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Abstract

We introduce RESIN-11, a new schema-guided
event extraction and prediction system that
can be applied to a large variety of newswor-
thy scenarios. The framework consists of two
parts: (1) an open-domain end-to-end multime-
dia multilingual information extraction system
with weak-supervision and zero-shot learning-
based techniques. (2) a schema matching and
schema-guided event prediction system based
on our curated schema library. We build a demo
website1 based on our dockerized system and
schema library publicly available for installa-
tion2. We also include a video demonstrating
the system.3

1 Introduction

If the evening news discusses a migration of people
due to drought and the infrastructure cannot han-
dle the population influx, what will happen next?
While annotated datasets have fueled progress in
machine intelligence, the knowledge required for
event forecasting is vast and potentially ambiguous.
For example, to predict that a rebellion is likely in
the future, models need to integrate background
events (drought), abstractions (strained infrastruc-
ture causes unrest), and event schemas (structure
and duration of rebellion). Existing link predic-
tion (Zhang and Chen, 2018; Wang et al., 2018; Lei
et al., 2019) or knowledge graph completion meth-
ods (Zhang et al., 2019; Goel et al., 2020; Wang
et al., 2021a) cannot meet this goal because the
event instance graphs extracted from news are of-
ten incomplete and noisy. Recent work (Li et al.,
2020b, 2021a) proposes to leverage complex event

1Demo: http://18.221.187.153:11000
2Github: https://github.com/RESIN-KAIROS/RESI

N-11
3Video: https://screencast-o-matic.com/watch

/c3nlhnVbeyg

schemas (stereotypical evolution pattern of com-
plex events) for event prediction. However, these
methods are often limited to a few scenarios due
to the lack of high-quality, open-domain informa-
tion extraction systems to construct event instance
graphs needed for schema induction.

To tackle these challenges, in this paper we use
the event schemas discovered at scale to guide the
learning of predictive models. We first identify 11
newsworthy scenarios, and construct comprehen-
sive hierarchical schemas through the combination
of automatic schema induction and manual cura-
tion. Then we develop an open-domain end-to-end
multimedia multilingual information extraction sys-
tem that can extract entities, relations, events, and
temporal orders for all of these scenarios, based on
a series of weak supervision based methods, includ-
ing few-shot learning and lifelong learning. Com-
pared with previous event tracking systems (Wen
et al., 2021) that conduct graph matching on a lin-
earized sequence, we propose a new schema match-
ing algorithm that directly operates on graphs. We
also proposed a event prediction model trained with
self-supervision to predict possible missing events
to form a coherent story. Our contributions include:

• We induce and curate hierarchical schemas for
11 scenarios, capturing a wide coverage of news-
worthy events.

• We extend our multi-lingual multi-media infor-
mation extraction techniques (Wen et al., 2021)
to handle the open-domain extraction setting.

• We develop a new schema matching and pre-
diction algorithm that is capable of recovering
missing events and predicting events that will
likely to happen in the future.
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2 Methodology

Overview Figure 1 illustrates the overall architec-
ture of our framework. It includes three parts: (1)
schema library construction (Section 2.1); (2) open-
domain multimedia multilingual Information Ex-
traction (IE) system (Section 2.2-2.3) ; (3) schema
matching and prediction component (Section 2.4).

We first perform schema induction and curation
for 11 identified newsworthy scenarios. Specifi-
cally, we use GPT-3 generated results as an outline,
enrich the schema with the help of the WikiData
ontology and expand the steps for better coverage.

On the IE side, we assume our input consists of
multilingual multimedia document clusters about
a specific scenario (e.g., disease outbreak). Each
document cluster contains documents about a spe-
cific complex event scenario (e.g., COVID-19 pan-
demic). Our textual IE pipeline takes documents
and transcribed speech as input and extracts entity,
relation and event mentions (Section 2.2). In or-
der to extend IE to open-domain, we have adopted
weak supervision and zero-shot transfer learning
techniques. Then we perform cross-document
cross-lingual entity and event coreference resolu-
tion, and link them to WikiData. The extracted
events are then ordered by temporal relation extrac-
tion. Our visual pipeline extracts events and argu-
ments from visual signals (i.e., images and videos),
and link the extracted knowledge elements to our
extracted graph using cross-media event corefer-
ence resolution (Section 2.3). Finally, our system
automatically selects the schema from a schema
library that best matches the extracted IE graph and
new events are predicted (Section 2.4).

