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Abstract

Syntax-controlled paraphrase generation aims
to produce paraphrase conform to given syn-
tactic patterns. To address this task, recent
works have started to use parse trees (or syn-
tactic templates) to guide generation. A con-
stituency parse tree contains abundant struc-
tural information, such as parent-child relation,
sibling relation, and the alignment relation be-
tween words and nodes. Previous works have
only utilized parent-child and alignment rela-
tions, which may affect the generation qual-
ity. To address this limitation, we propose
a Structural Information-augmented Syntax-
Controlled Paraphrasing (SI-SCP) model. Par-
ticularly, we design a syntax encoder based on
tree-transformer to capture parent-child and sib-
ling relations. To model the alignment relation
between words and nodes, we propose an atten-
tion regularization objective, which makes the
decoder accurately select corresponding syntax
nodes to guide the generation of words. Ex-
periments show that SI-SCP achieves state-of-
the-art performances in terms of semantic and
syntactic quality on two popular benchmark
datasets. Additionally, we propose a Syntactic
Template Retriever (STR) to retrieve compati-
ble syntactic structures. We validate that STR is
capable of retrieving compatible syntactic struc-
tures. We further demonstrate the effectiveness
of SI-SCP to generate diverse paraphrases with
retrieved syntactic structures.

1 Introduction

Paraphrases are texts or passages conveying the
same meaning but with different surface realiza-
tion. Paraphrase generation (PG) is a key tech-
nology of automatically generating a restatement
for a given text, which has the potential use in
many downstream tasks, such as question answer-
ing (Gan and Ng, 2019), machine translation (Zhou
et al., 2019), and sentence simplification (Zhao

∗Corresponding Author.

Figure 1: An example of a constituency tree structure.
Parent-child relation: NP→NN, sibling relation: NP NP
VP Dot, alignment relation between nodes and words:
(NN thing), (NP the same thing).

et al., 2018). However, a natural sentence can be
paraphrased into various surface forms.

To obtain diverse paraphrases, controllable para-
phrase generation (CPG) with specified styles has
recently attracted growing interests e.g., satisfying
particular sentiment (Hu et al., 2017; John et al.,
2019; Dai et al., 2019; Lee et al., 2021) or syntactic
structure (Iyyer et al., 2018; Chen et al., 2019; Liu
et al., 2020; Kumar et al., 2020; Li et al., 2020;
Yang et al., 2021). As CPG can produce diverse
paraphrases by exposing syntactic control, it can
be used in a wide range of application scenarios,
such as dialogue generation (Niu and Bansal, 2018),
data augmentation (Iyyer et al., 2018; Yang et al.,
2021; Sun et al., 2021), and diverse question gener-
ation (Yu and Jiang, 2021), etc.

Generally, syntax-controlled paraphrase genera-
tion needs to tackle two major challenges. The first
challenge is how syntax-controlled generating is
achieved? For this challenge, Iyyer et al. (2018)
use two encoders to encode input sentences and
linearized parse trees to produce paraphrases. A
constituency parse tree contains abundant structural
information, such as parent-child relation, sibling
relation, and the alignment relation between words
and nodes, as shown in Figure 1. Linearizing parse
trees, typically, result in loss of structural informa-
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tion. Kumar et al. (2020) encode parse trees in a
top-down manner, and then a queue-based decod-
ing mechanism is proposed to incorporate syntax
information. Li et al. (2020) employ a path atten-
tion mechanism to capture the tree structure of the
syntax. However, these methods still have some
limitations. The top-down encoding manner and
path attention only consider parent-child relation.
Additionally, due to the complexity of the queue-
based decoding mechanism (Kumar et al., 2020),
the predicted pop sequences cannot be guaranteed
to be perfect, which may cause error propagation.

The second challenge is how compatible syntac-
tic structures can be retrieved to guide generation
in practice? Previous works (Iyyer et al., 2018;
Li et al., 2020) use common syntactic templates
that appear most frequently from the corpus, which
means that these works generate syntactically di-
verse paraphrases using a fixed set of syntactic
structures for all input sentences. The diversity in
syntax is hence limited. Moreover, not all sentences
can be paraphrased into the same set of syntactic
structures.

