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Abstract
Digital Linguistic Biomarkers extracted from spontaneous language productions proved to be very useful for the early detection
of various mental disorders. This paper presents a computational pipeline for the automatic processing of oral and written
texts: the tool enables the computation of a rich set of linguistic features at the acoustic, rhythmic, lexical, and morphosyntactic
levels. Several applications of the instrument - for the detection of Mild Cognitive Impairments, Anorexia Nervosa, and
Developmental Language Disorders - are also briefly discussed.
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1. Digital Linguistic Biomarkers: a novel
NLP tool for diagnostic purposes

Natural Language Processing methods and tools are
becoming increasingly crucial in the medical domain
(Wang et al., 2020), with a broad range of applications
ranging from direct patient care, to diagnostics, clin-
ical coding, and patient-facing services (Locke et al.,
2021). In particular, a growing interest surrounded the
possibility to exploit the automatic analysis of speech
and language as a sensible early clue of pathological
processes.
Language is a complex cognitive function, which re-
lies on broadly distributed brain networks (Catani et al.,
2012). Its neurobiological basis is not limited to the
left-dominant perisylvian language network (i.e., the
neural loop located around the lateral sulcus, composed
by the arcuate tract connecting Broca’s, Wernicke’s and
Geschwind’s territories, cf. Catani et al. (2005)), but
includes a complex of cortical and subcortical brain
structures related to motor and sensory-related repre-
sentations, non-verbal memory skills, emotional pro-
cessing, and executive functions (Hagoort, 2017; Her-
trich et al., 2020). Consequently, even minor brain
changes due to mental health issues (e.g., reversible or
progressive cerebral atrophy) can result in subtle lan-
guage alterations.
The term “Digital Linguistic Biomarkers” (henceforth
referred to as “DLBs”) indicates the possibility to au-
tomatically extract objective indications of the medical
state of the patients directly from their verbal produc-
tions. These highly accurate and reproducible measure-
ments should allow “for a low-cost pathology detec-
tion, classification, and monitoring” (Gagliardi et al.,
2021).
In the last ten years, this approach has gained popu-
larity among researchers and clinicians seeking fast,
replicable, and objective proxy-measures of mental dis-
orders (Gagliardi, under revision). Beside Dementia,
which has represented the earliest area of application,

this approach has been applied to several clinical devel-
opmental and acquired pathologies (e.g., Autism Spec-
trum Disorder, Parkinson’s Disease, and Progressive
Supranuclear Palsy) with encouraging results.
In the following pages, we will present our NLP
pipeline for DLBs extraction from Italian oral and writ-
ten texts. The paper is structured as follows: §2
presents the overall structure of the pipeline (i.e., pre-
processing steps and DLBs computation), §3 illustrates
successful case studies on the Italian language (e.g.,
cognitive frailty due to dementia, Anorexia Nervosa,
and Developmental Language Disorder detection), and
§4 discusses the main challenges arising from this tech-
nology. In §5, we will address future development di-
rections.

2. The DLB Computational Pipeline
The need for an efficient method to extract a large set of
DLBs for studying possible correlations between lin-
guistic features and various mental disorders in Ital-
ian has led us to devise an appropriate computational
pipeline. This instrument must be capable of perform-
ing some basic NLP tasks on spoken or written produc-
tions to extract the whole set of DLBs. In particular, the
pipeline is structured as a complex set of interacting
and flexible processing modules. Figure 1 illustrates
the whole pipeline structure.
The tool can process three different kinds of inputs:
spoken recordings (as a WAV audio file), raw written
texts (TXT), or preprocessed texts in the CoNLL-U for-
mat1 containing morphosyntactic and syntactic analy-
ses.
Table 1 lists the complete set of DLBs produced by
the pipeline. They are subdivided into six groups of
biomarkers:

• Speech-derived features: i.e., acoustic (SPE) or
rhythmic (RHY) DLBs.

1https://universaldependencies.org/
format.html

https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
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Figure 1: The whole structure of the Pipeline. Inputs can be provided as WAV, raw text, or CoNLL files. The
modules are described in detail in Sect. 2.

• Text-derived features: i.e., lexical (LEX), syntac-
tic (SYN), LIWC-based (LWC), and readability
(REA) DLBs.

