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Abstract

An existing domain taxonomy for normalizing
content is often assumed when discussing ap-
proaches to information extraction, yet often
in real-world scenarios there is none. When
one does exist, as the information needs shift,
it must be continually extended. This is a
slow and tedious task, and one that does not
scale well. Here we propose an interactive tool
that allows a taxonomy to be built or extended
rapidly and with a human in the loop to control
precision. We apply insights from text summa-
rization and information extraction to reduce
the search space dramatically, then leverage
modern pretrained language models to perform
contextualized clustering of the remaining con-
cepts to yield candidate nodes for the user to
review. We show this allows a user to consider
as many as 200 taxonomy concept candidates
an hour to quickly build or extend a taxonomy
to better fit information needs.

1 Introduction

Information extraction (IE), or the extraction of
structured information from free text, is a sub-field
of natural language processing (NLP) that is of
keen interest to those outside of the NLP commu-
nity. Practitioners who desire to mine information
from text often set this up as a two-part task: (1)
extracting the structured information from each
document, and then (2) normalizing the extractions
to be able to aggregate across a given corpus.

For this second step, often referred to as ground-
ing, there are several approaches, but in industry
and many domain-specific applications, the stan-
dard method for grounding is linking to a relevant
ontology or taxonomy (Friedman et al., 2001; Srini-
vasan et al., 2002; Shen et al., 2014; Sevgili et al.,
2020), i.e., a set of domain concepts and their hi-
erarchical organization (and additional relations in

the case of an ontology). However, the task of cre-
ating or maintaining these resources is laborious
and never complete; as new documents are added
or the use case shifts, there are concepts that are not
well covered by the current taxonomy. As a result,
typically a user must manually add new, relevant
concepts to the taxonomy – a process which is both
time-consuming and expensive.

Here we present a tool that is designed to stream-
line this process by using automatically gleaned
text summarization analytics from the corpus itself,
coupled with the power and expressivity of recent
contextualized embeddings, to suggest candidate
concepts to a human user during an interactive ses-
sion. The user can accept, reject, or manipulate the
suggested concept, then determine where it belongs
in relation to other existing nodes. Taxonomies can
be persisted for downstream use or a subsequent
editing session. Our contributions are:

(1) We propose a data-driven approach to inter-
actively build or augment a taxonomy with new
concepts derived from the corpus of interest. The
human user is at the center of our workflow and
retains full control. Our approach first ranks and
then clusters corpus concepts to provide the user
with highly salient and coherent suggestions for
new taxonomy nodes. In a web application, the
user can act on the suggestions by adding, editing,
deleting, or skipping them as desired. The tool
is designed to be domain agnostic and interactive,
with expensive steps performed in advance.
(2) We provide two case studies to demonstrate the
utility of our approach, first, focused on a causal
analysis of the drivers of food insecurity, and sec-
ond, managing regional security (Section 5). We
show that a user was able to process an average of
200 nodes per hour, 16% of which were added to
the taxonomy. We find that the extended taxonomy
results in an overall consistently higher grounding
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Figure 1: Overall architecture of our Taxonomy Builder,
which combines offline pre-processing steps (the components
in the left panel) with online user sessions (right panel).

confidence. We show that this increased confidence
correlates with an increase in grounding correct-
ness. Further, the updated taxonomy results in an
increase in the number of causal relations between
high-confidence grounded concepts.

2 Related work

There are several large, ontological resources,
e.g., WordNet (Miller, 1995; Fellbaum, 2010),
Cyc (Lenat, 1995), UMLS (Bodenreider, 2004),
and SNOMED CT (Donnelly et al., 2006). How-
ever, resources such as these, even in aggregate,
do not have coverage of all domains; instead, they
need to be perpetually extended to cover new con-
cepts (Powell et al., 2002; Ceusters, 2011).