In order to address these problems, we pro-
pose a Structural Information-augmented Syntax-
Controlled Paraphrasing (SI-SCP) model based on
attention network. Particularly, we design a tree
transformer to capture parent-child and sibling re-
lation. To learn the alignment relation between
words and nodes, we propose an attention regular-
ization objective. The basic motivation is that a
syntactic template contains several syntax nodes
which guide the generation of different words, re-
spectively. As shown in Figure 1, the NP node
guides the generation of noun phrase. Learning
alignment relation makes the decoder accurately
select corresponding syntax nodes to guide the gen-
eration of words. Additionally, to enhance diver-
sity in syntax-controlled generation, we propose
a Syntactic Template Retriever (STR) to retrieve
compatible syntactic structures for any input sen-
tence.

We evaluate our model on two popular bench-
mark datasets. Experiment results show that SI-
SCP achieves the state-of-the-art performence in
syntactic and semantic quality. The visualization
results show the attention regularization makes the
decoder accurately attend to corresponding syn-
tactic nodes during decoding. Human evaluation
also demonstrates that our method is able to gener-
ate semantically and syntactically better sentences

than previous methods. We further show that STR
can retrieve more compatible structures compared
with the common syntactic templates method. SI-
SCP can generate more syntactically diverse para-
phrases with retrieved syntactic structures.

In summary, the major contributions of this pa-
per are as follows:

• We build a novel syntax-controlled paraphras-
ing model that contains a tree-transformer and
an attention regularization objective.

• To retrieve compatible syntactic structures in
practice, we propose a syntactic template re-
triever.

• Experiments show that our SI-SCP achieves
new state-of-the-art results in both semantic
and syntactic evaluation on two popular bench-
mark datasets. We further demonstrate that
STR is capable of retrieving compatible syn-
tactic templates. The SI-SCP can produce
more syntactically diverse paraphrases with
retrieved syntactic structures.

2 Related Work

We focus primarily on the task of syntactically con-
trolled paraphrase generation, which has recently
attracted increasing attention (Iyyer et al., 2018;
Chen et al., 2019; Liu et al., 2020; Kumar et al.,
2020; Li et al., 2020). According to the control
element, previous works can be divided into two
categories. The first strand of research uses sen-
tential exemplar as syntactic control. Chen et al.
(2019) and Liu et al. (2020) design a latent variable
to learn syntax by encoding the exemplar itself,
and then use a syntactic latent variable to guide the
generation of paraphrases. However, a latent based
approach might not offer enough explicit syntactic
information as guaranteed by actual constituency
parse trees (Kumar et al., 2020). The second strand
of research takes a parse tree as a syntactic input,
controlling the syntax of generated text with the
structure specified by the parse tree. Iyyer et al.
(2018) use two encoders to encode input sentences
and linearized parse trees to produce paraphrases.
Due to the linearization of syntactic tree, a lot of
structural information is generally lost. To capture
the tree structure of the parse tree, Kumar et al.
(2020) encode parse trees in a top-down manner,
and then a queue-based decoding mechanism is
proposed to incorporate syntactic information. Li
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Figure 2: The architecture of syntax-controlled paraphrasing model. The sequence encoder is built with the
transformer network, which is used to encode leaf nodes in the syntactic template. Please refer Section 3.3 for
details.

et al. (2020) design a syntax encoder based on a
path attention mechanism. However, these methods
only consider parent-child relation in parse trees.

Differing from previous approaches, we propose
a novel tree-transformer to model parent-child and
sibling relation for better capturing the tree struc-
ture of the parse tree. To learn the alignment re-
lation between words and nodes, we also propose
an attention regularization objective, which makes
the decoder accurately select corresponding syntax
nodes to guide the generation of words. Addition-
ally, we propose a syntactic template retriever that
can help to retrieve compatible syntactic structures
for any input sentences.

3 Syntax-Controlled Paraphrasing

3.1 Problem Formalization

We formulate the problem of syntax-controlled
paraphrase generation as follows. Given a source
sentence x and a syntactic template t, the syntax-
controlled text generation aims to generate target
sentence y which conveys the meaning of x and
conform to the syntactic structure of t.

The syntactic template t is a partial constituency
parse tree that provides a general syntax skeleton.
Due to different levels of syntax trees contain dif-
ferent information, to compare fairly, we use the
top-4 layers (in this work) of the full parse tree of

y as the syntactic template for all baselines. Of
course, our model can also use syntactic templates
from other layers.