2.1 Schema Induction and Curation
For our schema library creation, we first start with
creating schemas with a zero-shot approach utiliz-
ing GPT-3. Given a scenario for which we want
to create a schema, we generate multiple texts that
discuss the topically-related complex events using
the OpenAI GPT-3 API4 with the Davinci-instruct-
beta-v3 model. We use three prompting methods
to generate documents of diverse genres such as
news articles, Wikihow-style documents, and step-
by-step event description. One example of such a
prompt and the generated output is shown in Figure
2. Then we identify the events mentioned in the
texts and link the events to WikiData Qnodes. We
use generated documents instead of real documents

4https://openai.com/blog/openai-api/

because we observe that generated documents are
generally cleaner and contain a higher percentage
of events that can be linked. For instance, compar-
ing the generated text and the crawled news articles
for IED attacks, the generated text contains 0.13
events per token and the news articles only contain
0.06 events per token. From there we add argu-
ments to the events, and identify the temporal and
hierarchical relations between the events effectively
converting each text into a graph structure (Figure
3).

Note that the automatic induced schema is often
noisy and has limited coverage. Some of such
mistakes come from the GPT3 generation, e.g., in
the generated output in Figure 2, it omits how the
disease was discovered. Other mistakes root from
incorrect prediction of temporal relations, such as
the “Kill” → “Come (Attack)” edge in Figure 3.

To improve coverage, human curators further
check Wikipedia and news articles on the related
topics and add more events. Three other crucial as-
pects of human curation are (1) entity coreference
resolution, (2) temporal ordering and (3) hierar-
chical structure construction. Entity coreference
chains in schemas often involve implicit entities,
such as the “area where the sick live” in step 2.
This location entity is futher coreferential with the
“contaminated areas” entity mentioned later in step
4. The generated output is a list of steps, which can
be converted to a linear ordering of events. How-
ever, some events can happen concurrently such as
the “Educate” event in step 4 and all other events.
In addition, some events have strong semantic co-
herence involving the same set of entities and thus
can be grouped together. For example, this chain
of “Identify-Quarantine-Disinfect” can be seen as
a medical response to one batch of infections. We
refer to this as a sub-schema and this medical re-
sponse sub-schema can be repeated with a different
set of patients and medical agents. An example of
the human curated schema is shown in Figure 4.

In the curation process, we use a web-based
graphical interface (Mishra et al., 2021) to help
visualize and assess schemas.

2.2 Open Domain IE from Speech and Text

We first convert speech data into text using the
Amazon Transcribe API5. When the language is
not specified, it is automatically detected from the
audio signal. It returns the transcription with start-

5https://aws.amazon.com/transcribe/
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Figure 1: The architecture of RESIN-11 framework: including (1) open-domain multimedia multilingual information
extraction; and (2) schema matching and prediction.

1. Monitor and track disease spread.
2. Identify and isolate the sick.
3. Quarantine the sick and those who have been in 
contact with them.
4. Disinfect and clean contaminated areas.
5. Educate the public about the disease and how to 
prevent it.
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disease outbreak? 
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Figure 2: An illustration of the schema curation process.
The steps are actual output from GPT-3.

ing and ending times for each detected words, as
well as potential alternative transcriptions.

To achieve wide coverage of event types from
11 scenarios, our information extraction system
consists of 3 components: (1) the supervised
joint entity, relation and event extraction model
OneIE (Lin et al., 2020); (2) weakly supervised
keyword-guided event extraction; and (3) zero-shot
generation-based argument extraction (Li et al.,
2021b).

