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Abstract

Recently, research into bringing outside
knowledge sources into current neural NLP
models has been increasing. Most approaches
that leverage external knowledge sources re-
quire laborious and non-trivial designs, as well
as tailoring the system through intensive ab-
lation of different knowledge sources, an ef-
fort that discourages users to use quality on-
tological resources. In this paper, we show
that multiple large heterogeneous KSs can be
easily integrated using a decoupled approach,
allowing for an automatic ablation of irrele-
vant KSs, while keeping the overall param-
eter space tractable. We experiment with
BERT and pre-trained graph embeddings, and
show that they interoperate well without per-
formance degradation, even when some do not
contribute to the task.

1 Introduction

Integration of external knowledge sources (KSs)
is seen as a daunting task by the community. Most
KSs like ontologies are large and complex. Thus,
a majority of the current efforts focus on leverag-
ing a single task relevant KS using hand-tailored
architectures (Goodwin and Demner-Fushman,
2020; Peters et al., 2019; Bagherzadeh et al.,
2018). During the design process, knowledge
sources are often selected through an ablation
study, which is laborious and makes the result
task-dependent. Thus for every new task the set
of relevant knowledge sources has to be identified
with a similar study.

It is possible to ignore the tailoring step and use
all available KSs, trusting that the training process
will properly weigh the heterogeneous KSs given
the internal dynamics of the model. This ideal case
requires sufficient training data, but most tasks
(like many biomedicial tasks) have only small or
moderate-sized training data, a common problem
for large, monolithic machine learning systems

(Glasmachers, 2017). In those systems all KSs
are always contributing their expertise, which can
result in decreased rather than improved perfor-
mance. We explore here a way to integrate several
large, heterogeneous KSs with partly overlapping,
partly divergent, and possibly even contradictory
expertise in such a way that they interoperate well
without adaptation, with no resulting performance
decrease as well as low parameter implications.
We use an integration of six KSs as our experi-
ment system and test it over seven different shared
task datasets to assess its robustness. We visualize
and inspect the contribution of each KS and ana-
lyze the parameter space in detail.

The question is how to integrate multiple het-
erogeneous KSs so that the same system can be
used for multiple, unrelated tasks without manual
adaptation and without large overhead. We argue
that a system with decoupled modules is suitable
for this purpose. Decoupled modules can be acti-
vated conditioned on the input, allowing the sys-
tem to ignore an irrelevant KS and thus preventing
performance loss with fewer parameter updates at
each training step (Shazeer et al., 2017). In this
paradigm, instead of hand-picking KSs, an inter-
nal and automatic ablation is performed at each
step for all KSs, making it easy to use the same
system for different tasks, with the least detrimen-
tal effects.

Our KSs consist of the pre-trained language
model BERT, as well as six structured knowl-
edge repositories designed for human useage:
WordNet, DBpedia, ConceptNet, MeSH, GO, and
UMLS. For all but ConceptNet we found open
source graph embeddings, and we embed Con-
ceptNet using RDF2Vec (see Section 2).

The recently proposed multi-input RIM frame-
work (Bagherzadeh and Bergler, 2021) comes
close to our ideas and we use it here for decoupled
integration of our KSs. (Bagherzadeh and Bergler,
2021) showed successful decoupled integration of

229



simple KSs like gazetteer lists that were task ap-
propriate but did not report on experiments with
large, structured KSs.

We test the same system on 7 different biomed-
ical shared task datasets and show that our hetero-
geneous KSs interoperate well and achieve syn-
ergy, despite their overlap in coverage. Our re-
sults improve on two baselines contributed by the
knowledge-enhanced models bioBERT (Lee et al.,
2020) and KB-BERT (Hao et al., 2020). The sys-
tem is competitive with state of the art systems
(see Table 1).