As shown in Figure 2, our model contains a sen-
tence encoder and a syntactic encoder, which en-
codes the source sentence x and the template t
separately. We deploy a target sentence decoder to
generate the final text. The details of the proposed
approach will be presented below.

3.2 Sentence Encoder

The sentence encoder contains N stacked trans-
former blocks. The hidden states of the sentence
encoder are calculated by:

hx = Transformer(x) (1)

where hx is final hidden state of source sentence
x.

3.3 Syntactic Encoder

This encoder provides the necessary syntactic sig-
nal for the generation of paraphrases. A parse
tree contains rich parent-child and sibling relations.
To capture these information, we propose a tree-
transformer with a syntax embedding layer, parent-
child attention, and sibling attention modules.

Syntax Embedding Layer Given a syntactic
template t, we use (node, level, index) format
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sequences to represent it. Formally, let t =
{t1, t2, ..., tn}, where ti = (pi, li, si), pi is a parse
tree node, li is its level, si is the index of the node
at a specific level. For example, the syntactic tem-
plate in Figure 2 is represented by {(ROOT, 1, 1),
(S, 2, 1), (NP, 3, 1), (DT, 4, 1), (VP, 3, 2), (VBZ 4,
2), (SBAR, 4, 3)}.

At the embedding layer, node tokens, level to-
kens, and index tokens are embedded respectively
and then added together to produce the syntax em-
bedding at position i:

Emb(ti) = Emb(pi) + Emb(li) + Emb(si) (2)

Parent-Child and Sibling Attention Then we
calculate the hidden state of each node in a tree-
structure manner. Specifically, we introduce an
adjacency matrix to guide the calculation of the
self-attention module:

A = Softmax((QKT /
√
d)⊙M)

ht = A · V
(3)

where Q is a query matrix consisting of query vec-
tors with dimension d, K is a key matrix consist-
ing of key vectors with dimension d, V is a value
matrix consisting of key vectors with dimension
d. M is an adjacency matrix obtained from the
syntactic template. ⊙ denotes the element-wise
product. For example, Figure 2 shows examples
of the parent-child adjacency matrix and sibling
adjacency matrix. We encode parent-child and sib-
ling information by parent-child and sibling atten-
tion operations. We stack multiple tree transformer
blocks to make the information of the ROOT node
flow to leaf nodes.

After obtaining hidden states of all nodes, we
use another encoder to encode all the leaf nodes in
a sequential way:

hseq
leaf = Transformer(hleaf ) (4)

The reason we use this sequential encode is that
parent-child and sibling attention modules would
create a mismatch between the encoding and decod-
ing process. Thus, it may be beneficial to introduce
sequence information. We also demonstrate the
effectiveness of the sequential encoder with experi-
ments in Section 5.2.4.

3.4 Decoder
Based on the input sentence hidden states hx and
syntactic template hidden states hseq

leaf , the target

transformer decoder uses two cross-attention mod-
ules to jointly exploit the input sentence and syn-
tactic template information to generate the target
text y. Cross attentions are calculated as follows:

hy,t,At = Attn(hy,h
seq
leaf ,h

seq
leaf )

hy,t,x,Ax = Attn(hy,t,hx,hx)
(5)

where Attn is the multi-head attention module in
transformer. hy is hidden states of decoder, At

and Ax are attention scores with the template and
the input sentence, respectively. Through the feed-
forward network sub-layer, hy,t,x will be used as
the input of the next layer or used to predict the
next word.

Syntax Attention Regularization The attention
weight At is essential for accurate syntactic control.
We propose an regularization method to guide the
learning of At using the alignment of nodes and
words in a parse tree. Specifically, we propose a
attention regularization loss as follows:

Lar = MSE(At, Ât) (6)

where Ât are oracle attention weights obtained
from the alignment of nodes and words in a parse
tree. MSE denotes the Mean Square Error loss func-
tion. By doing so, we can make learned At close
to oracle attention distribution. We also introduce
label smoothing (0.25) to reduce errors caused by
parsing.

Because multi-layer transformer and multi-head
attention mechanism produce multiple syntax at-
tention matrices, we simply make each generated
attention matrix close to the oracle attention. We
leave alternatives to this simple method to our fu-
ture work.

3.5 Training
To train the above model, we optimize the follow-
ing objective function:

L = λ1Lce + λ2Lar (7)

where Lce = −∑N
t=1 log p(yt|x, t, y1:t−1) is the

cross-entropy loss for ground-true y, λ∗ are balanc-
ing hyper-parameters.