Due to space limits, it is not possible to depict each of
these features in detail. For an extensive description
and calculation details, the reader can refer to Calzà et
al. (2021).
Given a specific input type, either a WAV, TXT, or
CoNLL file, the pipeline computes all the DLBs that
can be derived from it. The larger set is obtained by
providing the speech recording, alone or with the man-
ual transcription (to bypass any mistake produced by
the ASR module).
The following subsections will describe in detail all the
pipeline modules.

2.1. Pre-Processing Steps
To compute the DLBs, the input data must be pre-
processed by applying basic speech analysis and NLP
tools.

2.1.1. Speech to Text
If the input consists of a recording only, speech tran-
scription represents a basic requirement for computing
reliable text-related DLBs. In this respect, Automatic
Speech Recognition, aka ‘speech-to-text’, is the funda-
mental task.
To this aim, we inserted a specific ASR module into the
pipeline, testing two different options:

• The first possibility involves the usage of some
pre-trained cloud ASR service provided by IT
giants (i.e., Google, Microsoft, IBM, Amazon).
We produced the speech transcriptions by lever-
aging the Google Cloud ASR system, a reliable

instrument for Italian when dealing with non-
pathological language. To get an idea about
the actual performance of this tool when applied
to atypical speech, we ran an evaluation exper-
iment comparing the automatically-derived tran-
scriptions with the manual counterparts, obtain-
ing a Word Error Rate (WER) of 27.78%. Con-
sidering the complex nature of the task, this WER
seems rather acceptable.

• The second option implies the development of an
offline ASR system for Italian. Tamburini (2021)
presented a similar tool using the NVIDIA NeMo
package. The system shows good performance
(WER<10%) when applied to non-pathological
speech.

An in-depth focus on the issues raised by ASR will be
presented in Section 4.2.

2.1.2. Speech Segmentation
To directly extract the features from speech, the sam-
ples have to be preprocessed. First, we used the “SS-
VAD v1.0” Voice Activity Detector (VAD) proposed by
Yu and Mak (2011)2 - tailored for interviewed speech
- to automatically segment the recordings and identify
speech vs. non-speech regions. These segmentations
provide crucial information for computing some acous-
tic features, such as silence segments durations, speech
segments durations, and their ratios.
We also need the temporally-aligned phonetic tran-
scription of the samples to calculate the duration of
vowels, consonants, and the ratio of their intervals, for

2http://bioinfo.eie.polyu.edu.hk/
ssvad/ssvad.htm.

http://bioinfo.eie.polyu.edu.hk/ssvad/ssvad.htm
http://bioinfo.eie.polyu.edu.hk/ssvad/ssvad.htm
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Feature References
Acoustic Features (SPE)

Silence segments duration (M, MD, SD) (Satt et al., 2013)
Speech segments duration (M, MD, SD) (Satt et al., 2013)
Temporal regularity of voiced segments (Satt et al., 2013)
Verbal Rate (Singh et al., 2001; Roark et al., 2011)
Transformed Phonation Rate (Singh et al., 2001; Roark et al., 2011)
Standardized Phonation Time (Singh et al., 2001; Roark et al., 2011)
Standardized Pause Rate (Singh et al., 2001; Roark et al., 2011)
Root Mean Square energy (M, SD) (López-de-Ipiña et al., 2013)
Pitch (M, SD) (López-de-Ipiña et al., 2013)
Spectral Centroid (M, SD) (López-de-Ipiña et al., 2013)
Higuchi Fractal Dimension (M, SD) (López-de-Ipiña et al., 2013)

Rhythmic Features (RHY)
Percentage of vocalic intervals - %V (Ramus et al., 1999)
SD of vocalic, ∆V, and consonantal, ∆C, interval durations (Ramus et al., 1999)
Pairwise Variability Index, raw, rPVI, and normalized, nPVI (Grabe and Low, 2002)
Variation coefficient for ∆V and ∆C (Delwo, 2006)

Lexical Features (LEX)
Content Density (Roark et al., 2011)
Part-of-Speech rate (Holmes and Singh, 1996; Bucks et al., 2000)
Reference Rate to Reality (Vigorelli, 2004)
Personal, Spatial and Temporal Deixis rate (March et al., 2006; Cantos-Gòmez, 2009)
Relative pronouns and negative adverbs rate -
Lexical Richness: TTR, Brunet’s and Honoré’s Indexes (Holmes and Singh, 1996)
Action Verbs rate (Gagliardi, 2014)
Frequency-of-use tagging (De Mauro, 2000)
Propositional Idea Density (Snowdon et al., 1996; Roark et al., 2011)
Mean Number of words in utterances -

