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Abstract

Few-shot Relation Extraction refers to fast
adaptation to novel relation classes with few
samples through training on the known relation
classes. Most existing methods focus on im-
plicitly introducing relation information (i.e.,
relation label or relation description) to con-
strain the prototype representation learning,
such as contrastive learning, graphs, and specif-
ically designed attentions, which may bring
useless and even harmful parameters. Besides,
these approaches are limited in handing out-
lier samples far away from the class center due
to the weakly implicit constraint. In this pa-
per, we propose an effective and parameter-less
Prototype Rectification Method (PRM) to pro-
mote few-shot relation extraction, where we uti-
lize a prototype rectification module to rectify
original prototypes explicitly by the relation
information. Specifically, PRM is composed of
two gate mechanisms. One gate decides how
much of the original prototype remains, and
another one updates the remained prototype
with relation information. In doing so, better
and stabler global relation information can be
captured for guiding prototype representations,
and thus PRM can robustly deal with outliers.
Moreover, we also extend PRM to both none-
of-the-above (NOTA) and domain adaptation
scenarios. Experimental results on FewRel 1.0
and 2.0 datasets demonstrate the effectiveness
of our proposed method, which achieves state-
of-the-art performance.12

1 Introduction

Relation Extraction (RE) is one of the fundamental
natural language processing (NLP) tasks, which

†Corresponding author.
1The code is released at https://github.com/

lylylylylyly/PRM-FSRE
2Main results in this paper can be found in the Co-

daLab competition (username is atry), which you can get
the three competition websites, i.e., FewRel 1.0, FewRel
2.0 (Domain Adaptation), and FewRel 2.0 (NOTA) from
https://thunlp.github.io/fewrel.html

aims to detect the relation between two entities
contained in a sentence. Most RE models (Disti-
awan et al., 2019; Li et al., 2019; Jin et al., 2020)
require large labeled datasets while constructing
such datasets is usually high-costing and time-
consuming. Thus, the Few-shot Relation Extrac-
tion (FSRE) has become a hot topic to alleviate
data scarcity. There are two main steps in FSRE.
The model is first trained on collections of few-
shot tasks (i.e., meta tasks) sampled from the large-
scale data containing disjoint relations and then
fast adapted to the unseen relation classes with
few samples. Recently, many approaches have
been proposed for addressing FSRE problems (Han
et al., 2018; Gao et al., 2019b; Qu et al., 2020; Bal-
dini Soares et al., 2019). One of the popular algo-
rithms is the Prototype Network (Snell et al., 2017),
which is based on the meta-learning framework
(Vilalta and Drissi, 2002; Vanschoren, 2018), and
the basic framework used in the paper. Prototype
Network generates a prototype representation for
each relation class in the meta task with the given
instances (generally average instances in each rela-
tion class). Then, the distance of query instances
and each class prototype are calculated for model
train and prediction.

To achieve better performance, many works have
integrated the relation information into the model
to assist prototype representation learning. TD-
proto (Yang et al., 2020) enhanced prototypical
network with both relation and entity descriptions.
CTEG (Wang et al., 2020) proposed a model that
learns to decouple high co-occurrence relations,
where two types of external information are added.
MapRE (Dong et al., 2021) proposed a framework
considering both label-agnostic and label-aware se-
mantic mapping information in pre-training and
fine-tuning. HCRP (Han et al., 2021) introduced
three modules containing hybrid prototype learn-
ing, relation-prototype contrastive learning, and
task adaptive focal loss for the model improvement.
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Figure 1: An Illustration of a possible misclassification
case. Class A and Class B represent different relation
classes, while circles and squares represent samples of
corresponding classes. The green circle represents the
sample that needs to be classified.

However, most existing methods mainly utilized
instances given in each relation class to obtain
the prototype representation (generally to average
these instances). Although they implicitly incor-
porate relation information to constrain the proto-
type representations learning by contrastive learn-
ing, graphs, or attentions, such insufficiently and
weakly implicit constraints are limited in dealing
with the outlier samples. We provide an example in
Fig. 1, where ClassA and ClassB represent two
different relation classes; the circles and squares
represent the few instances provided by each rela-
tion class, and the green circle represents the in-
stance that needs to be predicted. It can be seen that
if the provided instances are remote and not “good”,
the model will tend to classify the instance (green
circle) into the ClassB. Besides, existing methods
also introduced more parameters into the model ow-
ing to their specific designs, which is detrimental
to FSRE. More parameters mean a more complex
model, which increases the overfitting risk on the
training set, thereby reducing the generalization
ability of the model (Dar et al., 2021).