4 Syntactic Template Retriever

A sentence cannot be converted to any syntac-
tic structures. Incompatible syntax will lead to
imperfect paraphrase conversion and nonsensical
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sentences. In this work, we propose a Syntactic
Template Retriever (STR) to find compatible syn-
tax for a sentence in practice. The basic assump-
tion is that syntactic templates expressing the same
meaning are relatively close in semantic space.
Specifically, given an input sentence and its parse
tree, the retriever retrieves compatible syntactic
templates based on similarity from a pre-collected
template library.

4.1 Encoder

We use a template encoder to map any template
t into a vector space. Meanwhile, for the input
sentence x and its parse tree px (i.e., the query q),
we use a sentence encoder and parse tree encoder
to map them to the same vector space, and then
retrieves k syntactic templates whose vectors are
closest to the query vector. We define the similarity
between the query and the syntactic template using
the dot product of their vectors:

sim(q, t) = vq · vT
t

vt = Enct(t)

vq = W · [Encx(x); Encp(px)]

(8)

where Enc∗ denote three different encoders, W is
a linear layer, ‘;’ denotes concatenation operation.

The three encoders are built with the transformer
encoder. We use linearized parse tree and syntac-
tic template as input 1, prepend [CLS] token to
each input, and then take the representation of the
prepended token as the output of each encoder in a
similar way to BERT (Devlin et al., 2019).

4.2 Training

The goal is to create a vector space such that rel-
evant pairs of queries and templates will have a
smaller distance (i.e., higher similarity) than the
irrelevant pairs. We use paraphrase pairs to build
training data, where positive templates are from
reference sentences.

Let (qi, t+i , t
−
i,1, ..., t

−
i,n) be a training instance

that consists of one relevant (positive) template t+i
, along with n irrelevant (negative) templates t−i,j .
To train the retriever, we optimize the negative log

1We compared linearized and structured approaches and
both have comparable performance, the main reason may be
that controlled paraphrase generation requires learning relation
between text and syntax (words and nodes), while the retriever
learns relation between syntax. Based on the principle of
simplicity, we used the linearized approach.

Model BLEU↑ R-1 / R-2 / R-L↑ MTR↑ TED↓
ParaNMT-Small

Source-as-Output 18.5 50.6 / 23.2 / 23.1 47.6 11.9

SCPN (2018) 21.2 55.1 / 31.3 / 57.4 33.0 6.3
SGCP (2020) 7.9 34.7 / 13.7 / 36.9 17.9 12.5
GuiG (2020) 26.3 60.7 / 37.1 / 62.5 38.0 6.4
SynTrans 19.3 54.0 / 28.7 / 55.8 32.1 8.0

SI-SCP 27.8 62.8 / 39.5 / 64.4 39.9 5.7
- SeqEnc 27.4 61.4 / 37.4 / 63.2 39.1 5.8
- AttnRegu 26.8 61.6 / 38.9 / 63.7 38.5 6.0
- SibAttn 26.1 61.0 / 37.3 / 62.9 38.0 6.1

QQP-Pos

Source-as-Output 17.2 51.9 / 26.2 / 52.9 31.0 16.2

SCPN (2018) 28.1 59.1 / 36.5 / 62.1 33.1 8.3
SGCP (2020) 9.2 35.8 / 16.0 / 40.2 17.5 12.3
SynTrans 24.8 57.2 / 32.9 / 59.4 33.3 10.8

SI-SCP 53.5 77.3 / 61.0 / 78.8 54.5 5.2
- SeqEnc 53.1 76.9 / 60.5 / 78.6 54.4 5.3
- AttnRegu 31.4 61.6 / 38.5 / 63.5 38.0 9.6
- SibAttn 53.0 77.0 / 60.5 / 78.7 54.1 5.2

Table 1: Evaluation results on the ParaNMT-small and
QQP-Pos datasets. All scores are reported as the mean
over three runs. R-1: ROUGE-1. R-2: ROUGE-2. R-L:
ROUGE-L. MTR: METEOR. ‘-SeqEnc’: no sequential
encoder used to encode leaf nodes, ‘-AttnReg’: no at-
tention regularization, ‘-SibAttn’: no sibling attention
module.

likelihood of the positive template:

L(qi, t+i , t−i,1, ..., t−i,n)

= − log
esim(qi,t

+
i )

esim(qi,t
+
i ) +

∑n
j=1 e

sim(qi,t
−
i,j)

(9)

At the training stage, we use the trick of in-batch
negatives to learn the retriever.

