solely include an additional surprisal or

entropy term, i.e., si or hi.

Results. As depicted in Figure 1, surprisal and
contextual entropy exhibit significant predictive
power (PP), albeit consistently lower for entropy.
For GPT-2 base and large, adding both surprisal

6First-pass reading time denotes the sum of all fixation
durations on a given word during its first pass (i.e., when
reading it for the first time).

and contextual entropy as predictors increases the
PP; for the other models, the combined version
yields the same PP as using surprisal alone. Across
models, GPT-2 base has the highest PP, with PP
decreasing as model size increases.

4.2 Assessing the predictive power of
interactions between surprisal/entropy
and psychometric scores (H1)

To examine whether an interaction between cog-
nitive scores and surprisal or entropy leads to an
increase in predictive power on reading times, we
define a baseline model Mb

1 with predictors xb1
ij

including the word-level predictors li, fi, si, hi,
and the subject-level predictor cj denoting the test
score of a specific psychometric test (e.g., word-
reading fluency) obtained for subject j, and again
a by-subject intercept β0j , i.e.,

Mb
1 : yij ∼ β0 + β0j + β1 li + β2 fi+

β3 si + β4 hi + β5 cj
(5)

To assess whether allowing surprisal or entropy
to be modulated by specific cognitive profiles—
operationalized in terms of the individual psycho-
metric measures—improves the prediction of read-
ing time, we define target models Mts

1 and Mth
1

that include an additional interaction term between
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Cognitive domain Test Effect size of interaction term
GPT-2 base GPT-2 large Llama-2 7B Llama-2 13B Mixtral

E
nt

ro
py

Cognitive control
FAIR −0.002 (±0.001)

† −0.001 (±0.001)
† −0.003 (±0.001)

† −0.003 (±0.001)
† −0.003 (±0.001)

†

Simon 0.003 (±0.001)
† 0.002 (±0.001)

† 0.005 (±0.001)
† 0.004 (±0.001)

† 0.005 (±0.001)
†

Stroop −0.001 (±0.001)
† −0.001 (±0.001)

† 0 (±0.001) 0 (±0.001) 0 (±0.001)

Intelligence

MWT −0.006 (±0.001) −0.005 (±0.001)
† −0.008 (±0.001) −0.008 (±0.001) −0.009 (±0.001)

RIAS non-verbal 0 (±0.001)
† 0 (±0.001) 0 (±0.001) 0 (±0.001) −0.001 (±0.001)

†

RIAS total −0.005 (±0.001)
† −0.004 (±0.001)

† −0.005 (±0.001)
† −0.005 (±0.001)

† −0.006 (±0.001)

RIAS verbal −0.007 (±0.001) −0.005 (±0.001) −0.007 (±0.001) −0.007 (±0.001) −0.007 (±0.001)

Reading fluency SLRT pseudo-words −0.006 (±0.001) −0.004 (±0.001)
† −0.008 (±0.001) −0.007 (±0.001) −0.007 (±0.001)

SLRT words −0.005 (±0.001)
† −0.003 (±0.001)

† −0.009 (±0.001) −0.007 (±0.001) −0.007 (±0.001)

Working memory

Memory updating −0.003 (±0.001)
† −0.002 (±0.001)

† −0.004 (±0.001)
† −0.003 (±0.001)

† −0.003 (±0.001)
†

Operation span −0.005 (±0.001)
† −0.003 (±0.001)

† −0.008 (±0.001) −0.007 (±0.001) −0.008 (±0.001)

Sentence span −0.003 (±0.001)
† −0.002 (±0.001)

† −0.007 (±0.001) −0.006 (±0.001) −0.007 (±0.001)

Spatial short-term memory −0.001 (±0.001)
† 0 (±0.001)

† 0.002 (±0.001)
† 0.001 (±0.001)