To address the human cost of creating or main-
taining taxonomies, many proposed approaches ei-
ther rely on supervised data (Bordea et al., 2016;
Mao et al., 2018; Espinosa-Anke et al., 2016, e.g.,)
or perform unsupervised term extraction and clus-
tering (Bisson et al., 2000; Drymonas et al., 2010,
e.g.,). As supervised training cannot be assumed in
real-world settings, our approach is more similar
to the latter; we use unsupervised methods for con-
cept discovery, ranking, and clustering. However,
we keep the human in the loop to guide the pro-
cess, critical for sensitive use cases such as military
events, medical emergencies, etc.

Maedche and Staab (2001) similarly propose a
tool that allows a user to guide a semi-automatic
ontology creation process. However, our approach
uses techniques from text summarization to filter
candidate concepts and modern contextualized em-
beddings to more robustly handle multiple word
senses and multi-word phrases to minimize the
work that must be done by the user.

3 Architecture

Our approach for rapid data-driven taxonomy gen-
eration combines insights from several layers of
text understanding to suggest highly relevant can-
didate concepts to a user, who decides how to use
them (or not) to build the taxonomy they need. The
architecture is shown in Figure 1.

Specifically, given a corpus of documents and op-
tionally an existing taxonomy, we assign salience
scores to each sentence based on keyword occur-
rence (Appendix A.1). From sentences with a suffi-
ciently high salience, we extract multi-word expres-
sions (noun and verb phrases) as potential phrases
of interest. These are ranked with respect to each
other using an extension of the TextRank algorithm
(Mihalcea and Tarau, 2004) (Appendix A.3). The
top-ranked concepts are encoded with contextual-
ized word embeddings and clustered (Appendix B).
Resulting clusters are presented to the user as sug-
gested novel concepts; the phrases in the clusters
can be thought of as examples of that concept. To
ensure interactivity, these computationally expen-
sive steps are done ahead of time, and the user need
only load the pre-computed initial clusters.

Once loaded, clusters are exposed to the user
through our interactive web application. The user
can then decide between a series of actions (Sec-
tion 4); specifically, they can accept, edit, skip, or
discard the node. Accepted nodes are then inserted
into the current working taxonomy. The user con-
tinues to work through the system’s suggestions
until they are satisfied with the taxonomy.

4 Taxonomy builder workflow

Once phrases are ranked and clustered, they are
passed to the user-facing interface, which imple-
ments a two-part workflow: (a) cluster curation and
(b) concept organization.

4.1 Cluster curation workflow
We frame the cluster curation workflow as a poten-
tially iterative process, where the user adds novel
nodes to the taxonomy from the suggested clusters
and then, if desired, submits unused phrases for
reclustering and a subsequent iteration of curation.
By eliminating phrases that are irrelevant or have al-
ready been associated with a taxonomy node, each
iteration provides an improved basis for organizing
the remaining phrases into new, potentially usable
clusters. The workflow for a curation iteration is
illustrated in Figure 2:
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Figure 2: Cluster curation workflow.

1 User examines clusters in descending order of cluster
score.

2 For each cluster, the user decides whether to include it
as a taxonomy node, informed by its perceived relevance
to the use case and its perceived added value, relative to
existing nodes.

2a1 If the cluster is included, one phrase is selected for the
node name and one or more phrases are chosen as con-
cept examples; this can be done in bulk.

2a2 User can also reject or defer unused phrases from this
cluster. Rejected phrases are excluded from reclustering,
whereas deferred phrases are included if the user chooses
to recluster.

2b If the cluster is not included in (2), the user can either
reject or defer the entire cluster, or some of its phrases.

3 User decides whether to continue to curate or, if re-
maining clusters appear to be unlikely candidates for
inclusion, to defer the remaining clusters.

4 Having completed an iteration of curation, the user ei-
ther reclusters or moves on to the concept organization
workflow.

4.2 Concept organization workflow
The concept organization workflow is: Examining
each of the newly generated concepts in turn, the
user 1) searches for an existing taxonomy node
that would be a suitable parent to the new concept,
2) adds the concept to an existing branch if one is
found or a new branch if none exists, and 3) updates
any additional required concept metadata. Once all
concepts have been organized within the taxonomy,
the user publishes the new or augmented taxonomy.

