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Abstract

Diverse NMT aims at generating multiple di-
verse yet faithful translations given a source
sentence. In this paper, we investigate a com-
mon shortcoming in existing diverse NMT stud-
ies: the model is usually trained with single
reference, while expected to generate multiple
candidate translations in inference. The discrep-
ancy between training and inference enlarges
the confidence variance and quality gap among
candidate translations and thus hinders model
performance. To deal with this defect, we pro-
pose a multi-candidate optimization framework
for diverse NMT. Specifically, we define assess-
ments to score the diversity and the quality of
candidate translations during training, and opti-
mize the diverse NMT model with two strate-
gies based on reinforcement learning, namely
hard constrained training and soft constrained
training. We conduct experiments on NIST
Chinese-English and WMT14 English-German
translation tasks. The results illustrate that our
framework is transparent to basic diverse NMT
models, and universally makes better trade-off
between diversity and quality. Our source code
is available at https://github.com/
DeepLearnXMU/MultiCanOptim.

1 Introduction

Recently, neural machine translation (NMT) has
achieved impressive progress in improving trans-
lation quality (Sutskever et al., 2014; Luong et al.,
2015; Vaswani et al., 2017). Despite the remark-
able success, NMT models still suffer from lacking
translation diversity, which is essential due to the
following reasons. First, similar to natural lan-
guage, variability and expressiveness are the core
features of translations. Second, only focusing
on increasing translation accuracy during training
will bias the NMT model to common phrases, ex-
acerbating data sparsity (Khayrallah et al., 2020).

∗ Jinsong Su is the corresponding author. This work
was done when Huan Lin was interning at DAMO Academy,
Alibaba Group.

In conclusion, improving translation diversity is a
promising direction in NMT community.

To achieve diverse NMT, several studies have
explored various training or decoding strategies,
including: 1) constraining decoding with diversity
regularization (Li et al., 2016; Vijayakumar et al.,
2018), 2) sampling from the mixture of models
(Shen et al., 2019; Wu et al., 2020), and 3) condi-
tioning decoding with diverse signals (Shu et al.,
2019; Sun et al., 2020). However, all these ap-
proaches train models on single-reference corpus,
while expecting them to generate multiple candi-
date translations during inference. We argue that
such discrepancy between training and inference
prevents the models from learning one-to-many
relations efficiently. Firstly, since the predictions
of NMT models are encouraged to fit the one-hot
distribution of single-reference corpus, the model
confidence of generating Top1 candidate transla-
tions will be much larger than that of the rest candi-
dates, limiting translation diversity. Secondly, only
one reference is used to get optimization signal at
the training time, resulting in significant quality
drops of Top2-TopK translations. One direct way
addressing these issues is to train the models using
multi-reference training data. Nevertheless, its con-
struction is quite expensive and thus impractical.

To overcome the above issues, in this paper,
we propose a novel multi-candidate optimization
framework for diverse NMT. The basic idea is to
guide an NMT model to learn diverse translation
from its candidate translations based on reinforce-
ment learning (RL). During training, the model
generates multiple candidate translations, of which
rewards are quantified according to their diversity
and quality. Since directly optimizing model pa-
rameters with the above two rewards involves back-
propagating through discrete decoding decision, we
explore two specific methods to train the diverse
NMT model: 1) Hard constrained training. We
transform the rewards to discrete scalars, prevent-
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ing the model from learning those candidate trans-
lations with low rewards. 2) Soft constrained train-
ing. We introduce minimum risk training (MRT) to
minimize the risks of obtaining diversity and qual-
ity rewards. Compared with previous works, our
proposed framework reduces the confidence vari-
ance among candidate translations and improves
the quality of Top2-TopK translations during in-
ference, achieving better performance in terms of
both diversity and quality. Overall, the major con-
tributions of our work are three-fold:

• We point out and empirically verify that the
discrepancy between training and inference in
diverse NMT negatively impacts the transla-
tion diversity and quality.

• We propose a novel multi-candidate optimiza-
tion framework based on RL, enabling an
NMT model to learn one-to-many relations
from its candidate translations. Our frame-
work is transparent to model architecture,
thereby can be employed individually or com-
plemented to existing diverse NMT models.