OneIE is a joint neural model for sentence-level
information extraction. Given a sentence, the goal
of this module is to extract an information graph
G = (V,E), where V is the node set contain-
ing entity mentions and event triggers and E is
the edge set containing entity relations and event-
argument links. In order to capture the interac-
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Figure 3: An automatically induced schema for the ter-
rorist attack scenario with model predicted temporal
order, hierarchical relations and logical relations. Argu-
ments are omitted for clarity.

tions among knowledge elements, we incorporate
schema-guided global features when decoding in-
formation graphs. After we extract these men-
tions, we apply a syntactic parser (Honnibal et al.,
2020) to extend mention head words to their extents.
Based on OneIE relations output, we perform rule-
based relation enrichment to obtain fine-grained
relation subsubtypes. We collect keywords for vari-
ous fine-grained types, then we construct rules by
checking keywords in Shortest Dependency Paths
(SDP) between two relation entities.

To extract emergent event types for which we
do not have large-scale annotation, we employ a
keyword-based event detection system. Specifi-
cally, we select a list of keywords for each new
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Figure 4: The curated schema for the disease outbreak scenario. Blue diamond shapes represent sub-schemas and
yellow circles represent primitive events. Black arrows between primitive events represent temporal order, light blue
lines between the primitive events and the sub-schema node represent event-subevent hierarchical relationship. Here
we only show the primitive events under the Onset sub-schema.

event type, and search for the occurrences of these
keywords in a text corpus. We compute keyword
representations by averaging the contextualized rep-
resentations from BERT (Devlin et al., 2019) of
keyword occurrences, and cluster keyword repre-
sentations for the same event type to get a set of
cluster representations for each event type. For
event trigger detection, we first compute BERT rep-
resentations of all the tokens in a sentence, and
consider a token as an event trigger if its cosine
similarity with some cluster representations of an
event type is larger than a threshold. We tuned the
threshold using a few example event mentions.

After identifying the event triggers, we further
employ a document-level event argument extrac-
tion model (Li et al., 2021b) to improve the recall
of event argument role labeling. This model for-
mulates the argument extraction problem as con-
ditional text generation. The condition consists of
the original document and a blank event template.
For example, the template for Transportation
event type is arg1 transported arg2 in arg3 from
arg4 place to arg5 place. To apply this model in a
zero-shot setting, we create new templates for the
emerging event types and use them as input.

For entity linking over Wikidata, we directly use
the EPGEL system proposed in Lai et al. (2022).
For cross-document cross-lingual coreference res-
olution, we follow the approach of (Wen et al.,
2021). After the coreference resolution/entity link-
ing stage, we conduct temporal ordering for all
of the extracted events. First we provide two
independent temporal ordering results from two
learning-based pairwise event order classification

systems (Zhou et al., 2021; Wen and Ji, 2021). To
make the prediction consistent and valid over each
document cluster, we use a greedy algorithm that
selects conflict-free predicted temporal relations to
the final instance graph sequentially based on their
confidence scores. Similar to Wen et al. (2021),
these two results will be used for schema matching
and event prediction and only the best prediction
will be used in the final output.

2.3 Cross-media Info Grounding and Fusion

Visual event and argument role extraction Our
goal is to extract structured visual events and en-
tities. Specifically, given an image or a video seg-
ment, the desired output are its event type and the
associated argument roles. Due to the expensive
cost of event annotation for images and videos, it
is not feasible to perform annotation for each new
type. Unlike existing systems leveraging super-
vised training (Chen et al., 2021a), we propose an
open-domain framework to enable the visual event
extraction for a broader spectrum of event types.