Linguistic Inquiry and Word Count Features (LWC)
Language Metrics (e.g., words per sentence, words > 6 letters) (Agosti and Rellini, 2007)
Function Words (e.g., pronouns, articles, auxiliary verbs)
Affect Words (e.g., positive/negative emotion)
Cognitive Processes (e.g., insight, certainty, tentativeness)
Perceptual processes (e.g., seeing, hearing, feeling)
Biological processes (e.g., body, health/illness, ingesting)
Personal concerns (e.g., work, leisure, money, religion, death)
Social Words (e.g., family, friends)
Punctuation (e.g., periods, commas, colons, question marks)

Readability Features (REA)
READ-IT features for readability evaluation (Dell’Orletta et al., 2011)
(at the lexical, morpho-syntactic, syntactic, and global levels)

Syntactic Features (SYN)
Number of dependent elements of the nouns (M, SD) -
Global Dependency Distance (M, SD) (Roark et al., 2007; Roark et al., 2011)
Syntactic complexity (Szmrecsányi, 2004)
Syntactic embeddedness: maximum tree depth (M, SD) -
Utterance length (M, SD) -

Table 1: The list of Digital Linguistic Biomarkers extracted by the pipeline. Most of these features are computed
as means (M), medians (MD), and standard deviations (SD). Please refer to Calzà et al. (2021) for the descriptions
and computation details.

the extraction of the rhythmic features listed in Ta-
ble 1. The approach pursued in the current version
of the pipeline involves: i) the grapheme-to-phoneme
conversion of the orthographic transcription, exploit-
ing the grapheme-to-phoneme module by Cosi et al.
(2001) (based on the SAMPA3 phonetic alphabet); ii)

3https://www.phon.ucl.ac.uk/home/

the temporal alignment of the phonetic transcription
and the acoustic signal. To this aim, we implemented a
forced alignment algorithm, using the Kaldi Automatic
Speech Recognition package4 trained on the APASCI

sampa/
4http://kaldi-asr.org.

https://www.phon.ucl.ac.uk/home/sampa/
https://www.phon.ucl.ac.uk/home/sampa/
https://www.phon.ucl.ac.uk/home/sampa/
https://www.phon.ucl.ac.uk/home/sampa/
https://www.phon.ucl.ac.uk/home/sampa/
https://www.phon.ucl.ac.uk/home/sampa/
https://www.phon.ucl.ac.uk/home/sampa/
http://kaldi-asr.org.
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Italian Corpus5. This aligner predicts the most likely
match between the acoustic features in the utterance
and the phonetic transcription. The result is a fairly
reliable temporal alignment between phones and the ut-
terance segments, thus, it is possible to join vocalic and
consonantal intervals and compute the required rhyth-
mic features, starting from that segmentation.
We are currently trying to enhance the computation of
vowel/consonant intervals by experimenting with algo-
rithms for the detection of speech landmarks (Stevens
et al., 1992; Liu, 1995; Howitt, 2002), in particu-
lar applying the approach described in SpeechMark6

(Ishikawa et al., 2017).

2.1.3. Text Analysis
The analysis of texts - whatever they derive from writ-
ten productions or speech transcriptions - usually re-
quires some preprocessing steps to derive basic linguis-
tic features, endowing more complex estimations.
For the extraction of text-related DLBs, we leveraged
Stanford STANZA, a collection of efficient neural-
network-based tools for the linguistic analysis of many
languages, organized into a coherent text processing
pipeline (Qi et al., 2020). In particular, we exploit
STANZA v1.3.0 for tokenization, lemmatization, part-
of-speech tagging, and parsing employing a depen-
dency model trained on the Universal Dependencies7

ISDT Italian corpus v2.5.
To get a linguistically sound dependency parse struc-
ture for Italian (and in general for any romance lan-
guage) a proper treatment of enclitics pronoun clusters
(e.g., it. aiutarlo, en. ‘to help him’; it. dargliela, en. ‘to
give it to him/her/them’) must be considered. In other
terms, it is crucial to ’break’ the clusters, allowing the
correct retrieval of the direct/indirect object arguments
of the verb. We applied a powerful Italian morphologi-
cal analyzer (Tamburini and Melandri, 2012) for iden-
tifying enclitic forms and tokenizing them accordingly.
Figure 2 shows an Italian sentence after enclitics pre-
processing and STANZA analysis.