• Extensive experimental results on NIST
Chinese-English and WMT14 English-
German datasets show that our framework
can efficiently smooth the confidence distri-
bution and raise the quality of Top2-TopK
candidate translations, surpassing several
commonly-used diverse NMT models.

2 Related Work

Diverse NMT. Improving translation diversity
has been a hot topic in NMT community in recent
years, such as lattice-based NMT (Su et al., 2017;
Tan et al., 2018) and personalized NMT (Michel
and Neubig, 2018; Lin et al., 2021). Existing works
for diverse NMT can be categorized into three ma-
jor categories. The first category produces diverse
translations by applying diversity regularization
to decoding algorithm (Li et al., 2016; Vijayaku-
mar et al., 2018). The second category improves
translation diversity by sampling from a mixture
of models. In this aspect, Shen et al. (2019) adopt
conditional mixture models to control the gener-
ation of translations. Wu et al. (2020) derive a
large number of models with Bayesian modeling,
which are sampled to generate diverse translations.
Unlike the former two categories, the third one at-
tempts to condition the decoding procedure with
diverse signals. Typically, Shu et al. (2019) use
syntactic codes to condition translation process.

Further, Lachaux et al. (2020) replace the syntactic
codes with latent domain variables derived from
target sentences, which is more computationally
efficient. Sun et al. (2020) sample the encoder-
decoder attention heads of Transformer to affect
source word selection. Despite their successes, an
obstacle of these approaches lies in the discrepancy
between training and inference, that is, learning
diverse translations from a single-reference cor-
pus. This enlarges the confidence and quality gaps
among candidate translations, limiting the potential
of diverse NMT models.

Multi-Candidate Optimization in Natural Lan-
guage Generation. Since single-reference cor-
pus is insufficient to model one-to-many relations
in natural language generation (NLG), researchers
have introduced multi-candidate optimization to
NLG tasks such as image captioning and para-
phrasing. Most of representative works among
them generate pseudo training references and fo-
cus on improving diversity (Zheng et al., 2018;
Hou et al., 2018; Gao et al., 2020). Conversely,
in NMT community, previous studies on multi-
candidate optimization mainly aim at improving
low-resource translation quality rather than diver-
sity, which is similar to other data augmentation
methods in NMT, such as back-translation and
forward-translation (Sennrich et al., 2016; Edunov
et al., 2018a; Cheng et al., 2020; Wan et al., 2020).
For example, Khayrallah et al. (2020) improve the
translation quality of low-resource language pairs
by sampling paraphrases of the reference sentence.
Different from these tasks, diverse NMT is more
challenging since it requires the generation results
to be accurate as well as diverse. For better bal-
ancing quality and diversity, we propose a novel
multi-candidate optimization framework with RL.

Reinforcement Learning in NMT. Reinforce-
ment learning (RL) has become an appealing path
for advancement in NMT, as it firstly allows to op-
timize non-differentiable objectives, and secondly
reduces exposure bias in auto-regressive sequence
generators. To this end, various methods have been
proposed. In Ranzato et al. (2016), Wu et al. (2017)
and Edunov et al. (2018b), the authors employ the
REINFORCE algorithm to optimize models with
metric-based reward (i.e. senetnce-level BLEU).
Different from them, He et al. (2016) propose to
train two reverse NMT models through a dual-
learning mechanism. And Bahdanau et al. (2017)
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Figure 1: Our multi-candidate optimization framework:
the diverse NMT model generates K candidate transla-
tions to receive individual diversity and quality rewards,
which are then used for model optimization.

use actor-critic method that predicts the reward by
a critic network. In this work, we follow Shen
et al. (2016), Wieting et al. (2019) and Wang and
Sennrich (2020) that adopt minimum risk training
(MRT) to minimize the reward during training. To
the best of our knowledge, our work is the first
attempt employing RL to model one-to-many rela-
tions for diverse NMT.

3 Multi-Candidate Optimization
Framework

As a significant extension of conventional NMT,
given a source sentence, a diverse NMT model
aims at producing a set of different candidate trans-
lations. Similar to conventional NMT, the most
commonly-used training strategy of diverse NMT
is to minimize the training objective based on max-
imum likelihood estimation (MLE):

Lmle(θ) = −
N∑

n=1

logPθ(y
(n)|x(n)), (1)

where (x(n), y(n)) is the n-th instance in the train-
ing corpus of size N , and Pθ(y

(n)|x(n)) denotes
the translation model with parameters θ. It can be
said that the one-to-many relations are the basis
of diverse NMT. However, as mentioned above,
the model is unable to effectively learn such rela-
tions from a single-reference training corpus. Ac-
cordingly, the discrepancy between training and
inference has become a bottleneck limiting the per-
formance of diverse NMT models.