4.3 User interface
The above workflows are carried out using a web
application that includes a cluster viewer and a

taxonomy editor. The cluster viewer displays the
clustered concepts and allows the user to include or
exclude clusters. The taxonomy editor allows the
user to traverse the taxonomy tree, add or remove
nodes, move existing nodes to different branches,
and make changes to node metadata. The user can
toggle between these at any time.

4.3.1 Cluster viewer
The cluster viewer consists of 1) reclustering con-
trols, 2) a cluster list, and 3) a target node editor.
The reclustering controls allow the user to submit
new clustering jobs and access previously submit-
ted jobs. The cluster list displays all clusters in
descending order of score and contains controls for
adding clusters to the taxonomy as concept nodes.
The target node editor permits directly editing a
new or existing taxonomy node corresponding to
the given cluster (see Figure 3).

Each displayed cluster has a panel showing a)
a node selector tool allowing a user to select an
existing node or create a new node in the taxonomy
as the "target" for the current cluster, b) a recom-
mended concept name, initially populated by the
first phrase within the cluster, c) a switch to either
reject or curate the cluster (curate by default), d)
the list of cluster phrases, e) phrases selected for
inclusion, f) rejected phrases. Each cluster phrase
has an option to accept it as an example, reject it,
or select it as the concept name. The target node
can be updated in the target node editor panel (3)
and even moved in the taxonomy by updating its
"parent" field. Through the inclusion of defaults,
we ensure that the user does not need to treat all
phrases, saving them time.

When the user first enters the cluster viewer, the
application fetches and displays the initial cluster-
ing results. Once the user has included at least
one cluster as a new concept by accepting a phrase,
the option to recluster is enabled. When the user
executes this option, the application submits a clus-
tering job including all deferred phrases, clears
the cluster results, and polls the clustering service
for the job status. When the new clustering job
is finished, the new cluster results are displayed
and the job id is persisted in the application state
for that user, allowing the user to follow the cu-
ration workflow over multiple iterations despite
interruptions. Accepted clusters are automatically
added to a top-level branch in the taxonomy named
“clusters.” Any changes to a cluster’s name and
accepted phrases automatically propagate to the
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Figure 3: Cluster viewer user interface. Number and letter labels refer to the elements as described in Section 4.3.1.

Figure 4: Taxonomy editor user interface. Number labels refer to the elements as described in Section 4.3.2.

corresponding concept’s name and examples.

4.3.2 Taxonomy editor

The taxonomy editor consists of 1) import/export
controls, 2) taxonomy explorer, 3) concept search
widget, and 4) node editor (Figure 4). The im-
port/export controls permit the user to upload a
taxonomy and download the current state of a tax-
onomy as a taxonomy file. The taxonomy explorer
provides a collapsed tree view of the taxonomy sim-
ilar to multi-directory views common to many oper-
ating systems. This permits users to see a selected
node, its siblings, its children, and its closest three
ancestors and their siblings. Visible nodes can be
clicked to become the new selection, allowing users
to traverse the taxonomy in any “direction.” This
format was chosen because it displays a relatively
broad cross-section of the taxonomy without sacri-
ficing intelligibility and navigability. The concept
search widget allows users to search for concept
names and navigate to them without having to click
through the explorer. The node editor allows users
to update the concept name, update its parent, add
and remove children, and update node metadata.

5 Usage Scenarios

We evaluate our tool through two use cases, both of
which are motivated by DARPA’s World Modelers

program:1 food insecurity and regional security.
We detail both evaluations in Appendix C. The
take-home messages from this evaluation were: (a)
the users were able to process 200 candidates for
taxonomy concepts per hour using the tool; (b) the
updated taxonomies yielded increased grounding
confidence scores, which indicate that the new tax-
onomies fit the data better, and (c) the new ground-
ing confidence scores have increased correlation
with grounding correctness.