2.2. Computing DLBs
Table 1 lists the whole set of DLBs computed by the
pipeline. Some are strictly connected with speech ar-
ticulation and thus intimately related to phonetic pro-
cessing. Others involve text-related features and can be
computed on both written productions and transcripts.

2.2.1. Linguistic Biomarkers from Speech
The Acoustic and Rhythmic features (SPE and RHY)
can be broadly divided into two classes of DLBs:

DLBs based only on Speech Segmentation
All the Acoustic and Rhythmic DLBs broadly involve
some unit duration measures, their ratio, or are com-
puted only in speech segments. Then, they are based

5http://catalogue.elra.info/en-us/
repository/browse/ELRA-S0039/

6https://speechmrk.com
7https://universaldependencies.org/

on the temporal segmentation of speech samples into
homogeneous regions. Acoustic DLBs relies on the
results provided by the VAD preprocessing: they are
based on various kinds of measures of sample sec-
tions containing silence (unfilled pauses) or spoken
segments. On the contrary, Rhythmic DLBs are built
on the speech segmentation into vocalic and consonan-
tal intervals provided by the Kaldi aligner described be-
fore.

DLBs based on Speech Signal analysis
The last four SPE features in Table 1 (i.e., Root Mean
Square energy, Pitch, Spectral Centroid, and Higuchi
Fractal Dimension) involve some signal processing of
the speech sections. Pitch-related measures are com-
puted by using the SWIPE’ pitch tracking algorithm
(Camacho, 2007) as implemented into the Speech Sig-
nal Processing Toolkit (SPTK)8; the others are directly
extracted by the pipeline following the techniques de-
scribed in the cited references.

2.2.2. Linguistic Biomarkers from text
Four types of textual DLBs are currently computed by
the pipeline:

Lexical Features (LEX)
Lexical DLBs are computed using frequency measures
of particular combinations of tokens, types, and their
PoS-tags. In some cases, lists of words - which iden-
tify specific linguistic phenomena, like deixis and nega-
tion - are exploited. We briefly describe here the most
opaque of them. Content Density measures the ratio
of open-class words over closed-class words. Refer-
ence Rate to Reality is the ratio of the number of nouns
over verbs. The three Lexical Richness features (i.e,
Type-Token Ratio, Brunet’s, and Honoré’s Indexes)
are quite standard in text analysis literature, while the
Propositional Idea Density deserves a further descrip-
tion. As defined by Snowdon et al. (1996) and Roark
et al. (2011), it is the number of expressed proposi-
tions (i.e., distinct facts or notions contained in a text)
divided by the number of words. It is a measure of
the extent to which the speaker is making assertions (or
asking questions) rather than just referring to entities.
Propositions correspond to verbs, adjectives, adverbs,
prepositions, and conjunctions. Conversely, nouns are
not considered propositions, since the main verb and its
arguments count as one proposition.

Syntactic Features (SYN)
This group of features includes DLBs that quantify
the complexity of the syntactic structures produced by
STANZA. Most of them bear self-descriptive names.
However, two features deserve some further expla-
nation. Given the memory overhead due to long-
distance dependencies, the Global Dependency Dis-
tance quantifies the difficulty in syntactic processing.
Instead, Syntactic complexity, as defined by Szmrec-
sanyi (2004), is established by counting the linguistic

8http://sp-tk.sourceforge.net/

 http://catalogue.elra.info/en-us/repository/browse/ELRA-S0039/
 http://catalogue.elra.info/en-us/repository/browse/ELRA-S0039/
https://speechmrk.com
https://universaldependencies.org/
http://sp-tk.sourceforge.net/
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Figure 2: Dependency parse tree for an Italian sentence. The graph shows the management of enclitic pronouns
and articulated prepositions (it.: “aiutarlo a costruire la casa della nonna mi sembrò una buona idea”, en. ‘to help
him build the grandmother’s house seemed to be a good idea to me’).

tokens that can telltale increased grammatical subor-
dinateness and embeddedness (i.e., subordinating con-
junctions, WH-pronouns, finite and non-finite verb
forms, and noun phrases). Because subordinators and
WH-pronouns are the most straightforward indicators
of increased embeddedness (and thus of high complex-
ity), these features are weighted twice.

Readability Features (REA)
This set includes four readability features as assessed
by the READ-IT assessment tool (Dell’Orletta et al.,
2011) at the lexical, morpho-syntactic, syntactic, and
global levels. For computing these features, we directly
rely on the original tool implemented as API calls to the
Dylan server at the ILC-CNR in Pisa 9. It is relevant to
note that, concerning Italian, READ-IT is considered
the most reliable reference tool to evaluate readability
indexes both on single sentences and whole texts.