To deal with the above issue, we propose a multi-
candidate optimization framework based on rein-
forcement learning (RL). As shown in Figure 1, a
diverse NMT model generates K candidate transla-
tions using its original method as additional refer-
ences during training. Particularly, given a source
sentence x(n), the model picks an action each time

it generates a candidate translation y
(n)
k . Diver-

sity and quality rewards of y(n)k are observed once
it is completed, which are then used to optimize
model parameters. Please note that our framework
is model-irrelevant and thus can be compatible with
any diverse NMT model. Next, we will introduce
the reward computation and training procedure in
following subsections.

3.1 Reward Computation
Conventional RL in NMT usually takes sentence-
level BLEU (Papineni et al., 2002) as reward. How-
ever, in diverse NMT, ideal translations should be
semantically equal to their source sentences, as
well as diverse from each other. To this end, we
exploit two highly generic evaluation metrics to
encourage the diversity and quality of candidate
translations:

Diversity Reward. This reward measures the dif-
ference between each candidate translation ŷ

(n)
k

and other translations, including the original ref-
erence y(n) and the rest candidate translations
{ŷ(n)k′ }Kk′=1,k′ ̸=k. We can model the difference
with arbitrary method such as Jaccard distance (Jac-
card, 1901), edit distance (Levenshtein et al., 1966)
or BLEU (Papineni et al., 2002). Here, we serve
BLEU as the similarity assessment since it is less
sensitive to sentence length. Formally, the diver-
sity reward of ŷ(n)k is defined as follows:

DR(ŷ
(n)
k )=1−BLEUs

(
ŷ
(n)
k , {y(n)}∪{ŷ(n)

k′ }Kk′=1,k′ ̸=k

)
,

(2)

where BLEUs(∗) indicates sentence-level BLEU1.

Quality Reward. One common approach to eval-
uate the quality of each candidate translation is
to compare it with the corresponding reference.
However, such a method biases the model to can-
didate translations syntactically similar to original
references, therefore harms translation diversity.
In order to tackle this problem, it is better to use
semantic evaluation metrics such as reconstruction-
BLEU (He et al., 2016), COMET (Rei et al., 2020),
BLEURT (Sellam et al., 2020), UniTE (Wan et al.,
2022) and so on. Here, we choose reconstruction-
BLEU, which uses a reverse NMT model trained
on initial single-reference corpus to translate each
candidate ŷ

(n)
k back to a source sentence x̂

(n)
k , and

1We calculate sentence-level BLEU with SacreBLEU in
https://github.com/mjpost/sacrebleu
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then evaluates the BLEU score between x̂
(n)
k and

x(n):

QR(ŷ
(n)
k ) = BLEUs

(
x̂
(n)
k , x(n)

)
. (3)

Compared with COMET and BLEURT that pre-
trained using out-of-domain data, the reconstruc-
tion model in our metric is trained on the same cor-
pus as NMT model, thereby reducing the impact of
domain inconsistency on evaluation accuracy.

3.2 Model Training
The calculations of diversity and quality rewards in-
volve undifferentiated discrete operations, leading
to a challenge in the back-propagation at training
time. To address this issue, we explore two ap-
proaches, separately termed as hard constrained
training and soft constrained training.

Hard Constrained Training (HCT). An intu-
itive idea is utilizing translations only with high
diversity and quality rewards. Along with this strat-
egy, we pair x(n) with its candidate translations
{ŷk}Kk=1 and original reference y(n) to form a new
multi-reference training instance, then optimize the
model with MLE objective:

Lhct(θ) =

N∑

n=1

logPθ(y
(n)|x(n)) (4)

+

N∑

n=1

K∑

k=1

αk · logPθ(ŷ
(n)
k |x(n)),

where

αk =

{
0 DR(ŷ

(n)
k ) < δd or QR(ŷ

(n)
k ) < δq

1 else.