2 Heterogeneous knowledge sources

Specialized ontological resources contain quality
curated information and are often very large and
complex. A graph-based knowledge representa-
tion is symbolic and discrete, making it hard to
use in a machine learning framework, as most ma-
chine learning models prefer conducting computa-
tions on continuous data. The past few years have
seen several techniques to embed graph structures
into vector spaces. Inspired by distributional word
representations (Mikolov et al., 2013), where each
word is embedded in a low dimensional space,
graph embedding models embed a graph into a
vector space. In graph embedding models, enti-
ties (nodes) and relations (edges) are represented
by vectors or matrices (Bordes et al., 2013; Ris-
toski and Paulheim, 2016).

Inspection of graph embedding models shows
that they can capture a fair amount of ontological
information. For instance (Nayyeri et al., 2021)
show that related concepts are often close to each
other in the vector space. We use the following
ontologicial resources encoded using a pre-trained
graph embedding:

WordNet is a lexical databese that defines word
senses by their relations to other senses (Miller,
1995). The most important relation in WordNet
is synonymy that is used to group synonymous
senses into synsets.

DBpedia (Auer et al., 2007) extracts knowledge
from Wikipedia info boxes, providing a large num-
ber of facts, largely focused on named entities that
have Wikipedia articles.

We use the pre-trained RDF2Vec (Ristoski and
Paulheim, 2016) embeddings of WordNet and DB-
pedia, which are available from KGvec2go web-

site.1

ConceptNet is a large multi-lingual graph of
general knowledge (Speer et al., 2017). Concept-
Net uses closed class of 36 relations. To embed
ConceptNet a set of graph embeddings is obtained
in-house, using RDF2Vec.

MeSH or Medical Subject Headings is a hierar-
chical vocabulary, produced by the US National
Library of Medicine (NLM) (Lipscomb, 2000).
It is used for indexing, cataloging, and search-
ing of biomedical and health-related information
in PubMed.2 MeSH is also embedded using a pre-
trained graph embedding called MeSH2Vec (Guo
et al., 2020).

GO or Gene Ontology (Ashburner et al., 2000)
is a controlled vocabulary that describes gene-
and protein-related terms. We use the pre-trained
GO2Vec embeddings (Zhong et al., 2019) for en-
coding the Gene Ontology.

UMLS or Unified Medical Language System
(Bodenreider, 2004) is a rich and large seman-
tic network of biomedical vocabularies developed
by NLM. UMLS comprises 127 semantic types
and 54 semantic relations. Currently UMLS en-
compases 222 biomedical vocabularies including
MeSH, GO, DrugBank, etc. For UMLS, we use
the embeddings provided by (Maldonado et al.,
2019).

KS Size Reference
WordNet 300 (Ristoski and Paulheim, 2016)
ConceptNet 200 In-House
GO 100 (Grover and Leskovec, 2016)
MeSH 64 (Guo et al., 2020)
UMLS 50 (Maldonado et al., 2019)
DBpedia 200 (Ristoski and Paulheim, 2016)

Table 1: Summary of pre-trained graph embeddings
used in experiments

Table 1 provides a summary of the pre-trained
graph embeddings used in the experiments. In this
paper, the pre-trained graph embeddings are used
off-the-shelf, without any special adjustments. We
do not fine-tune the graph embeddings for three
reasons. First, ontological resources represent

1http://kgvec2go.org
2https://pubmed.ncbi.nlm.nih.gov/
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facts that should not be biased depending on the
task. In a decoupled approach, the modules are re-
sponsible for representation learning and any task-
specific adaptations are performed by the mod-
ules. Second, using graph embeddings as is en-
hances reproducibility of the model, as all future
replications can use the same embeddings. Third,
freezing the pre-trained graph embeddings signif-
icantly reduces the number of training parameters
(see Section 4.5).

3 Tasks

We choose seven biomedically oriented datasets
from different shared task competitions that range
from simple classification tasks over multi-label
classification and relation extraction to sequence
labeling tasks. Comparing results for the same
system on such a variety of tasks and datasets (in-
cluding NER on Spanish!) allows us to be confi-
dent that the decoupled integration together with
sparse activation in the miRIM architecture suc-
cessfully avoids interference of the KSs and per-
formance degradation.