Our proposed system is composed of two com-
plementary models. The first model is a supervised
model based on a large-scale image dataset, Situa-
tion with Groundings (SWiG) (Pratt et al., 2020).
We manually define the mapping that covers 16
event types and use the model pretrained on the
SWiG dataset to extract event and argument roles.
The second model is an unsupervised model by
leveraging large-scale vision-language pretrained
model (Li et al., 2022; Radford et al., 2021). We
conduct further pretraining on an event-rich cor-
pus (Li et al., 2022) by adding an additional pre-
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training task of event structure alignment between
two modalities. In detail, we extract event struc-
tures from captions and utilize them as the super-
vision for image event extraction. The pretrain-
ing corpus comprises multiple scenarios, providing
support for the extraction of events for a wide range
of scenarios. To process images and videos in a uni-
fied manner, we follow Wen et al. (2021) to sample
frames at a frame rate of 1 frame per second from
videos and process these key-frames as individual
images.

Cross-media event coreference resolution To
augment the text event graph, we leverage a weakly-
supervised coreference resolution model (Chen
et al., 2021a) that is trained based on the align-
ment between video frames and speech texts on a
large collection of news videos to predict the rel-
evance between a textual event and the extracted
visual event. Once the relevance is higher than a
threshold, we leverage a rule-based approach to de-
cide whether the visual event mention and a textual
event mention are coreferential: (1) Matched event
types; (2) No contradiction of entity types for the
same argument role in different modalities. This
pipeline enables adding provenance of visual-only
arguments into the event graph, which provides
more comprehensive event understanding.

2.4 Schema Matching and Prediction
After obtaining a large-scale library of schema
graphs for various scenarios, our goal is to instan-
tiate the schema graphs with extracted events, and
then use it for schema-guided event prediction.

Schema Matching To match the event nodes be-
tween the IE graphs and schema graphs, previous
work (Wen et al., 2021) first linearizes graphs into
event sequences and then conducts event matching
using longest common subsequences (LCS). How-
ever, such a sequence-based matching algorithm
cannot well capture some global dependencies in
a graph point of view, and the performance largely
depends on the quality of event temporal order-
ing results. Also, the LCS based matching algo-
rithm can only handle the cases where the events in
schema graph and IE graph use an identical ontol-
ogy (i.e., the same category of event types), which
is however not applicable for open-domain settings
since the names of events could be diverse and
multifarious.

To tackle these problems, we propose a new
schema matching algorithm that directly operates

on each pair of instance graph I and schema graph
S. We formulate schema matching as an integer
programming problem, where we can use an assign-
ment matrix X ∈ R|I|×|S| to represent the match-
ing results. To enable matching between events
with different names, we compute the pairwise
Synsets similarities from WordNet6 and store it
into a node similarity matrix A. For each event ei
in a given instance graph I , we obtain the set of all
reachable event nodes RI(i) = {e | PI(ei, e) =
1, e ∈ I}, where PI(ei, e) denotes whether there
exists a path from ei to e in the instance graph I .
Similarly, we can also obtain the reachable event
sets RS and PS for the schema graph S. For edge
similarity between each pair of events ei and ej , in-
stead of strictly judging whether they are temporal
neighbors (i.e., whether there exists an event-event
temporal link between ei and ej) , we only use the
reachability as temporal constraints (i.e., whether
ej ∈ RI(i)) to mitigate the high dependence on the
quality of event temporal ordering results. Specif-
ically, we aim to find the optimal solution Xopt

Xopt = argmax
X

∑

i,j

Ai,jXi,j − c · Q(X), (1)

where c is a hyper-parameter and Q(X) denotes
the penalty term for the violation of temporal con-
straints. The penalty term Q(X) is defined as the
total number of event pairs that violates the tempo-
ral constraints.

Schema-guided Event Prediction After schema
matching, an instance graph I is mapped to a sub-
graph of the schema graph, i.e., I ′ ⊆ S. The next
step is to determine whether a candidate event node
e ∈ S\I ′ is a missing node for I ′. Specifically, we
aim to learn a function f(e, I ′) : S × 2S 7→ [0, 1],
which outputs the probability that event node e is
missing for subgraph I ′. We consider two factors
when designing the function f(e, I ′): (1) Neigh-
bors of e and I ′. We use a graph neural network
(GNN) to aggregate neighbor information and learn
embedding vectors for nodes in S, then aggregate
embeddings of nodes in I ′ to obtain the embedding
of I ′. The embeddings of e and I ′ are concate-
nated, followed by an MLP to output the predicted
probability. (2) Paths. We identify all paths that
connect e and each node in I ′ in the schema graph
S, then aggregate the paths together to obtain the
bag-of-path feature for the pair of (e, I ′). The bag-
of-path feature is fed into another MLP to output