Here, αk is used to re-weight the training objective
of candidate translations. δd and δq indicate corpus-
level diversity and quality rewards of the initial
model (i.e. a pre-trained diverse NMT model) on
development set, respectively. Hard constrained
training is easy to implement. However, the candi-
date translations are still far from utilization. First,
all candidate translations are treated equally al-
though they possess different diversity and quality.
Second, some candidate translations are totally dis-
carded although they may provide guidance for the
model training.

Soft Constrained Training (SCT). To fully uti-
lize all candidate translations, we employ MRT
to directly optimize diversity and quality rewards.

We choose MRT since it does not require extra pa-
rameters compared with other RL techniques (He
et al., 2016; Bahdanau et al., 2017). Similar to hard
constrained training, a multi-reference training in-
stance consists of each original source sentence
and all its candidate translations. Specifically, we
define the losses of diversity and quality rewards
as 1 − DR(ŷ

(n)
k ) and 1 − QR(ŷ

(n)
k ), respectively.

Please refer to Equations 2 and 3 for definitions
of DR(∗) and QR(∗). We then apply these two
losses to softly weight the posterior distribution
Pθ(ŷ

(n)
k |x(n)). The goal is to minimize two risks:

Rd(θ) =

N∑

n=1

K∑

k=1

Pθ(ŷ
(n)
k |x(n)) · (1−DR(ŷ

(n)
k )),

(5)

Rq(θ) =

N∑

n=1

K∑

k=1

Pθ(ŷ
(n)
k |x(n)) · (1−QR(ŷ

(n)
k )).

(6)

Completely different to MLE (Equation 1) that
aims at reducing the discrepancy between a can-
didate translation and its single reference, MRT
encourages the model to maximize rewards via gen-
erating more diverse and accurate translations. Fol-
lowing Wieting et al. (2019), we first pre-train the
diverse NMT model with Lmle(θ), and then fine-
tune it with the combination of Lmle(θ), Rd(θ)
and Rq(θ):2

Lsct(θ) = Lmle(θ) +Rd(θ) +Rq(θ). (7)

Consequently, soft constrained training possesses
two advantages comparing with its hard counter-
part: 1) It provides more guidance for model train-
ing by exploiting all candidate translations; 2) It
directly incorporates the diversity and quality re-
wards into training objective, thereby distinguish-
ing different effects of candidate translations.

4 Experiments

In this section, we carry out several groups of exper-
iments to investigate the effectiveness of our pro-
posed framework on Chinese-English and English-
German translation tasks.

2We have also tried weighted sum of three terms. Results
shows no significant difference with the non-weighted version.
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4.1 Setup

In order to make comparison with existing diverse
NMT models (Li et al., 2016; Vijayakumar et al.,
2018; Shen et al., 2019; Sun et al., 2020), we build
multi-reference corpus and examine our framework
on translation tasks commonly used in previous
diverse NMT studies:

• NIST Chinese-to-English. This training set
contains about 1.34M news sentence pairs.3

We use MT03 as development set and MT04,
MT05, MT06 as test sets, and report the aver-
age scores on test sets as final results.

• WMT14 English-German. This training
data consists of 4.5M sentence pairs4. We
use the newstest 2013 as the development set,
and the newstest 2014 as the test set.

For the above two datasets, We adopt Moses tok-
enizer (Koehn et al., 2007) to deal with English and
German sentences, and segment the Chinese sen-
tences with the Stanford Segmentor5. Following
common practices, we employ byte pair encod-
ing (Sennrich et al., 2015) with 32K merge opera-
tions to segment words into subword units. We use
a joint dictionary for English-German translation
task while assigning individual vocabularies for
Chinese-English translation task. In addition, we
remove the examples in datasets where the length
of source or target sentence exceeds 100 words.

We develop all diverse NMT models on
Transformer-base (Vaswani et al., 2017)6. At the
pre-training stage, we set the batch size as 32,768
tokens for NIST and 12,500 tokens for WMT14.
Other configurations are identical to common set-
tings in previous studies (Vaswani et al., 2017;
Shu et al., 2019; Sun et al., 2020). During fine-
tuning, we keep other settings consistent with the
pre-training stage, but reduce the learning rate by a
factor of 10. Using early-stopping strategy, we eval-
uate the model every 500 steps and stop training if
the translation diversity or quality on development
set does not raise for 10 consecutive evaluations.
Considering computational efficiency, we set K as
3 in all our experiments as default.