† 0 (±0.001)
†

Su
rp

ri
sa

l

Cognitive control
FAIR −0.01 (±0.001) −0.009 (±0.001) −0.008 (±0.001) −0.008 (±0.001) −0.007 (±0.001)

Simon 0.01 (±0.001) 0.01 (±0.001) 0.009 (±0.001) 0.008 (±0.001) 0.007 (±0.001)

Stroop −0.001 (±0.001)
† −0.001 (±0.001)

† −0.001 (±0.001)
† 0 (±0.001) 0 (±0.001)

Intelligence

MWT −0.016 (±0.001) −0.015 (±0.001) −0.014 (±0.001) −0.014 (±0.001) −0.014 (±0.001)

RIAS non-verbal 0 (±0.001)
† 0 (±0.001) 0.001 (±0.001)

† 0 (±0.001) 0.001 (±0.001)
†

RIAS total −0.011 (±0.001) −0.011 (±0.001) −0.009 (±0.001) −0.009 (±0.001) −0.007 (±0.001)

RIAS verbal −0.015 (±0.001) −0.014 (±0.001) −0.012 (±0.001) −0.012 (±0.001) −0.01 (±0.001)

Reading fluency SLRT pseudo-words −0.018 (±0.001) −0.017 (±0.001) −0.015 (±0.001) −0.014 (±0.001) −0.012 (±0.001)

SLRT words −0.019 (±0.001) −0.017 (±0.001) −0.015 (±0.001) −0.014 (±0.001) −0.012 (±0.001)

Working memory

Memory updating −0.011 (±0.001) −0.01 (±0.001) −0.008 (±0.001) −0.008 (±0.001) −0.006 (±0.001)

Operation span −0.018 (±0.001) −0.018 (±0.001) −0.015 (±0.001) −0.015 (±0.001) −0.012 (±0.001)

Sentence span −0.016 (±0.001) −0.015 (±0.001) −0.014 (±0.001) −0.013 (±0.001) −0.012 (±0.001)

Spatial short-term memory 0 (±0.001)
† 0 (±0.001) 0.001 (±0.001)

† 0.001 (±0.001)
† 0.001 (±0.001)

†

Table 1: Effect sizes of interaction terms ± standard error between entropy (top) / surprisal (bottom) and
psychometric test scores.† indicates that the inclusion of the interaction term did not lead to a significant increase
or decrease in ∆LL (see Figure 2).

either surprisal or entropy and a given psychometric
score cj (e.g., word-reading fluency score) obtained
for subject j, xq1ij ∈ {si · cj , hi · cj}:

Mt
1 : yij ∼ β0 + β0j + β1 li + β2 fi+

β3 si + β4 hi + β5 cj + β6 xq1
ij

(6)

A positive ∆LL between the target and the base-
line model indicates that including the participant’s
score of a given psychometric test improves the
prediction on the held-out test data. We run paired
permutation tests using the R library broman to
establish whether a given ∆LL is significantly dif-
ferent from 0 at α = .05.

Results. Figure 2 shows the ∆LL across all psy-
chometric tests and models. Overall, we see that
the interaction terms between surprisal/entropy and
most psychometric scores lead to significant in-
creases in PP, except for Stroop, non-verbal RIAS
and spatial short-term memory. Notably, PP is
not significant (or extremely small) for these three
scores across all models. Additionally, there are
notable differences among different cognitive do-
mains with respect to predictive power: modulating
surprisal with scores targeting reading fluency or
working-memory span yields the highest predic-
tive power, followed by verbal intelligence scores.
Scores targeting cognitive control show the lowest
PP. The pattern observed in Figure 1 showing that
increasing model size is associated with decreasing

predictive power is visible here as well, but only for
surprisal, not for entropy. Overall, interactions with
surprisal extracted from the GPT-2 family have the
highest PP. Conversely, interactions with GPT-2
based entropy have the lowest PP.