5 Experiments

In this section, we conducted experiments to an-
swer the following questions:

• How does our model compare against previ-
ous models?

• Can our model produce diverse paraphrases
with retrieved templates?

5.1 Controlled Paraphrase Generation

Implementation details are presented in Appendix
A due to limited space.

5.2 Datasets

Following previous work (Kumar et al., 2020), we
used ParaNMT-Small and QQP-Pos datasets to
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evaluate model performance for controlled para-
phrase generation. ParaNMT-Small (Chen et al.,
2019) contains 500k paraphrase pairs for training,
500 and 800 manually labeled paraphrase pairs
for development set and test set. The ParaNMT-
small is a subset of the original ParaNMT-50M
dataset (Wieting and Gimpel, 2018) which is con-
structed automatically through back-translation of
original English sentences. QQP-Pos (Kumar et al.,
2020) is selected from Quora Question Pairs (QQP)
dataset. It contains about 140K training pairs and
3K/3K data pairs for testing/validation.

5.2.1 Baselines2

• Source as output: Simply output the source
sentence as output.

• SCPN (Iyyer et al., 2018) & GuiG (Li et al.,
2020): They adopt a two-stage generation pro-
cess. Iyyer et al. (2018) use two Bi-LSTM
(Hochreiter and Schmidhuber, 1997) encoders
to encode input sentences and linearized parse
trees respectively. An LSTM decoder with
attention mechanism pays attention to both se-
mantic and syntactic hidden states to generate
paraphrases. Li et al. (2020) use transformer
network and propose a syntactic encoder with
a path attention mechanism. GuiG only pro-
vided trained model on the ParaNMT-Small
dataset.

• SGCP (Kumar et al., 2020): SGCP encodes
syntactic templates with GRU network in a
top-down manner. We directly used released
SGCP model3 and top-4 layers of the full
parse tree of the reference paraphrases as syn-
tactic templates.

• SynTrans: The framework is similar to SCPN,
and we replace LSTM with Transformer
(Vaswani et al., 2017). In this experiment, we
directly used linearized syntactic templates to
guide generation.

5.2.2 Automatic Evaluation
1. Semantic Metrics: BLEU (Papineni et al.,

2002), ROUGE (Lin, 2004), and METEOR
(Banerjee and Lavie, 2005) scores between

2Due to the different control types, we don’t compared
with the example-based methods (Chen et al., 2019; Liu et al.,
2020)

3https://github.com/malllabiisc/SGCP

Model Semantic Syntactic

SCPN 3.16 3.73
GuiG 3.67 3.77

SynTrans 3.05 3.51
SI-SCP 3.81 4.55

Table 2: Human evaluation results.

generated sentences and reference para-
phrases in the test set were used as semantic
metrics.

2. Syntactic Metrics: Following previous works
(Chen et al., 2019; Kumar et al., 2020; Li et al.,
2020), we used the tree edit distance (TED)
against the parse tree of the reference.

5.2.3 Human Evaluation
We conducted the human evaluation on 100 ran-
domly selected instances from the test set of
ParaNMT-Small in a blind fashion. Three anno-
tators evaluated generated paraphrases in terms of
semantic and syntactic similarity (generations vs
references); each aspect was scored from 1 to 5.

5.2.4 Results
As can be observed in Table 1, firstly, SGCP gets
the lowest results, we observe that SGCP often pro-
duces sentences that end abruptly, thereby harm-
ing syntax and semantics4. GuiG achieves better
performance than SCPN model among two-stage
approach. This is because GuiG adopts the more
advanced transformer network and a path-attention
mechanism which can capture partial structural in-
formation. For SynTrans which uses linerized syn-
tactic templates directly, it obtains relatively lower
performance. Conversely, SI-SCP achieves signifi-
cant improvements in both semantic and syntactic
metrics, which means that modeling structural in-
formation can improve the quality of generations.

Among different variants of our model (ablation
study), we see that removing any of the sequence
encoder, attention regularization, and sibling atten-
tion module has a negative impact on performance,
where attention regularization and sibling attention
modules have a more significant impact.