3The training set is a combination of LDC2002E18,
LDC2003E07, LDC2003E14, Hansards portion of
LDC2004T07, LDC2004T08 and LDC2005T06.

4The preprocessed data can be found and downloaded from
http://nlp.stanford.edu/projects/nmt/.

5https://nlp.stanford.edu/
6Our codes are implemented upon https://github.

com/facebookresearch/XLM/.

4.2 Evaluation
We use the following three metrics to assess the
quality and diversity of candidate translation sets.

• BLEU. Following previous studies (Shen
et al., 2019; Wu et al., 2020; Sun et al., 2020),
we use average BLEU of K candidate transla-
tion sets to evaluate translation quality.

• COMET. It is based on pre-trained language
model and has shown higher correlations with
human judgements in a variety of metrics
tasks (Mathur et al., 2020b). We adopt it
since n-gram-based metrics may fail to ro-
bustly match paraphrases and capture distant
dependencies, resulting in a diverse transla-
tion with high faithfulness and fluency but a
low BLEU score (Smith et al., 2016; Mathur
et al., 2020a). Similar to BLEU, we report the
average COMET score of K candidate transla-
tion sets as default. Particularly, we normalize
the results of COMET with sigmoid function.

• divBLEU. We define divBLEU to measure the
differences among K candidate translations
on a test set of size S:

1−BLEUc({ŷ(s)k }Ss=1,{ŷ(s)k′ }),
where 1 ≤ k ≤ K, 1 ≤ k′ ≤ K, k ̸= k′. The
second term denotes pairwise-BLEU (Shen
et al., 2019; Wu et al., 2020; Sun et al., 2020)
that compares each candidate translation set
with each other.

All BLEU metrics used in this paper are case-
sensitive. Concretely, corpus-level BLEU is calcu-
lated with Moses script7. To raise the reliability, we
run all models three times with different random
seeds and report the average results.

4.3 Baselines
We apply our framework to the following models:

• Transformer (Vaswani et al., 2017) refers to
the baseline. We pick its TopK hypotheses in
beam search as the diverse translations.

• Tree2Code (Shu et al., 2019) generates di-
verse candidates with various syntactic codes.

• Head Sampling (Sun et al., 2020) generates
different words by sampling attention heads.

We also display the reported results of several domi-
nant diverse NMT models on the same datasets: Di-
verse Decoding (Li et al., 2016) employing diver-
sity regularization terms to encourage translation

7https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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Model Chinese-English English-German
BLEU COMET divBLEU BLEU COMET divBLEU

Existing Diverse NMT Systems
Diverse Decoding (Li et al., 2016) 43.18 – 19.76 25.27 – 21.43
Diverse Beam (Vijayakumar et al., 2018) 39.58 – 41.93 23.27 – 33.87
HardMOE (Shen et al., 2019) 38.54 – 39.30 23.22 – 31.97
Multinominal Sampling (Sun et al., 2020) 20.62 – 89.28 11.99 – 87.16
Head Sampling (Sun et al., 2020) 42.66 – 33.82 25.62 – 21.34

Our Implementations
Transformer (Vaswani et al., 2017) 44.67 57.83 13.89 26.29 55.03 19.06

+HCT 44.23 57.72 14.01 26.07 55.01 19.76
+SCT 43.78 57.41 14.98‡ 26.01 54.85 20.33†

Tree2Code (Shu et al., 2019) 42.99 56.79 34.80 25.43 53.52 26.11
+HCT 42.52 56.88 37.57‡ 25.15 53.74 28.71‡

+SCT 42.26 57.06 38.78‡ 25.40 54.19 29.98‡
Head Sampling (Sun et al., 2020) 42.52 56.40 34.02 25.16 53.28 21.24

+HCT 42.46 56.58 36.38‡ 25.03 53.66 23.55†

+SCT 42.02 57.03 37.56‡ 24.91 54.02 24.07‡

Table 1: Main results on NIST Chinese-English (average scores of MT04, MT05 and MT06) and WMT14 English-
German tasks. “HCT” and “SCT” individually indicate hard constrained training and soft constrained training.
“BLEU” and “COMET” denote translation quality assessed by the n-gram-based and the model-based metrics,
respectively. “divBLEU” indicates the diversity among candidates. We also calculate p-value with bootstrap
sampling (Koehn, 2004) to estimate statistical significance. ‡/†: significantly better than corresponding basic models
(p < 0.01/0.05). All results are derived from 3 independent runs.