4.3 Assessing the magnitude of the interaction
term coefficients (H2)

To determine how specifically the surprisal and en-
tropy effects are modulated by the psychometric
scores, we run the target models Mts

1 and Mth
1

on the entire dataset and examine the effect sizes
(coefficients) of the interaction term between the
scores and the surprisal and entropy estimates, β6.
The coefficient of the interaction term indicates to
what degree the fixed effect surprisal or entropy
term is adjusted, relative to a subject’s individual
psychometric score, or, in other words, if individu-
als with a given cognitive profile are more sensitive
to predictability effects. For instance, a positive
coefficient for predictor cj · sj indicates that sub-
jects with a higher score exhibit a stronger effect
of surprisal, i.e. are more sensitive to a word’s pre-
dictability, while a negative coefficient implies that
subjects with a lower score exhibit a higher sur-
prisal effect.

Results. We present the effect sizes of the inter-
action between scores and predictability measures
in Table 1. First, we notice that for a given psy-
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Figure 3: Difference in PP (∆PP) (mean and 95% CI) of surprisal and contextual entropy for reading times.
Positive ∆PP indicate higher PP for high-performing individuals; negative ∆PP higher PP for low-performing
individuals. Empty dots indicate that the ∆PP is not significantly different from zero.

chometric test, all models consistently modulate
surprisal and entropy effects in the same direction.
For most psychometric tests, higher scores result
in a reduction of surprisal and entropy effects, indi-
cated by the negative interaction term coefficients.
In these cases, individuals with higher scores show
less sensitivity to a word’s predictability (measured
in terms of surprisal or entropy). This holds true
across all tests, the only exception being the Si-
mon test, providing a measure of non-verbal in-
hibitory cognitive control. Here, high-performing
individuals exhibit larger surprisal effects. Posi-
tive coefficients are also found for the Stroop task
and the non-verbal part of the RIAS (intelligence),
although they are extremely small.

4.4 Assessing the difference in predictive
power between cognitive profiles (H3)

Finally, we investigate whether there are differ-
ences in the predictive power of LM surprisal and
entropy for reading times obtained from individu-
als with different cognitive profiles. In other words,
we ask the question what type of psycholinguis-
tic subject a given language model emulates. To
do so, we split the reading time data into subsets
of high-performing (↑) and low-performing indi-

viduals (↓) at the median of each score. Then,
for each group, we compute the ∆LL between the
baseline model Mb

3 only including word length
and lexical frequency as predictors and the target
model Mt

3 with an additional predictor of interest
xq3i ∈ {si, hi}, i.e., either surprisal or entropy. The
individual ∆LL↓ and ∆LL↑ indicate the predictive
power of surprisal and entropy for each group sep-
arately. In order to answer which group exhibited a
higher relative gain in PP, we assess the difference
in predictive power ∆PP

def
= ∆LL↑ − ∆LL↓. If a

given LM is calibrated towards the cognitive pro-
file of the high-performing individuals, we expect a
positive ∆PP; and the ∆PP is negative if the LM
is calibrated towards the low-performing cognitive
profile.

Results. Figure 3 presents the differences (mean
and 95% CI) in predictive power (∆PP) of sur-
prisal or entropy between two groups that per-
formed above or below the median, respectively,
in a given psychometric test. ∆PP > 0 indicates
higher PP for the high-performing group, ∆PP <
0 indicates higher PP for the low-performing group.

First, looking at the results for entropy, we note
that across all models, entropy predicts the RTs
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of individuals among the high-performing groups
in the memory-updating and operation-span tests
significantly better. Regarding reading fluency,
readers with high word-reading scores were sig-
nificantly better predicted from entropy estimated
via GPT-2 large, Llama 2 13B and Mixtral.