BB-Rel or Bacteria Biotope which is part of the
BioNLP 2019 challenge focuses on the ex-
traction of two types of relations namely
Lives_In and Exhibits (Bossy et al.,
2019). Lives_In relations link a microor-
ganism entity to its location. Exhibits rela-
tions on the other hand link a microorganism
entity to a phenotype entity. To evaluate the
test predictions we use the online tool pro-
vided by the organizers.3

ChemProt or BioCreative VI track 5 involves
detection of relations between mentions of
chemicals and genes/proteins in medical
journals (Krallinger et al., 2017). The
ChemProt task provides a manually anno-
tated corpus, where domain experts have
exhaustively labeled all chemical and gene
mentions, and all binary interactions be-
tween them corresponding to a specific set
of biologically relevant relation types, called
ChemProt relation classes (CPRs).

DDI or SemEval 2013 task 9.b (Segura-Bedmar
et al., 2013) is a relation extraction task for
drug-drug interaction mentions in DrugBank
(Wishart et al., 2018) and MedLine abstracts.

3http://bibliome.jouy.inra.fr/demo/
BioNLP-OST-2019-Evaluation/index.html

HoC or Hallmarks of Cancer (Baker et al., 2015)
is a multi-label classification task where zero
or more labels are assigned to sentences from
PubMed abstracts describing cancer hall-
marks. Note that the HoC data set is not
pre-spitted into train, development, and test
sets. We therefore randomly split the data
with 60%, 20%, and 20% ratios for train, de-
velopment, and test respectively.

LitCov or BioCreative VII track 5 (Chen et al.,
2021) concerns multi-label classification of
abstracts from Covid-related articles into 7
classes, namely: Treatment, Mechanism, Pre-
vention, Case Report, Diagnosis, Transmis-
sion, and Epidemic Forecasting.

LivNER is a sequence labeling task that requires
recognition and classification living things
into the two categories HUMAN and SPECIES

in Spanish clinical reports. Note that since
LivNER is a recent challenge, the gold stan-
dard labels for the official test set is not dis-
closed, thus, we used a hold out test set from
the training data.

PPI or BioCreative III Article Classification Task
(ACT) is a binary task in which biomedi-
cal articles describing protein-protein inter-
actions (PPI) must be identified (Krallinger
et al., 2011).

Task Metric Train/Dev/Test split
BB-Rel F1 1000/64/500
ChemProt F1 1682/612/800
DDI F1 500/214/191
HoC F1 10.4k/3.5k/3.5k
LitCov mac-F1 24.9k/6.2k/2.5k
LivingNER µF1 500/250/250
PPI Acc 6280/6000

mac-F1: macro-F1, µF1: micro-F1, Acc: Accuracy

Table 2: Size and evaluation metric for datasets

Table 2 provides a summary of the biomedical
tasks. The tasks differ in their complexity, number
of training samples, as well as the type of knowl-
edge they require. The diversity of the biomedical
tasks allows to evaluate the efficacy of the decou-
pled integration of heterogeneous KSs.
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4 Experiments

4.1 Decoupled framework

As described in (Bagherzadeh and Bergler, 2021),
mi-RIM is an architecture of M decoupled recur-
rent modules f1, . . . , fM , where each module fm
operates on a different input, making it possible to
integrate different KSs.

In mi-RIM, each KSm (for instance a pre-
trained model) provides its representation xmt for
a token at position t to the module fm. Module fm
selects its input using an attention mechanism:

x̃mt = Attention(hmt−1, X
m
t , Xm

t ) (1)

where Attention(hmt−1, X
m
t , Xm

t ) is the dot-
product attention (Vaswani et al., 2017) with hmt−1

as query and Xm
t as both key and value, and

Xm
t = [0 ;xmt ], where 0 is an all-zero vector and

; denotes row-level concatenation. This attention
mechanism allows a module to ignore the input
from a KS by attending more to the null input (the
all-zero vector).