Features derived from “Linguistic Inquiry and Word
Count” - LIWC Analysis (LWC)
This kind of analysis estimates the incidence of words
that fall into one or more semantic categories reflecting
emotions, thinking styles, social concerns, and affec-
tive processes10 (Chung and Pennebaker, 2007). The
assumption is that simple words of everyday speech is
a hint of an underlying psychological state, i.e., “the
words we use in daily life reflect what we are paying
attention to, what we are thinking about, what we are
trying to avoid, how we are feeling, and how we are
organizing and analyzing our worlds” (Tausczik and
Pennebaker, 2010, p. 30). In our work, we exploited
the Italian dictionary by (Agosti and Rellini, 2007) and
computed the LWC DLBs accordingly.

3. Successful Case Studies
In the last five years, we successfully applied an early
version of the pipeline to study the communicative pro-
files of various mental disorders.
For example, we extensively investigated the linguistic
correlates of Mild Cognitive Impairment and Demen-
tia (American Psychiatric Association, 2013; Petersen,

9http://www.ilc.cnr.it/dylanlab/apps/
texttools/

10http://liwc.wpengine.com/

2004) with diagnostic purposes. In particular, the pa-
per by Beltrami et al. (2018) describes i) the extrac-
tion of DLBs from the semi-spontaneous speech of pa-
tients and healthy matched controls, and ii) the statisti-
cal evaluation of their discriminative power. The study
pinpointed several subtle modifications (at the acous-
tical, lexical, and syntactic levels) that are promising
indicators of preclinical stages of cognitive decline.
Following on this, the studies by Calzà et al. (2021)
and Gagliardi & Tamburini (2021) tested several Ma-
chine Learning algorithms (i.e., Support Vector Ma-
chine, Random Forrest, and Decision Tree) to automat-
ically distinguish between healthy and MCI subjects,
reaching high F1 scores (i.e., around 75%, the state-of-
the-art performance for this specific task).
We apply the same methodology to the written text
produced by female teenagers with a clinical diagno-
sis of Anorexia Nervosa (American Psychiatric Asso-
ciation, 2013) and normal-weight peers (Cuteri et al.,
2021). We hypothesized that the peculiar psychologi-
cal features of the disorder (e.g., disturbances in self-
perceived body image, inflexible and obsessive think-
ing, and anxious or depressive traits) result in altered
linguistic patterns. Here too, the syntactic level (i.e.,
sentence length, noun phrase structure, and global syn-
tactic complexity) represents a pivotal domain. We as-
cribed this peculiar pattern of linguistic erosion to the
severe (but reversible) metabolic impairment affecting
the central nervous system in Anorexia Nervosa.
Finally, we are currently exploiting DLBs for pro-
filing the communicative skills of preschoolers diag-
nosed with Developmental Language Disorder (Ameri-
can Psychiatric Association, 2013; Bishop et al., 2017).
In this pilot, our priority was to measure the discrimi-
native power of acoustic and rhythmic cues, supporting
DLD/controls classification. To this goal, we manu-
ally transcribed 1h 57’41” of recorded speech collected
from a balanced cohort of sixteen monolingual infants
(eight DLD children with expressive deficits and eight
peers without language, hearing, or cognitive impair-
ments) to avoid the degradation of ASR results due to
young voices. Then we applied the pipelines to derive
DLBs from speech. The statistical analysis demon-
strates that, even after therapeutic remediation, some
spectral characteristics of the voice can distinguish

http://www.ilc.cnr.it/dylanlab/apps/texttools/
http://www.ilc.cnr.it/dylanlab/apps/texttools/
http://liwc.wpengine.com/
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language-impaired children from peers. In our opinion,
these preliminary results are particularly relevant since
the significant DLBs are not audible to the human ear,
falling outside the possibilities of conventional paper-
and-pencil neuropsychological tests (Gagliardi et al.,
under revision). To date, the actual relation between
specific linguistic cues and clinical symptoms of these
pathologies is not clear. A larger body of evidence is
needed to shed light on this point.