For surprisal, we find that across all models,
RT predictions are significantly better for the the
low-performing group in the operation span test
as well as the vocabulary size test MWT. More-
over, surprisal extracted from GPT-2 large and
Llama 2 7B leads to significant gains in PP for
the low-performing group in the RIAS test, which
like MWT assesses verbal intelligence. Finally,
surprisal estimated from Llama 2 7B and Mixtral
showed significantly higher PP for the group of
individuals with lower scores in the verbal and non-
verbal cognitive control tests (Stroop, Simon).

5 Discussion

Most studies on the predictive power of surprisal
and entropy on reading times have been conducted
on the group-level. Although individual-level ef-
fects may have been taken into account in terms of
random slopes, these effects have not been associ-
ated with different cognitive profiles. Our findings
suggest that (1) incorporating information on indi-
viduals’ cognitive capacities and allowing them to
modulate the magnitude of surprisal and entropy
effects can increase the predictive power of these
predictability measures, (2) individuals exhibit sur-
prisal and entropy effects relative to certain cog-
nitive capacities, and (3) some language models
exhibit higher predictive power of reading times
for groups of individuals associated with a certain
cognitive profile.

5.1 Implications for the cognitive mechanisms
of language processing

Fluent readers exhibit lower surprisal effects.7
Our results show that the predictive power of the
interaction terms between surprisal and reading
fluency and to some extent entropy and reading
fluency are particularly high compared to the inter-
action terms including other psychometric tests, as
depicted in Figure 2. Including the interaction term
between reading fluency scores and surprisal im-
proves the predictions on reading times for all lan-
guage models. The negative coefficient (Table 1)

7As many results for entropy are not significant or less
clear, the focus of the discussion will lie on surprisal.

can be interpreted from two perspectives. From
the participants’ perspective, it underlines that in-
dividuals with high reading fluency exhibit lower
surprisal effects. These results might indicate that
less fluent readers rely more on predictive process-
ing, hence their reading is easily interrupted by less
predictable continuations, leading to longer read-
ing times. Experienced readers, on the other hand,
might be more trained to integrate unexpected ma-
terial effortlessly. From the models’ perspective,
on the other hand, it means that LMs overestimate
the surprisal effect exhibited by highly fluent read-
ers. Similar arguments can be made for the verbal
intelligence test (RIAS-verbal), which is correlated
with reading fluency (cf. Figure 4).

More accurate predictive processing for indi-
viduals with high working memory span. The
results regarding the interaction terms between sur-
prisal and working memory test scores are more
difficult to contextualize. The span tests in particu-
lar (operation span, sentence span) lead to substan-
tial increases in PP. Moreover, when assessing the
magnitude of their interaction terms, we find that
individuals with higher scores in both tests show
lower surprisal effects as shown in Figure 2. At
first glance, this intuitively makes sense, as high
working memory can be associated with the capa-
bility to hold competing continuations in memory,
including less likely ones that, in the high-surprisal
situation, turn out to be the actual continuation.
However, conversely, O’Rourke (2013) found in
an ERP study that individuals with high operation
span show stronger P600 effects, an event-related
potential that is typically associated with syntac-
tic repair or reanalysis. This would suggest that
individuals with higher operation span exhibit a
stronger garden path effect. However, garden paths
are an extreme case of very high surprisal where
different processing mechanisms might be at work
such as re-analysis processes. Future experiments
in minimal-pair settings will be needed to examine
the connection between working memory capacity
and surprisal effects more closely.