4The results of the SGCP baseline reported here are lower
than in the original paper. This is because that original paper
used very fine-grained syntactic information, which contains
more hints about reference paraphrase. Additionally, com-
pared with syntactic templates, fine-grained syntactic struc-
tures are more conducive to guiding models to generate natural
sentences.
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(a) Syntactic template

(b) Syntax Attention with Regularization

(c) Syntax Attention without Regularization

Figure 3: (a) shows the used syntactic template. (b) and
(c) show visualization results of syntax attention with
or without regularization.

Table 2 shows the results of human evaluation
which are consistent with automatic evaluation re-
sults. Our model obtains the highest scores in both
semantics and syntax, thereby highlighting the effi-
cacy of our method.

Table 6 shows examples of paraphrases gener-
ated by different model. We can observe that our
SI-SCP can produce better results than baseline
models in terms of both semantics and syntax.

5.2.5 Visualization of Syntax Attention

We visualize the syntax attention when using the
syntactic template as control in Figure 3. This is
an instance from the test dataset: {Source: it looks
to me like they are really sweet boys. Reference:
they look like very nice boys, i think.}. Figure 3 (a)

Dataset Model Top-1 Top-5 Top-10 Top-20

ParaNMT
-Small

CT (2018) 2.5 6.7 11.3 16.7
STR 8.6 20.5 27.3 34.4

QQP
-Pos

CT (2018) 9.2 40.2 47.9 58.8
STR 19.1 48.7 61.1 71.1

Table 3: Retrieval accuracy (%). ‘CT’: common tem-
plate, ‘STR’: our syntactic template retriever.

Model B-1 / B-2 / B-3 / B-4↑ Re(%)↓ Slf-B↓ Valid(%)↑
ParaNMT-Small

Seq2Seq 55.8 / 39.1 / 28.8 / 21.9 30.0 69.2 56.7

(1) CT & SCPN 48.1 / 31.0 / 20.6 / 14.0 70.7 34.4 15.1
(2) CT & GuiG 51.0 / 34.4 / 23.9 / 17.2 56.5 30.4 33.8
(3) CT & SI-SCP 51.8 / 35.7 / 25.3 / 18.3 64.1 28.7 36.8

(4) STR & SCPN 55.1 / 37.7 / 26.2 / 18.6 46.0 32.5 24.5
(5) STR & GuiG 56.2 / 38.6 / 27.2 / 19.5 39.7 32.0 55.7
(6) STR & SI-SCP 57.6 / 40.6 / 29.5 / 21.7 42.1 32.2 65.7

QQP-Pos

Seq2Seq 53.0 / 39.6 / 30.9 / 24.9 9.4 89.3 28.5

(7) CT & SCPN 60.4 / 43.7 / 32.3 / 24.4 40.2 28.2 52.9
(8) CT & SI-SCP 68.1 / 54.7 / 45.3 / 38.4 25.1 27.0 62.2

(9) STR & SCPN 62.7 / 46.7 / 35.6 / 27.6 28.1 28.1 63.5
(10) STR & SI-SCP 71.8 / 59.4 / 50.5 / 43.9 14.4 31.5 67.6

Table 4: Diverse paraphrase generation results.
STR&SI-SCP denotes that SI-SCP uses 10 templates
retrieved by the STR to generate 10 paraphrases. CT de-
notes using 10 common templates. B-1: BLEU-1. B-2:
BLEU-2. B-3: BLEU-3. B-4: BLEU-4. Re: Rejection.
Slf-B: Self-BLEU.

is the syntactic tempalte used in the example.
We can see that most words can accurately align

with corresponding nodes when using attention
regularization. Without attention regularization,
most words tend to pay attention to the punctua-
tion. These results show that the proposed attention
regularization can make the decoder accurately se-
lect corresponding nodes to guide the generation
of words.

5.3 Diverse Paraphrase Generation

In this section, we further evaluated our model’s
ability to generate diverse paraphrases. We first
examine whether STR can retrieve compatible tem-
plates. We generated 10 syntactically different para-
phrases for each input sentence using 10 retrieved
syntactic templates. Implementation details are
presented in Appendix B.

5.3.1 Evaluation Metrics
We evaluated this task with the following metrics:

1. Retrieval Accuracy: We use Top-K retrieval
accuracy on the test set, measured as the per-
centage of Top-K retrieved templates that con-
tain the gold template. The gold template is

2085



Template Paraphrase

Source you can choose between a movie or a pottery class.