6 Conclusions

We introduced a tool to streamline taxonomy con-
struction and extension. Using techniques from
text summarization alongside the benefits of mod-
ern pretrained language models, we automatically
glean cohesive taxonomy node suggestions from
the corpus itself. The user interface then allows
users to quickly review suggestions and decide
whether to accept or reject part or all of each.
Through two case studies, we showed that this tool
can be used to rapidly extend an existing taxonomy
in a matter of hours, and further that the resulting
taxonomy is a better fit to the domain of interest.

The software is included in the DART
framework at: https://github.com/

twosixlabs-dart/dart-ui.

1
https://www.darpa.mil/program/world-modelers
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A Concepts

For the process of selecting phrases from the cor-
pus to serve as potential concepts of interest (or
examples of those concepts), we use filters to both
improve the speed of clustering and reduce the
noise in the final clusters themselves.

A.1 Sentence salience
To prevent candidate phrases that are not salient to
the core content of the documents, we use a simple
extractive text summarization technique to identify
the most salient or important sentences and assign
each a score (Luhn, 1958; Allahyari et al., 2017).

We first lowercase document text and tokenize
with spaCy,2 ignoring stopwords and punctuation.
We then extract keywords by calculating the fre-
quency of all words, normalizing such that the most
frequent has a value of 1. Finally, we calculate sen-
tence salience scores by identifying the occurrence
of keywords within a sentence, summing their fre-
quency values, and normalizing these sums such
that the most salient sentence in a document, i.e.,
the one with the highest sum, has a score of 1.

The sentence salience score quality was evalu-
ated against a human rater. We selected random
pairs of sentences, and for each asked our rater to
determine which sentence was more important to
the meaning of the document. A preliminary analy-
sis with 10 news articles found that the human judg-
ment agreed with the assigned scores 80% of the
time. In cases of disagreement, typically the human
chose a headline or summary sentence, whereas
the algorithm chose a sentence with detailed but
relevant information. From this preliminary anal-
ysis, we made two minor changes that made the
model more robust to irregularities in documents:
disregarding bullet points and subheadings. After
making this change, rater judgments were nearly
100% aligned with the assigned salience scores.

A.2 Candidate phrases
To get candidate phrases from the sufficiently
salient sentences, we process them with the CLU
lab processors library.3 We then select noun and
verb chunks, splitting on coordinating conjunctions
and trimming determiners from the edges. We note
frequency and where they occur, keeping the 10k
most frequent.

2https://spacy.io
3https://github.com/clulab/processors

We use FastNLPProcessor, based on CoreNLP (Manning
et al., 2014).

Strategy 1 Strategy 2 Strategy 3

Expert 1 55% 30% 25%
Expert 2 70% 45% 25%

Table 1: Manual evaluation results (P@20) for three differ-
ent strategies (Section A.3) for edge weights in the phrase
graph. Strategy 1 uses similarity alone, Strategy 2 uses
similarity × PMI , and Strategy 3 uses similarity ×
PMI × frequency. P@20 indicates what percentage of
the concepts ranked in the top 20 were considered relevant for
the use case by the corresponding expert.

A.3 Ranking candidates

These 10k phrases are ranked using an extension
of TextRank (Mihalcea and Tarau, 2004), an algo-
rithm inspired by PageRank (Page et al., 1999) that
treats text as a graph and applies a graph-based
ranking algorithm to surface keywords or phrases.
The key extension in this effort is that nodes in the
constructed graph are the phrases previously ex-
tracted, rather than full sentences, as in the original
algorithm.

The algorithm consists of four steps: (1) Iden-
tify text units that best fit the task to be nodes in
the graph; (2) Identify relations between units and
draw the corresponding edges; (3) Iterate the graph-
based ranking algorithm until convergence; (4) Sort
nodes based on ranking scores.