Once all modules have selected their input, M
sets of attention scores are available. Among the
modules, a set of top-k modules with the least at-
tention to the null input are selected as active mod-
ules, denoted by Ft. As argued by (Goyal et al.,
2019), sparse activity leads to competition among
modules which leads to developing more special-
ized expertise for them. We show that this input
selection mechanism allows for an automatic ab-
lation of KSs, identifying and blocking irrelevant
ones and thus preventing a module to be updated
by its corresponding KS.

The active modules are updated using their se-
lected input to obtain temporary hidden represen-
tations h̃mt (m ∈ Ft):

h̃mt = fm(x̃mt , hmt−1) m ∈ Ft (2)

where fm(x̃mt , hmt−1) denotes a single recurrence
of fm with x̃mt as input and hmt−1 as previous hid-
den state. For the inactive modules, the temporary
hidden representation is copied from the previous
position, in other words, h̃mt = hmt−1.

The active modules then interact with each other
via another attention mechanism to obtain their ac-
tual hidden representations:

hmt = Attention(h̃mt , H̃t, H̃t) m ∈ Ft (3)

where H̃t = [h̃1t ; . . . ; h̃
M
t ]. The actual hidden state

for inactive modules is the same as their temporary
hidden state (hmt = h̃mt m /∈ Ft).

Because the input selection and interaction
mechanisms are attention based and attention can
take a variable number of argument representa-
tion, new KS modules can be added to an existing
model without major changes.

(Bagherzadeh and Bergler, 2021) provided a
proof of concept for integration of language mod-
els and a few gazetteer lists on simple tweet-
related biomedical tasks. Here, instead, we test the
decoupled mi-RIM framework on complex tasks
and on a more diverse set of KSs.

4.2 Preprocessing and implementation
details

We use a GATE pipeline (Cunningham et al.,
2002) for preprocessing with CoreNLP (Manning
et al., 2014) plugin for tokenization and sentence
splittting. For LivNER we use the Spanish version
of CoreNLP for preprocessing4. The integration
of KSs requires minimal prepossessing. Tokens
are matched against each ontology using a simple
case-insensitive exact match approach, by match-
ing for the longest possible span. The exact match-
ing approach is widely used for incorporating ex-
ternal KSs. For instance (Goodwin and Demner-
Fushman, 2020) successfully use exact matching
to incorporate information from ConceptNet.

We use the PyTorch library (Paszke et al., 2017)
for mi-RIM implementation. We use 7 LSTM
modules5 to accommodate the BERT and the
graph embeddings. The hidden size of all mod-
ules is set to dh = 128. All models are trained
using the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of lr = 5× 10−6.

4.3 Numerical results

Table 3 reports the results. The first 2 rows of the
table report the performance of BERT and BERT
(frozen) as the sole KSs, forming baselines for the
experiments. We use the same system with all
knowledge sources for all tasks to observe how
the system behaves for widely different tasks with
different knowledge requirements. For LivNER,

4see https://stanfordnlp.github.io/
CoreNLP/human-languages.html

5see https://pytorch.org/docs/stable/
generated/torch.nn.LSTMCell.html
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mic-F1 mic-F1 F1 mac-F1 F1 F1 mic-F1

KSs M k BB-Rel ChemProt DDI LitCov PPI HoC LivNER
BERT (frozen) 1 1 58.3 68.3 85.7 75.5 68.3 79.1 85.3
BERT 1 1 62.9 74.2 87.3 79.2 70.2 83.1 87.9

BERT (frozen), All
Graph Emb.

7

7 64.1 70.9 87.2 79.2 72.6 82.4 88.9
6 64.7 71.4 87.8 79.7 73.1 82.7 89.3
5 64.9 72.2 88.3 80.6 73.8 83.4 89.5
4 66.0 73.4 88.6 81.1 74.2 83.8 90.4
3 66.1 74.1 88.9 81.3 73.3 84.3 90.6
2 64.7 72.6 87.6 79.1 72.6 82.2 89.4
1 62.9 70.1 86.3 76.7 70.9 81.6 88.8

BERT, All Graph
Emb.