( S ( NP ( PRP ) ) ( VP ( MD ) ( VP ) ) ( . ) ) you can choose from the film or the pottery class.

( S ( NP ( NP ) ( CC ) ( NP ) ) ( VP ( MD ) ( VP ) ) ( . ) ) the film or the pottery class can be selected.

( S ( NP ( NP ) ( , ) ( CC ) ( NP ) ) ( VP ( MD ) ( VP ) ) ( . ) ) the film , or the pottery class can be selected.

( SQ ( MD ) ( NP ( PRP ) ) ( VP ( VP ) ( CC ) ( VP ) ) ( . ) ) can you pick one of the film or the pottery class?

( S ( NP ( PRP ) ) ( VP ( VBZ ) ( UCP ) ) ( . ) ) it ’s possible to choose between film or the pottery class.

( S ( NP ( RB ) ( DT ) ( JJ ) ( NN ) ) ( VP ( MD ) ( VP ) ) ( . ) ) perhaps a pottery class can choose between the movies and the film.

Table 5: Syntactic paraphrases generated by SI-SCP with retrieved templates. We show several successful and one
failed (in blue) generations.

obtained from the reference sentence. This
metric is used to evaluate the performance of
the template retriever.

2. Semantics: Given 10 generated paraphrases
Y = {y1, y2, ..., y10} for each input sentence
in the test set. For 10 paraphrases, the one
with the highest BLEU score to the reference
sentence is selected as the final generation
ybest. The BLEU score between (ybest, y) is
calculated at the corpus level.

3. Rejection Rate: We use Sentence-BERT 5

(Reimers and Gurevych, 2019) to compute
paraphrase scores for generated outputs with
respect to the input. And then use this score6

to filter out low-quality paraphrases. The per-
centage of filtered sentences is taken as a re-
jection rate.

4. Diversity: We compute BLEU between all
pairs (yi, yj), then macro-average these val-
ues at the corpus-level.

5. Validity (Valid): To measure paraphrase qual-
ity, we perform human evaluation on 100 ran-
domly selected paraphrases from the remain-
ing paraphrases. Three annotators evaluate
whether the generated sentences are true para-
phrases, (the paraphrase is marked with 1, oth-
erwise marked with 0). Then we compute the
percentage of paraphrases marked as 1.

5.3.2 Results
As can be observed in Table 3, our STR signifi-
cantly surpasses CT in retrieval accuracy. These

5We used the paraphrase-distilroberta-base-v1, which is
trained on large-scale paraphrase data. Available at: https:
//public.ukp.informatik.tu-darmstadt.de/
reimers/sentence-transformers/v0.2/

6Similar to Iyyer et al. (2018), we set minimum paraphrase
similarity to 0.7.

results show that STR is capable of retrieving com-
patible syntactic templates.

In Table 4, we also show the results of the vanilla
Seq2Seq based on transformer, where we use top-K
(K=50) sampling to generate 10 paraphrases. Be-
cause this method tends to generate repeated sen-
tences, it obtains lower valid scores on the QQP-
Pos dataset. We see that syntax-controlled para-
phrasing method significantly improve the diversity
of generations.

Among different syntax-controlled models, com-
pared with CT, STR significantly improves se-
mantics, rejection rate, and validity metrics (Row
1/2/3/7/8 vs. Row 4/5/6/9/10). These results val-
idate the advantages of the syntactic template re-
triever from the perspective of practical application.
Using the same syntactic templates, GuiG can get
a better rejection rate, but SI-SCP obtains better
performance in terms of semantics, validity met-
rics. These results are consistent with automatic
evaluation results in Table 1.

5.3.3 Case Study
Table 5 lists some paraphrases generated by SI-SCP
with different syntactic templates. More generation
results are presented in Appendix C. We see that
the generated sentences always conform to the tar-
get templates. These examples are well-formed,
semantically sensible, and grammatically correct
sentences that also preserve semantics of the origi-
nal sentences. However, our model also produces
sentences with semantic deviation, like the failed
cases in Table 5, when given template is incompati-
ble with the input sentence.