6https://www.nltk.org/howto/wordnet.html
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Scenario # Episodes # Events # Ents # Rels

Business Change 18 81 24 54
Civil Unrest 6 34 18 24
Disease Outbreak 19 102 27 93
Election 8 35 14 33
International Conflict 17 95 56 50
Kidnapping 9 66 15 56
Mass Shooting 8 37 13 31
Sports Events 4 17 14 19
Terrorist Attacks 8 36 11 26
Disaster/Manmade Disaster 8 38 10 29
Disaster/Natural Disaster 4 23 8 18
IED/General Attack 19 52 40 22
IED/General IED 10 48 18 39
IED/Drone Strikes 10 50 19 43
IED/Backpack IED 10 49 18 40
IED/Roadside IED 10 48 19 39
IED/Car IED 10 50 19 43

Table 1: Statistics of our schema library.

the predicted probability. Finally, the outputs of
the above two modules are averaged as the final
prediction.

3 Schema and Experiments

The overall statistics of our schema library are pre-
sented in Table 1. The performance of each com-
ponent is shown in Table 2. We evaluate the perfor-
mance of our full system on a complex event cor-
pus (LDC2022E02), which contains multi-lingual
multi-media document clusters. We train our
mention extraction component on ACE05 (Walker
et al., 2006) and ERE (Song et al., 2015);
document-level argument extraction on ACE05 and
RAMS (Ebner et al., 2020); coreference compo-
nent on ACE05, EDL 2016 (LDC2017E03), EDL
2017 (LDC2017E52), OntoNotes (Pradhan et al.,
2012), ERE, CoNLL 2002 (Tjong Kim Sang, 2002),
DCEP (Dias, 2016) and SemEval10 (Recasens
et al., 2010); temporal ordering component on MA-
TRES (Ning et al., 2018); weakly supervised event
extraction on ACE05; schema matching and predic-
tion on LDC2022E03; visual event and argument
extraction on M2E2 (Li et al., 2020a) and cross-
media event coreference on Video M2E2 (Chen
et al., 2021a). For coreference resolution, similar
to previous work (Wen et al., 2021), we use the
CoNLL metric.

4 Related Work

Event Schema Induction and Curation Event
schemas, or otherwise known as scripts, are
structures that represent typical event progres-
sions (Schank and Abelson, 1975). Prior to this
work, there has been some effort in creating schema

Component Benchmark Metric Score

Weakly-supervised IE
Trigger ACE F1 63.3

Argument ACE F1 41.5

Mention
Extraction

En
Trigger ACE+ERE F1 64.1

Argument ACE+ERE F1 49.7
Relation ACE+ERE F1 49.5

Es
Trigger ACE+ERE F1 63.4

Argument ACE+ERE F1 46.0
Relation ACE+ERE F1 46.6

Document-level
Argument Extraction

ACE F1 66.7
RAMS F1 48.6

Coreference
Resolution

En
Entity OntoNotes CoNLL 92.4
Event ACE CoNLL 84.8

Es
Entity SemEval 2010 CoNLL 67.6
Event ERE-ES CoNLL 81.0

Wikidata QNode Linking TACKBP-2010 Acc. 90.9

Temporal
Ordering

RoBERTa MATRES F1 81.7
T5 MATRES-b Acc. 89.6

Visual Event Extraction M2E2 F1 52.7
Cross-media Event Coreference Video M2E2 F1 51.5

Benchmark Metric Score

Schema Matching LDC2022E03 Recall 63.2
Schema Prediction WikiEvents F1 45.5

Table 2: Performance (%) of each component our open-
domain multimedia multilingual IE system (upper) and
schema matching and prediction component (bottom).

databases through crowdsourcing (Regneri et al.,
2010; Modi et al., 2016; Wanzare et al., 2016; Sak-
aguchi et al., 2021). The key characteristics that
separate our schema library from exiting resources
include (1) focus on diverse newsworthy scenarios
instead of everyday events; (2) highly structured
multi-level schema organization.