diversity during beam search; Diverse Beam (Vi-
jayakumar et al., 2018) that improves the method
of Li et al. (2016) by grouping the outputs; Hard-
MOE (Shen et al., 2019) utilizing a mixture model,
where different translations are obtained by control-
ling hidden states; Multinominal Sampling (Sun
et al., 2020) that randomly selects words at each
timestep to form diverse translations.

4.4 Main Results
Table 1 shows the main results. Obviously, all
basic models equipped with multi-candidate opti-
mization achieve higher diversity while preserving
semantic quality of translations, including conven-
tional NMT model (Transformer) and diverse NMT
models (Head Sampling and Tree2Code), showing
universal effectiveness of the proposed framework.
We further draw several conclusions:

1) The higher diversity among translations, the
lower BLEU score they obtain, which is consistent
with prior findings (Shen et al., 2019; Wu et al.,
2020; Sun et al., 2020). The main reason is that the
n-gram-based metric (BLEU) fails to accurately
evaluate the quality of translations that syntacti-
cally differ from their references. The model-based
metric (COMET) shows that our framework yields
comparable translation quality compared with cor-

responding basic models. More discussions about
the correlation between these two automatic met-
rics and human evaluation are given in Section 4.6.

2) Soft constrained training exhibits better per-
formance than hard constrained training on three
basic models. The underlying reason is that soft
constrained training can fully utilize candidate
translations to optimize models.

3) The improvement of Transformer is smaller
than that of Head Sampling and Tree2Code. We
attribute this to the relatively less diversity of ref-
erences generated by conventional NMT model,
which limits the effects of our framework.

4.5 Ablation Study
To investigate the effectiveness of different com-
ponents in our framework, we further compare
hard constrained training and soft constrained train-
ing with their several variants upon our best basic
model Tree2Code on Chinese-English translation
task, as concluded in Table 2:

1) Directly fine-tuning models on the whole
multi-reference training set (Tree2Code+HCT with-
out DR and QR) benefits translation quality while
significantly harms its diversity, suggesting the im-
portance of two rewards.

2) Using only the diversity reward (HCTd and
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Model DR QR BLEU
(Top1)

BLEU COMET
div-

BLEU
Tree2Code % % 44.97 42.99 56.79 35.09

+HCT

% % 45.14 43.10 57.05 33.80
! % 44.50 42.16 56.40 37.23
% ! 44.72 43.38 56.98 34.88
! ! 44.31 42.52 56.88 37.72

+SCT

! % 44.57 41.87 56.63 38.95
% ! 44.86 43.67 57.34 36.97
ED ! 44.20 42.37 57.21 38.01
! CM 43.98 41.67 56.16 38.64
! ! 44.17 42.22 56.76 38.93

Table 2: Ablation study examined on the Chinese-
English translation task. “HCT” and “SCT” individually
represent hard constrained training and soft constrained
training. “DR” and “QR” denote diversity and quality
rewards, respectively. “ED”: using edit distance as di-
versity reward; “CM”: using COMET as quality reward.

SCTd) significantly increases divBLEU while de-
creases BLEU and COMET. We speculate that can-
didate translations with high diversity but low qual-
ity lead to this phenomenon.

3) On the contrary, when we only consider the
quality reward (HCTq and SCTq), the results show
high COMET but limited improvements on di-
vBLEU. This is because candidate translations are
semantically closer to references under current
setting, which may harm the diversity of multi-
reference pseudo corpus.

4) Jointly considering both diversity and quality
(HCT and SCT) makes a better trade-off between
translation diversity and quality, suggesting that
both rewards are essential for diverse NMT.

5) When replacing BLEU with edit distance to
define diversity reward, we observe the diversity
drop of translations (SCT (ED) v.s. SCT). Mean-
while, changing reconstruction-BLEU to COMET
also harms the translation quality (SCT (CM) v.s.
SCT). All these confirm the advantages of our pro-
posed two rewards.