7

7 66.3 76.2 89.8 83.2 73.8 85.6 91.2
6 66.9 76.8 90.1 84.2 74.1 85.9 91.5
5 67.4 77.0 90.7 84.7 74.6 86.3 91.8
4 67.6 77.4 91.3 85.1 75.7 86.5 92.3
3 66.8 78.8 91.8 85.6 74.9 86.9 92.8
2 66.2 77.3 89.0 83.0 73.1 85.2 91.6
1 64.5 75.5 88.2 81.9 72.2 84.4 89.7

BioBERT 65.3 75.2 89.9 81.7 73.8 84.6 NA
KB-BERT 65.8 76.1 90.3 81.5 72.7 85.1 NA
SOTA 64.81 77.22 92.23 88.74 NA NA NA

1. (Zhang et al., 2019) 2. (Gu et al., 2021) 3. (Luo et al., 2020) 4. (Fang and Wang, 2021)

Table 3: Decoupled Integration of KSs using a mi-RIM. The same system is used for all tasks

which is a Spanish task, we use the Spanish ver-
sion of BERT (Cañete et al., 2020).

The table indicates the number of modules M :
for the simple BERT baseline, there is only one
module (namely, BERT). The experimental sys-
tem has 7 modules, 6 graph embeddings and
BERT’s language model.

Column 3 indicates the degree of enforced spar-
sity k. When all modules are active (k = 7),
all KSs contribute their information and update
their corresponding modules. In this case, the sys-
tem corresponds to a monolithic model and shows
small improvements (of 2-5%). This shows that
to some extent, the monolithic model can ignore
irrelevant KSs using its inner dynamics.

Integration of BERT with the extant graph em-
beddings never shows loss of performance com-
pared to the respective baseline. This is a strong
result, considering how heterogeneous the KSs are
and how varied and small the datasets and tasks.
The strongest results of the decoupled design with
sparse activation are for k = 3 or k = 4. This
can be attributed to the competition among KSs,
allowing for their contribution only if they are rel-
evant to the task using input selection. This miti-

gates the inclusion of irrelevant KSs. For instance,
LitCov and DDI tasks do not require knowledge
on genes, thus GO is an irrelevant KS. Neverthe-
less, its inclusion does not lead to a performance
decrease for the two tasks compared to the BERT
and BERT (frozen) baselines. They are, however,
the only two tasks for which SOTA outperforms
our experimental system for k = 3.

Extreme sparsity (k = 1 or k = 2) shows
lower performance than k = 3 but never below
the BERT baselines. k = 1 is generally lower than
k = 7 but still close to SOTA performances. This
shows that although the system is forced to ablate
most of the KSs, it can still find a combination that
improves overall performance. Note that k = 1 is
not equivalent to injecting only a single KS into
the system since the miRIM architecture makes
decisions at the token level and in certain cases
the computation graph for k = 1 may include all
7 KSs.

As discussed in the next section, sparsity gener-
ally leads to a significant reduction in the number
of parameters.

Although LitCov (which has the largest train-
ing set) benefits the most from the integration of
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KSs compared to its BERT baseline, other tasks
with smaller sized training data also show siz-
able improvements, which are more pronounced
with sparse activity of the modules. This demon-
strates the benefits of an automatic internal abla-
tion mechanism for integration of large heteroge-
neous KSs.

In general, a decoupled approach also allows
to reuse embeddings of KSs. Consider LivNER,
which is a Spanish task. We use the same system
as for the English tasks and only replace BERT
with its Spanish version. Note that a language
model trained on Spanish text has significantly
different representations compared to its English
version, however, as the results suggest, it inter-
operates well with the other (English) KSs. This
recommends the approach also for underresourced
languages.

