@inproceedings{viksna-etal-2023-large,
title = "Large Language Models for Multilingual {S}lavic Named Entity Linking",
author = "V{\={i}}ksna, Rinalds and
Skadi{\c{n}}a, Inguna and
Deksne, Daiga and
Rozis, Roberts",
editor = "Piskorski, Jakub and
Marci{\'n}czuk, Micha{\l} and
Nakov, Preslav and
Ogrodniczuk, Maciej and
Pollak, Senja and
P{\v{r}}ib{\'a}{\v{n}}, Pavel and
Rybak, Piotr and
Steinberger, Josef and
Yangarber, Roman",
booktitle = "Proceedings of the 9th Workshop on Slavic Natural Language Processing 2023 (SlavicNLP 2023)",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/Author-page-Marten-During-lu/2023.bsnlp-1.20/",
doi = "10.18653/v1/2023.bsnlp-1.20",
pages = "172--178",
abstract = "This paper describes our submission for the 4th Shared Task on SlavNER on three Slavic languages - Czech, Polish and Russian. We use pre-trained multilingual XLM-R Language Model (Conneau et al., 2020) and fine-tune it for three Slavic languages using datasets provided by organizers. Our multilingual NER model achieves 0.896 F-score on all corpora, with the best result for Czech (0.914) and the worst for Russian (0.880). Our cross-language entity linking module achieves F-score of 0.669 in the official SlavNER 2023 evaluation."
}
Markdown (Informal)
[Large Language Models for Multilingual Slavic Named Entity Linking](https://preview.aclanthology.org/Author-page-Marten-During-lu/2023.bsnlp-1.20/) (Vīksna et al., BSNLP 2023)
ACL