4. Pipeline Issues
The construction of our DLB pipeline posed some
tricky questions that deserve an in-depth discussion.

4.1. Storing and Sending Sensitive Data
One of the major issues for the large-scale applica-
tion of this approach is data scarcity. As a matter of
fact, DLBs require large linguistic resources, mainly
corpora of atypical language (i.e., balanced collections
of verbal production written/uttered by patients and
matched healthy controls). However, the gathering,
storage, and sharing of these data are particularly dif-
ficult due to ethic constraints (de la Fuente Garcia et
al., 2020): given their personally-identifying nature,
speech recordings and DLBs pertain to “special cate-
gory of personal data” according to EU law (Regulation
EU 2016/679 - General Data Protection Regulation)11,
and are subjected to strict privacy rules.
Several international initiatives are tackling this chal-
lenge (e.g., the DELAD project - Database Enterprise
for Language And speech Disorders (Nautsch et al.,
2019; Lee et al., 2021), which is linked up with the
CLARIN’s Knowledge Centre for Atypical Communi-
cation Expertise)12. However, currently, the issue is far
from being resolved.
For the same reasons, to devise computational infras-
tructures that safely collect and store biometric and
sensible data (i.e., voice samples and personal infor-
mation) on the web looks very problematic. An NLP
pipeline like the one described in this paper should pro-
vide this service over the net (e.g., by offering API
calls). However, the free exchange of these sorts of
data among different organizations is avoided by cur-
rent regulations 13.

4.2. ASR Challenging Problems
As argued in the previous sections, working on a good
transcription of the subjects’ speech is a foremost issue
for extracting reliable DLBs.

11https://eur-lex.europa.eu/eli/reg/
2016/679/oj

12https://ace.ruhosting.nl/
13A possible solution to this issue is the expression of a

positive opinion by the competent ethical committee, fol-
lowed by the conclusion of an agreement between the organi-
zations. However, most of the time, this is not a viable option,
due to long lead times.

Unfortunately, the development of high-performance
ASR tools for transcribing spontaneous verbal produc-
tions of individuals with communication disorders is
very challenging, considering all the intrinsic phenom-
ena of connected speech (e.g., disfluencies such as
filled pauses, repetitions, and hesitations due to plan-
nings difficulties), which are present in typical ver-
balizations but often amplified by pathological states.
State-of-the-art systems are often developed by big IT
companies for their products and are not freely avail-
able for research, but delivered through cloud services
for a small, tolerable amount of money. However, this
access mode presupposes the possibility of sending the
speech sample to a remote server, collecting and stor-
ing the transcription results. As discussed in Section
4.1, according to the current EU legislation, this is not
permitted or very limited.
Developing a custom offline ASR system appears to be
the only viable solution, especially for languages dif-
ferent from English. Nevertheless, the lack of large
datasets for training these tools and the huge computa-
tional power needed to process a considerable amount
of data prevent - de facto - the actual implementation of
such key instruments. Crowdsourcing initiatives like
Mozilla Common Voice14 try to fill the data gap be-
tween big IT companies and research groups, but we
only are at the beginning of the journey.
Therefore, specific models are needed for an appropri-
ate handling of pathological speech. Considering these
aspects, it can be stated that the ‘big IT’ cloud solutions
can not provide acceptable performances, leaving this
challenging problem almost totally unexplored, at least
for less-resourced languages.

5. Conclusions
In this work we presented the development of an NLP
pipeline for the automatic extraction of DLBs from
speech samples and written texts. The system archi-
tecture foresees a set of integrated modules (i.e., ASR,
speech segmentation, syntactic parsing, DLBs calcula-
tion) that allows the computation of 6 groups of linguis-
tic parameters: acoustic, rhythmic, lexical, syntactic,
LIWC-based, and readability indexes. At the moment,
the pipeline is exclusively for internal use but we plan
to make it freely available in the near future.
Forthcoming works will go towards a further improve-
ment in the algorithm’s robustness and enrichment of
linguistic features. In particular, at the lexical level, we
plan to revise the Italian LIWC dictionary, adding new
lemmas and psychologically-relevant categories (e.g.,
LIWC2015 classes not present in Agosti and Rellini’s
version, like “Core Drives and Needs”). We will also
enlarge the list of acoustical features (e.g., Formant
Trajectories, Jitter, Shimmer, and Harmonic-to-Noise
Ratio - HNR) following the valuable reviews provided
by de la Fuente Garcia et al. (2020), Petti et al. (2020),
and Voleti et al.(2020).

14https://commonvoice.mozilla.org

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://ace.ruhosting.nl/
https://commonvoice.mozilla.org
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