The pre-trained graph embeddings also interop-
erate well with frozen BERT. The results show that
once integrated with frozen BERT (which has no
fine tuning on the target task datasets), the lexi-
cal information in the knowledge sources effec-
tively compensates for the loss. In most cases,
integration of the off-the-shelf KSs with frozen
BERT outperforms fine-tuned BERT significantly
with almost 100M less parameters. This is very
attractive for training on small or moderated-sized
data, with less potential for overfitting (Li et al.,
2021) or in resource limited situations.

Table 3 also reports on other knowledge en-
hanced models such as BioBERT (Lee et al., 2020)
and KB-BERT (Hao et al., 2020), as well as
the state-of-the-art (SOTA). With sparse activity
(k = 4 or k = 3), integration of lexical KSs
with BERT always outperforms both BioBERT
and KB-BERT, showing that the automatic abla-
tion of discrete KSs is competitive with domain
specific pre-training.

Note that the k values for best-preforming set-
tings fall within an arrow interval (k = 3 or
k = 4), suggesting that automatic mechanisms can
be used to determine k during training.

4.4 Analysis of results

In precision-oriented applications such as biomed-
ical tasks, users require to understand why and
how a prediction is made (Amini and Kosseim,
2019). In a decoupled approach, the activity of
each module is often transparent for inspection.
Likewise, in mi-RIM, contributions of KS are

transparent. Each module selects its input from its
corresponding KS using an attention mechanism
and if the input is deemed relevant, the module
has a high chance of activation. The activation
patterns can be traced, providing insight into the
functionality of the system. Consider Example 1
(from HoC task):

(1) Unlike insulin, ghrelin inhibited Akt kinase
activity as well as up-regulated gluconeoge-
nesis

In this example, the term gluconeogenesis is
matched with UMLS, MeSH, GO, ConceptNet,
and DBpedia. Note that BERT also provides a
representation for the term. Figure 1 shows the
activation patterns of mi-RIM for Example 1. The
gray regions indicate activity for a module.

BERT → f1

k
=

3

UMLS → f2
MeSH → f3

GO → f4
WordNet → f5

ConceptNet → f6
DBpedia → f7

BERT → f1

k
=

2

UMLS → f2
MeSH → f3

GO → f4
WordNet → f5

ConceptNet → f6
DBpedia → f7

U
nl

ik
e

in
su

lin ,

gh
re

lin
in

hi
bi

te
d

A
kt

ki
na

se
ac

tiv
ity as

w
el

l
as up -

re
gu

la
te

d
gl

uc
on

eo
.

Figure 1: Activation patterns of mi-RIM for Example 1

For the term gluconeogenesis, when k = 3,
modules f2, f4, and f6 (corresponding to UMLS,
GO, and ConceptNet respectively) win the com-
petition and are active. Note that the model has
selected a very specialized KS for genes (GO), a
more comprehensive KS (UMLS), and a general
KS (ConceptNet). This suggests that the model is
trying to balance the expertise of active KSs. In
this light, the activity of ConceptNet versus the
inactivity of MeSH is interesting where the gen-
eral resource ConceptNet is selected over the more
specialized MeSH. A similar pattern is also ob-
served when k = 2, where ConceptNet is selected
over GO, suggesting that it is a more robust re-
source.

The activation patterns suggest that an auto-
matic and internal ablation is performed by the de-
coupled model. This suggests that an established
system of M KSs can be used for different tasks
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without pre-ablating relevant KSs because contri-
butions of irrelevant KSs are mitigated by input
selection.

4.5 Parameter space and inference time

Let Θmod denote the set of training parameters im-
plicated by all modules and |Θmod| denotes the
overall number of parameters. Due to conditional
computation in mi-RIM, the number of trained pa-
rameters |Θmod|′ (sample-wise) is linked to the
value of k. If k = M , all modules are part of the
computation graph, i.e. all parameters are trained:
|Θmod|′ = |Θmod|.