As mentioned, in our implementation of Text-
Rank, we consider our extracted chunks to be the
text units (i.e., nodes in the graph) rather than com-
plete sentences. We experimented with several
options for defining edge weights, including word
embedding similarity, Point-wise Mutual Informa-
tion (PMI), and frequency of co-occurrence in the
same sentence. (Mahata et al., 2018). For the em-
bedding similarity, we represent each phrase as its
GloVe embedding (Pennington et al., 2014), aver-
aging embeddings of multi-word expressions, and
compare with cosine similarity. Building on these
three information sources, we compared three edge
similarity strategies:

strategy1 = cosine_similarity(c1, c2) (1)
strategy2 = strategy1 × PMI(c1, c2) (2)
strategy3 = strategy2 × log(cooccur(c1, c2)) (3)

where c1 and c2 are the phrases to be compared.
Using a small set of documents, we had two

domain experts do a blind evaluation of the top-
ranked phrases produced by the different strategies.
As shown in Table 1, strategy 1 produces the best
TextRank overall,4 and so was chosen. To avoid a

4Post-hoc analysis showed that strategy 2 prefers infre-
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fully connected graph, which slows down the Text-
Rank algorithm dramatically, we set a threshold for
the similarity scores5 and for each phrase, we keep
only edges for the 100 most similar neighbors.

After ranking the extracted phrases, the highest-
ranked 5k are used for generating the node sugges-
tion clusters (Section B).

B Clustering

After extraction, phrases are clustered into seman-
tically cohesive groups to serve as taxonomy node
suggestions. We use Huggingface transformers
(Wolf et al., 2020) to obtain contextualized Dis-
tilBERT (Sanh et al., 2020) embeddings of each
occurrence of each phrase. We then use Annoy6

to perform time-efficient nearest neighbor search
over these embeddings. For each phrase, we ob-
tain a ranked list (in terms of cosine similarity)
of the top-k most similar phrases as input to the
clustering.

To cluster the phrases, we employ an algorithm
based on the CBC algorithm (Clustering By Com-
mittee) (Pantel and Lin, 2002), which uses average
link agglomerative clustering (Schütze et al., 2008,
Ch. 17) to recursively form cohesive clusters that
are dissimilar to one another. For each cluster c
that is formed, the algorithm assigns a score: |c|×
avgsim(c), where |c| is the number of members
of c and avgsim(c) is the average pairwise cosine
similarity between members. This score reflects
a preference for larger and cohesive clusters. We
then rank the clusters in decreasing order of their
cluster scores, prioritizing the most effective and
cohesive clusters to the user for selection and addi-
tion to the taxonomy.

C Usage Scenarios and Discussion

We evaluate our tool through two use cases, both
of which are motivated by DARPA’s World Mod-
elers program.7 The first use case focuses on food
insecurity, which is a complex domain, spanning
several disciplines including economics, govern-
ment policy, agriculture, etc. The second use case
addresses regional security, an equally complex
domain.
quent phrases that aren’t descriptive of the overall topic, e.g.,
intergovernmental panel and environ, whereas strategy 3 op-
positely adds frequent phrases, e.g., names of countries, which
the experts deemed not useful for taxonomy construction.

5We found 0.0 to be both a useful and intuitive threshold.
6https://github.com/spotify/annoy
7https://www.darpa.mil/program/

world-modelers

C.1 Use case 1: food insecurity
For this use case, the user8 was provided with an
initial taxonomy9 created for the DARPA World
Modelers program, and used the tool to perform
cluster curation and taxonomy editing for 2 hours.
In this time, the user was able to curate 400 clus-
ters. Of those 400, 65 were chosen for inclusion as
taxonomy nodes, 18 were deferred for reclustering,
and the remaining 317 were rejected entirely. After
this curation, the resulting taxonomy was compared
against the original.

For this case study, we use a corpus of 472 doc-
uments from the food insecurity domain (govern-
ment and NGO reports, news articles, etc.). We
perform IE using the Eidos causal information ex-
traction system (Sharp et al., 2019), resulting in
209,352 extracted concepts related to food secu-
rity.

We then attempt to ground each concept men-
tion to the taxonomy, assigning a grounding con-
fidence score. There are many ways of assigning
a confidence score. Here, we create a vector rep-
resentation for the mention to be grounded and of
each node in the taxonomy by averaging the GloVe
embeddings for each non-stop word in the men-
tion’s text span and the taxonomy node’s examples,
respectively. We then assign each mention to the
node that is closest in terms of cosine similarity.