6) We additionally report the BLEU score of
Top1 candidate translation set (BLEU (Top1)). In-
terestingly, BLEU fluctuates more than BLEU
(Top1) among different variants, which gives us
a hint that the superiority of our frameworks lies
in the translation on Top2-TopK variants. We will
further explore this problem in Section 4.6.

4.6 Analyses

Furthermore, we propose several hypotheses and
experimental analyses for deeper insights to di-
verse NMT task, therefore explain why and how

(a) The rfb scores of topK translations.

(b) The COMET scores of topK translations.
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Figure 2: Manual Evaluation Results. (a) Basic
model equipped with our framework (Tree2Code+SCT)
achieves comparable manual evaluation score with con-
ventional NMT model (Transformer). (b) COMET has
higher correlation with manual evaluation considering
Kendall’s Tau coefficient (Kendall, 1938).

our framework benefits the model performance.
Specifically, we choose to analyze Transformer,
Tree2Code and Tree2Code+SCT on Chinese-
English translation task.

Hypothesis 1 Model-based metric COMET is
more suitable for quality evaluation of diverse
translations than n-gram-based metric BLEU.

Analysis Intuitively, the improvement of transla-
tion diversity may cause more mismatched n-grams
between hypotheses and references, leading to a
drop in n-gram-based metrics, i.e. BLEU. In or-
der to make the evaluation more convincing, we
conduct human evaluation on the translation re-
sults. Specifically, we randomly sample 300 source
sentences from MT04-06 sets, and then use three
models to generate diverse translations as human-
evaluated cases. Next, three linguistic experts are
asked to score (0-5) these translations according
to the fluency and the accuracy. Each sentence is
evaluated by two experts independently, and will be
further reviewed by another expert if the disagree-
ment of the former two experts exceeds 3. From
Figure 2 (a), we can observe that Tree2Code+SCT
gets higher manual evaluation scores than its basic
model (Tree2Code), and yields comparable transla-
tion quality to the Transformer baseline.8

Furthermore, we employ the Kendall’s Tau co-
efficient τ (Kendall, 1938) to quantify the corre-
lation between automatic evaluation and manual
evaluation, which is calculated over all the human-
evaluated cases and defined as

τ =
2

m(m− 1)
(|C| − |D|). (8)

8More details of manual evaluations are in Appendix A.
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(a) The rfb scores of topK translations.

(b) The COMET scores of topK translations.
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Figure 3: The confidence variances among TopK hy-
pothesis translations at different training steps.

Here, m is the number of human-evaluated cases,
|C| is the number of times a metric assigns a higher
score to the “better” hypothesis and |D| is the num-
ber of times a metric assigns a higher score to the
“worse” hypothesis. As illustrated in Figure 2 (b),
we find that the τ is 0.45 for BLEU and 0.58 for
COMET, indicating the latter one is more suitable
for evaluating translation quality of diverse NMT
models than the former one.

Hypothesis 2 Multi-candidate optimization im-
prove translation diversity by reducing the confi-
dence variance among candidate translations.

Analysis We serve the predicted translation prob-
ability as the confidence of each candidate trans-
lation (Nguyen and O’Connor, 2015; Wang et al.,
2019), and draw the confidence variance of TopK
translations during training in Figure 3. When train-
ing on a single-reference corpus (Tree2Code), the
confidence variance of TopK translations shows an
upward trend as the pre-training step grows. Then,
it will keep growing if we fine-tune the diverse
NMT model with original training strategy, while
starting to decline if using our training strategy.
This proves that single-reference training encour-
ages the model to fit the one-hot translation. On the
contrary, multi-candidate optimization can reduce
the confidence variance, and thus offer NMT model
more opportunities to generate diverse translations.

Hypothesis 3 Multi-candidate optimization im-
proves the quality of Top2-TopK translations.

Analysis We measure the quality of TopK candi-
date translations using COMET and manual evalua-
tion, respectively. As shown in Figure 4, there exist
large quality gaps between Top1 and the rest trans-
lations. However, after introducing our framework,
the COMET and manual evaluation scores of Top2-
TopK translations are improved. This shows that

(a) The rfb scores of topK translations.