Attentiveness and inhibitory cognitive control
may impact predictive processing differently.
Next, we discuss the interaction term between sur-
prisal and measures from tests targeting cognitive
control. The directions of the interaction coeffi-
cients indicate that individuals with higher FAIR-
scores (attention and concentration) exhibit weaker
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surprisal effects. Although this finding would be
in line with the fact that general-purpose cogni-
tive control mechanisms are required in the revi-
sion after linguistic misanalyses (Fedorenko, 2014),
Vuong and Martin (2014) has shown that the time
taken to revise a garden path is correlated only with
verbal Stroop reaction time effects, but not with
reaction time effects from its non-verbal counter-
part (Simon). Since the FAIR scores showed fairly
strong correlations with working-memory scores
but not the other cognitive control tests (cf. Fig. 4),
it is possible that the results obtained for FAIR
might be more related to working-memory princi-
ples. Secondly, the results also showed that individ-
uals performing well in the Simon test (inhibitory
non-verbal cognitive control) exhibit stronger sur-
prisal effects. As mentioned before, Vuong and
Martin (2014) showed that the Simon task is likely
not associated with mechanisms related to linguis-
tic repair. The weaker surprisal effects for low-
performing individuals in the Simon task is more
likely associated with the tendency of participants
with lower control to skip revising misinterpreta-
tions entirely, i.e., to rely on good-enough process-
ing (Ferreira et al., 2002).

5.2 Cognitive profiles of language models

Finally, regarding the group analyses, the results
presented in Figure 3 revealed that surprisal esti-
mates across all tested models predicted RTs better
for the group of individuals with low verbal intel-
ligence scores, measured with two largely com-
plementary tests: one that assesses word knowl-
edge (MWT-B), and one that assesses verbal logi-
cal thinking via question answering and sentence
completion (RIAS-verbal). At first glance, this re-
sult is surprising since a language model has been
exposed to billions of tokens, and therefore, one
might expect that it emulates a psycholinguistic
subject with high verbal intelligence. However, a
language model’s predictions are always relative,
i.e., even if it has seen infrequent words, it will
still have a preference in terms of likelihood for the
more regular, frequent continuation. Individuals
with high verbal intelligence do not struggle with
such contexts since they are very familiar even with
uncommon terminology.

Additionally, we found that the PP of entropy
is significantly higher for individuals with high
working memory capacities, measured via memory
updating and sentence span. This result suggests

that (un)certainty measures about upcoming ma-
terial exhibited by LMs are more in line with the
way high-working memory individuals process lan-
guage, potentially driven by taking into account
longer contexts, or keeping track of relevant long
dependencies.

Even though most results from all three experi-
ments are consistent within and across different LM
families, there are exceptions. For instance, entropy
estimated from GPT-2 large showed the strongest
increase in PP for the high reading-fluency word
reading group (Figure 3). For the high reading-
fluency pseudo-word reading group, it even repre-
sents the only measure with a significant increase
in PP. Taking into account that GPT-2 base and
large showed a similar baseline PP (Figure 1), sug-
gesting that entropy extracted from GPT-2 large is
a better proxy of processing effort for readers with
lower verbal intelligence than entropy estimated
with GPT-2 base. This illustrates that the choice
of LM to estimate predictability measures is cru-
cial for downstream analyses in psycholinguistic
studies or NLP applications, especially when work-
ing with specific target groups. In such settings, it
might be worthwhile considering a model that is
less biased, or, in other words, whose predictability
measures are well-aligned with the target group at
hand as it will most likely lead to more accurate
results.

While this study aimed at uncovering model-
internal biases, it might be worthwhile to, in turn,
extend the investigation on whether text produced
by a given LM is biased towards being processed
more easily by individuals with specific cognitive
characteristics. This is particularly important for
tasks such as text summarization or simplification
that might need to be tailored to specific groups.

6 Conclusion

To date, most investigations on predictability ef-
fects have been conducted on the group-level, dis-
regarding individual differences, assuming that the
predictive power of next-word predictability met-
rics such as surprisal or entropy on human reading
times is uniform across cognitive profiles. In this
work, we have shown that indeed, LMs do exhibit
systematic biases towards readers of certain cog-
nitive profiles. This illustrates the usefulness of
incorporating individual-level information within
the study of LM interpretability and language mod-
elling in general.
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Limitations

Splitting the subjects at the median of their scores
obtained in the respective cognitive tests is a
straightforward way to split them into high- and
low-performing groups and avoids the problem of
class-imbalance. However, this kind of split might
not group participants whose scores are distributed
more narrowly. For future work, it might be sen-
sible to utilize more sophisticated clustering ap-
proaches to obtain more cognitively homogeneous
groups.