6 Conclusion

We have presented a Structural Information-
augmented Syntax-Controlled Paraphrasing (SI-
SCP) model which can directly generate syntactic
paraphrases with syntactic templates. Particularly,
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we propose a tree-transformer and an attention reg-
ularization. The tree transformer can model parent-
child and sibling relation of the syntactic template.
The attention regularization method makes the de-
coder accurately select corresponding syntax nodes
to guide the generation of words. To retrieve com-
patible syntactic templates in practice, we further
propose a Syntactic Template Retriever (STR). Ex-
periments show that SI-SCP achieves substantial
improvements over previous strong baselines. Fur-
thermore, we also validate that STR is capable of
retrieving compatible syntactic templates. SI-SCP
can produce more syntactically paraphrases with
retrieved syntactic templates.
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A Controlled Paraphrase Generation

A.1 Implementation Details
We parsed all sentences in the training set, refer-
ence sentences in the validation and test set using
Stanford CoreNLP (Manning et al., 2014). We used
the scheduled Adam optimizer (Kingma and Ba,
2014) for optimization, and the learning rate was
set to 2.0 for all experiments. We set hidden state
size to 256 (i.e., d), filter size to 1024, head number
to 4. The number of layers of the sentence encoder,
sentence decoder, tree transformer and sequence
encoder were set to 4, 4, 3, and 2, respectively.
The batch size was set to 128. λ1 was set to 5.0
while λ2 1.0. We used BPE tokens pre-trained with
30, 000 iterations. All hyperparameter tuning was
based on the BLEU score on the development set.

For the SynTrans baseline model, we set the
number of syntactic encoder layers to 5 for fair
comparison.

B Diverse Paraphrase Generation

B.1 Implementation Details
For the syntactic template retriever, we used 300 as
hidden size, 512 as filter size and 4 heads in multi-
head attention. The number of layers of sentence,
syntax, and template encoders were all set to 4.
The batch size was set to 512. We used the sched-
uled Adam optimizer (Kingma and Ba, 2014) for
optimization, and the learning rate was set to 0.1.
The word embedding layer was initialized by the
publicly available GloVe (Pennington et al., 2014)
300-dimensional embeddings.7

C Generated Paraphrase Examples

Table 6 shows several paraphrases generated by
each model. Table 7 lists some paraphrases gener-
ated by SI-SCP with different syntactic templates.
Our model can generate more syntactically diverse
paraphrases with retrieved syntactic templates.

7https://nlp.stanford.edu/projects/
glove/
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Source it looks to me like they are really sweet boys.
Reference they look like very nice boys , i think.
SGCP i have no idea.
SCPN you know , they ’re a lot of cute guys.
SynTrans i think they ’re really cute boys,
GuiG i do n’t like nice guys , i think.
SI-SCP they look like nice boys , i think.

Source have you seen this man since your brother was killed?
Reference after the murder of your brother , did you see this man?
SGCP since your brother , did you see your brother?
SCPN so , did you see the guy since your brother was murdered?
SynTrans after your brother , did you see that you killed him?
GuiG since your brother , did you see the guy?
SI-SCP since your brother ’s death , did you see him?

Source a classic kind of friend is what she wants me to be.
Reference she wants me to be like a classic kind of friend.

SGCP my friend ’s gon na be a classic friend.
SCPN a classic type of boyfriend is what he wants to do.
SynTrans it ’s a classic friend of mine that she wants me.
GuiG it ’s me to be a classic friend of mine.
SI-SCP he wants me to be a classic friend.

Table 6: Example paraphrases generated by each model on ParaNMT-Small Dataset.

Template Paraphrase
Source the balance between budget revenues and expenditure must be maintained.
( S ( NP ( PRP ) ) ( VP ( VBZ ) ( ADJP ) ) ( . ) ) it is necessary to maintain the balance between budget revenue and expenditure.
( S ( NP ( NP ) ( PP ) ) ( VP ( MD ) ( VP ) ) ( . ) ) the balance of budget revenue and expenditure must be kept.
( S ( NP ( NP ) ( PP ) ) ( VP ( VBZ ) ( ADJP ) ) ( . ) ) the balance between budget revenue and expenditure is necessary.
( S ( SBAR ( WHADVP ) ( S ) ) ( , )
( NP ( PRP ) ) ( VP ( VBZ ) ( ADJP ) ) ( . ) )

when the budget revenue is recovered, it is necessary to maintain expenditure.

Table 7: Syntactic paraphrases generated by SI-SCP with retrieved templates. We show several successful and one
failed (in blue) generations.
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