We analyze extracted mentions and their
grounding before and after the taxonomy update.
Of the 209, 352 concepts extracted, 170, 488
were grounded before the update and 170, 539
were grounded after.10 Further, after the update,
48, 404 concepts (28% of grounded concepts),
were grounded to a different taxonomy term. For
example, the phrase ethnic-religious divisions
was originally grounded to the taxonomy concept
crisis_or_disaster/conflict/hostility

(with a score of 0.48), but after the update, it is
grounded to ethnic_conflicts (with a higher
score of 0.56).

Of the groundings that changed, for 47, 518 the
confidence increased after the taxonomy update
(98% of those that changed). Figure 5 shows the
distribution of the changes in grounding scores
attributed to the taxonomy update. Importantly,
we observed that this increase in grounding confi-

8One of the authors served as the tool’s user.
9https://github.com/WorldModelers/

Ontologies
10The Eidos system has an internal filter that doesn’t pro-

duce groundings when the confidence is below 0.2.
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Figure 5: Histogram of changes in grounding scores associated with specific concepts after the taxonomy update in use case 1.

Figure 6: The number of causal influence graph edges over concepts obtained before and after the taxonomy update at a given
grounding score threshold in use case 1.

dence correlates with grounding correctness. To
verify this, we measured the Pearson correlation
between grounding confidence and correctness
(which is represented as a Boolean variable, i.e.,
correct/incorrect grounding) for 42 randomly se-
lected concepts. The Pearson correlation values
were 55.15% for the original taxonomy vs. 59.37%
for the updated one, a relative increase of 7.6%.

Next, we use INDRA (Gyori et al., 2017; Sharp
et al., 2019), an automated model assembly sys-
tem, to assemble each set of causal influence re-
lations (before and after taxonomy updating) into
a causal influence graph by aggregating relations
with matching groundings. We find that the num-
ber of edges in the causal influence graph increased
from 11, 072 to 12, 720 after the taxonomy update,
and further, we show in Figure 6 the number of
edges in each influence graph between nodes whose
grounding scores are above a given threshold. As
shown, after the taxonomy update, the influence

graph is consistently larger and covers more taxon-
omy terms compared to before, with higher confi-
dence.

C.2 Use case 2: regional security

This use case was performed by a group of ex-
pert analysts outside the tool’s developer team as
part of a DARPA program evaluation. The analy-
sis attempted to model a complex regional crisis
scenario, using IE from documents to construct
models of causal influences of security concerns
surrounding Kenya’s 2022 elections.

Users started from an initial taxonomy11. 10k
documents relevant for the use case were identified
by the organizers of the evaluation to seed the tax-
onomy extension process. Users were then given
access to the tool to perform cluster curation and

11https://github.com/WorldModelers/
Ontologies
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Figure 7: Histogram of changes in grounding scores associated with specific concepts after the taxonomy update in use case 2
(the red line provides vertical axis at 0 score change for clarity).

taxonomy editing over the course of multiple days.
Similar to use case 1, to evaluate the effect of

taxonomy changes, we performed IE using Eidos
on the seed corpus. This resulted in a total of
1, 205, 628 concepts extracted from the 10k doc-
ument corpus. We then grounded each extracted
concept – using the approach described for use case
1 – with respect to the taxonomy both before and
after the update. We found that 297, 405 of the
extracted concepts (24.6% of all extracted) were
grounded to different taxonomy entries after the up-
date. Of these, 247, 113 (83%) were grounded with
a higher score compared to before (see Figure 7 for
the distribution of score changes).

Using INDRA, we then assembled causal rela-
tions that were extracted between concepts from
the corpus into a causal influence graph before
and after the taxonomy update. In both cases, we
applied a grounding score threshold of 0.6 to re-
tain concepts grounded to a taxonomy term with
high-confidence. We found that the number of
nodes in the graph increased from 337 to 451 (an
increase of 33.8%) and the number of edges grew
from 23, 274 to 29, 562 (a 27.6% increase) after
the update. Overall, we again found that the tax-
onomy update resulted in a larger causal influence
graph at a given level of confidence.
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