(b) The COMET scores of topK translations.
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Figure 4: The COMET scores of TopK hypothesis gen-
erated by Tree2Code and Tree2Code+SCT.
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Figure 5: The COMET and divBLEU scores under dif-
ferent settings of Ktrain/Kinfer. Ktrain represents the
reference number during training, while Kinfer indi-
cates the candidate translation number during inference.

multi-candidate optimization can provide effective
guidance for Top2-TopK candidate translations,
thus improving overall quality. 9

Hypothesis 4 More references during training
leads to better overall performance.

Analysis We explore different combinations of
reference number for training and candidates trans-
lation number for inference on Tree2Code+SCT. as
illustrated in Figure 5, each row (Ktrain) and col-
umn (Kinfer) represents the number of generated
references for training and the candidate transla-
tion number during inference, respectively. We
have several interesting observations:

As for the quality, the COMET scores in upper
left triangle (Ktrain ≥ Kinfer) are higher than
those in lower right triangle (Ktrain ≤ Kinfer).
This suggests that references for training should be
more than candidates generated during inference
for sufficient guidance. As for the diversity, it is
obvious that the divBLEU scores in the upper right
triangle are also higher than those in the lower
left triangle. That is, divBLEU raises as Kinfer

9From another point of view, the existing optimization
on mini-batch is a local fit to single-reference training data,
while multi-candidate optimization narrows such quality gap
by affecting the distribution of training data.
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Src
依巴拉告诉今日新闻电视台说 , 「这

是一个恐怖夜晚」。

Ref Ibarra told today 's news television station : " 
This is a horrible night . "

Transformer

Ibarra told today 's news television station , " 
This is a terrorist evening . "

Ibarra told today 's news television station , " 
This is a terrible evening . "

Ibarra told today 's news television station 
that " This is a terrorist evening . "

Tree2Code

Ibarra told today 's news television station 
that " This is a terrible night . "

According to a barra , today 's news television 
station said : " This is a terrible night . "

This is a terrible night ,  according to a news 
television station today .

Tree2Code+SCT

This is a terrible night  according to Ibarra 
told today 's news TV station .

Ibarra told today 's news television station , " 
This is a terrible night . "

Speaking to news TV today , Ibarra said , " 
This is a terrible night . "

Figure 6: An example of NIST Chinese-English diverse
translation.

and Ktrain grow. However, the improvements of
diversity gradually become marginal.

5 Case Study

From Figure 6, we can see that there are only some
simple substitutions (highlighted in blue) in Trans-
former’s results. Tree2Code generates more diverse
translations, while containing more mis-translation
and under-translation problems (highlighted in red).
After applying our framework, Tree2Code+SCT
generates better translations in terms of both diver-
sity and quality.

6 Conclusion

In this paper, we first point out that the widely
used single-reference training is not the preferred
solution for diverse NMT. It causes discrepancy
between training and inference, and prevents the
model from learning one-to-many mapping rela-
tionships. Consequently, we propose a novel multi-
candidate optimization framework which is model-
irrelevant and can be compatible with any diverse
NMT model. Empirical results suggest that: 1)
Multi-candidate optimization is an universally ef-
fective manner on boosting the performance of di-
verse NMT; 2) Model-based metrics can better re-
flect the translation quality than its n-gram-based
counterpart under diverse NMT context; 3) Multi-
candidate optimization offers NMT abilities to re-
duce the confidence variance and improve the trans-
lation quality of candidate translations.
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A Manual Evaluation Details

A.1 Score Definition

We define the quality in manual evaluation as fol-
lows: 1 - Totally incomprehensible. The content
is confused and most of the target is left untrans-
lated or unintelligible. 2 - Bad. Only a small part
of target sentence can be understood, specific de-
tails are unintelligible, target is very poor in terms
of readability or fluency. 3 - Neither good nor bad.
Translation has notable fluency and readability is-
sues, but it is understandable overall. 4 - Good.
It is grammatically correct, but could be better in
terms of style and readability. 5 - Very good. It
equals quality of human translation. Only a few
minor issues (like capitalization), that don’t affect
the readability of the target, are allowed.

A.2 Results of TopK Hypotheses
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Figure 7: Manual scores of TopK hypotheses.

As illustrated in Figure 7, our framework
(Tree2Code+SCT) leads to higher manual scores
than basic model (Tree2Code) in terms of Top1-
TopK hypotheses, which is consistent with the
overall results in Figure 2 (a).
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