However, when k < M (sparse activity)
k
M |Θmod| ≤ |Θmod|′ ≤ |Θmod|. The best case
( k
M |Θmod|) occurs when M−k modules are never

active and thus not included in the computation
graph. The worst case (|Θmod|) on the other hand
occurs, when all modules are active at least for a
single position t, forcing all to be included in the
computation graph.

Consider the activation patterns of Figure 1
when k = 3. Module f4 (corresponding to
GO) is active only at three positions, leading to
the inclusion of the module in the computation
graph. Moreover, module f3 (corresponding to
MeSH) shows activity for four positions. Al-
though the top-k activity is set to 3, overall, 5 mod-
ules demonstrate activity for at least one position.
In this case, |Θmod|′ = 5

7 |Θmod|. Note that the
best case when k = 3, is |Θmod|′ = 3

7 |Θmod|.
Although more reduction is expected with smaller
values of k, it is possible that all modules demon-
strate activity at least for one position even if k =
1.

Figure 2 shows a comparison of the fraction of
trained parameters |Θmod|

|Θmod|
′

for two different tasks.
Sparse activity consistently reduces the number
of trained parameters. Note that on average, the
fraction of trained parameters never approaches its
best case ( k

M ). For instance, when k = 1, for HoC,
|Θmod|
|Θmod|

′
= 0.46 while the best case is about 0.14.

This shows that on average 3.2 modules show ac-
tivity at least for one position even tough k = 1.

The reported experiments showed that most
runs demonstrate their best performance when
k = 4 or 3. As Figure 2 shows, on average, when
k = 4 and k = 3, 67% and 52% of parameters
are trained respectively. This shows that while im-
proving performance, sparse activity can signifi-
cantly reduce the number of trained parameters.
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Figure 2: Fraction of trained parameters vs number of
active modules

The reduced parameter space allows for training
on small or moderate-sized data sets with less po-
tentials for over-fitting (Li et al., 2021).

A brief analysis of the inference time is also
provided in Figure 3. We measure the inference
time for different values of top-k activity. Note
that the reported inference time is the average tim-
ing on all tasks, timed on an Intel Corei7 CPU.

As Figure 3 shows, sparse activity significantly
reduces the inference time. This is expected since
once a KS is not selected, there is no need to up-
date its corresponding module, leading to speed-
up in the inference time.

7 6 5 4 3 2

500
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800

Number of active modules (k)

M
ill
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ds

Figure 3: Inference time of mi-RIM with 7
KSs/modules for different k values

5 Conclusion

This paper presents extensive experiments on de-
coupled integration of heterogeneous KSs such as
language models and pre-trained graph embed-
dings. The same system with all KSs was used
for all tasks, without special calibrations, demon-
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strating reusability of extant knowledge sources.
The tasks differed in terms of complexity as

well as their knowledge requirements (specialized
or general knowledge). The results show that for
the tasks considered here, the KSs interoperate
well and they do not confound each other’s perfor-
mances. Moreover, we showed that a system that
leverages multiple KS does not necessarily show
significant improvement, rather the sparse activity
of modules is required to effectively improve per-
formance.

Inspection of activation patterns shows that a
decoupled system can ignore irrelevant/redundant
KSs, showing an automatic ablation behavior.

We show that in terms of the number of trained
parameters, a decoupled approach is efficient. The
sparse activity significantly reduces the number
of trained parameters. Moreover, since the pre-
trained graph embeddings are not fine-tuned, the
overall model does not have large parameter im-
plications.

We also stress the ease of reusing and replicat-
ing such a decoupled system, since the same pre-
trained embeddings will be used by different users.
Moreover, the pre-trained embeddings do not have
to be stored on the same machine that the model
is trained on. KGvec2go6, for instance, provides
an API through which pre-trained embeddings are
accessible. This ultimately results in lightweight
models.

In conclusion, a decoupled approach allows for
robust and efficient integration of heterogeneous
KSs, allowing the user to leverage multiple knowl-
edge sources, without any need for special calibra-
tion or tailoring.
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