In addition to schema resources, there has also
been work on automating the schema induction
process, through the use of probabilistic graphi-
cal models (Chambers, 2013; Cheung et al., 2013;
Nguyen et al., 2015; Weber et al., 2018) and event-
based language models (Pichotta and Mooney,
2016; Modi and Titov, 2014; Rudinger et al., 2015;
Li et al., 2020b, 2021a). We hope that our schema
library can serve as a resource for the development
of better automatic schema induction methods.

Weakly-Supervised Event Extraction Due to
the high cost of annotating event instances, low re-
source event extraction has received much attention
in recent years. There are a variety of settings ex-
plored, including zero-shot transfer learning (Lyu
et al., 2021; Huang et al., 2018), cross-lingual trans-
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fer (Subburathinam et al., 2019), inducing event
types (Huang et al., 2016; Wang et al., 2021b),
keyword-based supervision (Zhang et al., 2021)
and few-shot learning (Peng et al., 2016; Lai et al.,
2020; Shen et al., 2021; Cong et al., 2021; Chen
et al., 2021b).

Schema-Guided Event Prediction Our schema-
guided event prediction model is also related to
link prediction (Zhang and Chen, 2018; Wang
et al., 2018; Lei et al., 2019) and graph completion
(Zhang et al., 2019; Goel et al., 2020; Wang et al.,
2021a) methods. The advantages of our schema-
guided method are that: (1) Our method is specially
designed for multiple small event graphs, rather
than a single large graph as studied in previous
work. Therefore, using event schema enables us
to model the common pattern of instance event
graphs. (2) An event schema can be seen as a
pool of inter-connected candidate events, which
provides new event nodes that can be added into an
incomplete instance event graph. However, exist-
ing work can only predict missing links rather than
missing nodes.

5 Conclusions and Future Work

We build an open-domain schema-guided event
prediction system that is capable of extracting and
predicting structured information regarding events
from various scenarios. In the future, we plan to fur-
ther improve both the extraction quality and porta-
bility to cover even more scenarios, and use the
automatic zero-shot schema induction algorithm to
iteratively extend our curated schemas. The hier-
archy structure of our event schemas can also be
further utilized to improve future event prediction.

6 Broader Impact

The goal of this project is to advance the state-of-
the-art schema-guided information extraction and
event prediction from real-world multi-modal news
sources. We believe that grounding our work in
real-world applications will help us make progress
in event-centric natural language understanding.
However, this work is not void of possible improper
use that may have adverse social impacts.

One major distinction between beneficial use and
harmful use depends on the data sources. Proper
use of the technology requires that input sources
are legally and ethically obtained. As an instance
of beneficial use, our demo may contribute to dis-
ease outbreak monitoring and disaster emergency

response, which is included in our chosen scenarios.
Besides, we should also be aware of the possible
biases that may exists in the datasets. Our system
components, as well as pretrained language models
that we use, are trained and evaluated on specific
benchmark datasets, which could be affected by
such biases. For example, as is observed in Abid
et al. (2021), the text generated by GPT-3 might
include undesired social biases. Our careful hu-
man curators’ effort involved in the schema library
building can mitigate this issue.

Generally, increasing transparency and explain-
ability of models can help prevent social harm, such
as over-estimation of the model ability. We plan
to make our software fully open source for pub-
lic audition and verification. We are also open
to explore countermeasures to prevent unintended
consequences.

The event prediction part of our model is able
to forecast the future trend of the current complex
event, which enables us to better understand the
structure and semantics of complex events. More-
over, it is particularly helpful for us to analyze and
predict the public opinion.
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