Moreover, recent work has shown that test-retest
reliability of individual surprisal effects are low, i.e.,
a surprisal effect for the same individual might vary
on different days (Haller et al., 2023), depending
on numerous factors such as wakefulness, motiva-
tion, but also random fluctuations. If this is true,
we have to assume the predictive power with one
and the same LM for a given subject, representing
a cognitive profile, might be different depending
on the subject’s condition on that particular day.
However, using the Indico data, this factor is con-
trolled to some degree since it combines data from
temporally separate sessions. That way, even if
the surprisal effect does depend on external fac-
tors, merging the data from several sessions en-
sures more robust estimates of each subject’s true
surprisal effect. While it might still be a limitation,
it is less so than for other conventional datasets.
Finally, although InDiCo represents a fairly diverse
sample in terms of age and gender, many partici-
pants have an academic background (see also Reich
et al. (2024) on the necessity of including diverse
populations in analyses of reading data).
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A Details on predictors

A.1 Language Models
We deployed the following German LMs from the Huggingface library (Wolf et al., 2019):

• GPT-2 base: https://huggingface.co/benjamin/gerpt2

• GPT-2 large: https://huggingface.co/benjamin/gerpt2-large

• Llama 2 7B: https://huggingface.co/LeoLM/leo-hessianai-7b
• Llama 2 13B: https://huggingface.co/LeoLM/leo-hessianai-13b
• Mixtral: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1

A.2 Pooling of surprisal and contextual entropy to word level
We compute word-level surprisal by summing up the surprisal values of the individual sub-word tokens.
Given k sub-word tokens un, un+1, . . . , un+k belonging to the same word token, the word token’s surprisal
is computed as

s(un, un+1, . . . , un+k) = − log p(un, un+1, . . . , un+k | u<n)

= − log [p(un | u<n)p(un+1 | u<n+1) . . . p(un+k | u<n+k)]

= − log p(un | un) +− log p(un+1 | u<n+1) + · · ·+− log p(un+k | u<n+k),

which shows that summing up sub-word token surprisal values is equivalent to computing the surprisal
of the joint distribution of the sub-word tokens.

As regards entropy, we use the sum of the sub-word token-level contextual entropies as proxy
for the joint entropy of the sub-word tokens’ distribution. Given k Σ̄-valued random variables
Un, Un+1, . . . , Un+k belonging to the same word token, their joint entropy is defined as:

H(Un, Un+1, . . . , Un+k)
def
= −

∑

un∈Σ̄

∑

un+1∈Σ̄

· · ·
∑

un+k∈Σ̄

P (un, un+1, . . . , un+1) log2 [P (un, un+1, . . . , un+1)] .

However, depending on the tokenizer, the cardinality of Σ̄ could be over 50,000, which makes the
computation of the joint entropy computationally unfeasible. Instead, we use the sum of the individual
entropies as proxy. This is only a proxy, since

H(Un, Un+1, . . . , Un+k) ≤ H(Un) + H(Un+1) + · · ·+H(Un+k).

This inequality is an equality iff Un, Un+1, . . . , Un+k are statistically independent. Since this is not the
case here, the sum of the sub-word token-level entropies is used as an upper bound.

B Individual Differences Corpus (InDiCo)

We provide abbreviations and a brief summary of all psychometric tests in Table 2. More details can be
found in Haller et al. (2023). A correlation matrix between all tests can be found in Figure 4. We can see
strong correlations between many tests, in particular for the ones of the same psychological construct.
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Figure 4: Correlations between scores of all psychometric tests. Red cells indicate positive correlation coefficients,
blue cells negative correlation coefficients. Significant coefficients are displayed, blank cells indicate that the
correlation was not significant with α = .05.
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