To address aforementioned issues, this paper
proposes a Prototype representation Rectification
Method, named PRM, which focuses on obtaining
a better prototype for each relation. Specifically,
we propose a prototype rectification module, capa-
ble of explicitly utilizing relation information and
instances to generate the rectified prototype repre-
sentations together instead of implicitly using the
relation information to guide the generation of the
prototype representation. Stated in another way,
our model tries to use relation information to rec-
tify the distribution of the original few instances to
make it more global and more representative for the
overall distribution of the class. PRM transforms
the problem of perceiving the class distribution
from local instances to perceiving the class distri-

bution from local instances and global information.
In addition, we extend PRM to an advanced ver-

sion of the existing N -way K-shot setting in few-
shot learning (i.e., None-Of-The-Above (NOTA)
scenario), where queries could also be none-of-the-
above instead of assuming that all query instances
belong to the sampled N classes of supports. Al-
though this task brings one more option in clas-
sification and is more challenging for the general
FSRE model, our model can easily extend to NOTA
by introducing an external description "The rela-
tion of the query is not the same as this prototype.".
Experiments on FewRel 1.0 (general scenario) and
FewRel 2.0 (NOTA scenario) demonstrate the ef-
fectiveness of our proposed method with state-of-
the-art results.

The contribution of our work mainly lies in
three folds:

(1) We introduce the idea of using relation in-
formation to rectify prototypes explicitly and pro-
pose an effective and parameter-less method, PRM,
compared to previous works with always complex
modules or networks.

(2) In PRM, a prototype rectification module is
utilized, which explicitly utilizes relation informa-
tion and instances to generate rectified prototypes.

(3) We further extend PRM to the NOTA sce-
nario that is an advanced version of the existing
N -way K-shot setting in few-shot learning and
then justify the easy transferability of PRM to both
NOTA and domain adaptation scenarios.

2 Related Work

Relation Extraction (RE) (Kumar, 2017; Han et al.,
2020) is a fundamental task for information extrac-
tion, aiming to recognize the relation types that
exist between entity pairs in one sentence. The
labeling of relations is usually time-consuming and
laborious. In addition, in some specific fields, such
as the medical field, the available data are few and
additional expertise is required. Therefore, the Few-
shot Relation Extraction (FSRE) task has attracted
more and more attention recently. FSRE aims to
fast adapt to unseen relation classes with few sam-
ples through training on known relation classes.
Garcia and Bruna (2018); Gao et al. (2019b) pro-
posed a large-scale supervised few-shot relation
classification dataset, namely, FewRel, and pro-
vided the current state-of-the-art results on FewRel,
i.e., Proto-BERT (Garcia and Bruna, 2018) and
BERT-PAIR. Most subsequent work is evaluated
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on FewRel. REGRAB (Qu et al., 2020) proposed
to incorporate an external global relation graph
based on a Bayesian meta-learning method. Except
for relation descriptions, TD-proto (Yang et al.,
2020) and ConceptFERE (Yang et al., 2021) also
introduced entity descriptions to provide clues for
relation prediction and enhancing the prototype
network. CTEG (Wang et al., 2020) proposed a
model that learns to decouple high co-occurrence
relations, where two external information is added.
MapRE (Dong et al., 2021) proposed a framework
considering both label-agnostic and label-aware se-
mantic mapping information for low resource rela-
tion extraction in both pre-training and fine-tuning.
HCRP (Han et al., 2021) introduced three mod-
ules containing hybrid prototype learning, relation-
prototype contrastive learning, and task adaptive
focal loss for the model improvement. However,
these methods always introduced relation informa-
tion implicitly, which may introduce more parame-
ters and are limited in dealing with outlier samples.
Thus, explicitly rectifying the prototypes with rela-
tion representations can be a more effective way to
incorporate relation information.

3 Task Definition

We follow a typical few-shot task setting, namely
the N -way-K-shot setup, which contains a sup-
port set S and a query set Q. The support set S
includes N novel classes, each with K labeled in-
stances. The query set Q contains the same N
classes as S . And the task is evaluated on the query
set Q, trying to predict the relations of instances
in Q. What’s more, an auxiliary dataset Dbase

is given, which contains abundant base classes,
each with a large number of labeled examples.
Note the base classes and novel classes are dis-
joint with each other. The few-shot learner aims
to acquire knowledge from base classes and use
the knowledge to recognize novel classes. One
popular approach is the meta-learning paradigm,
which mimics the few-shot learning settings at the
training stage. Specifically, in each training iter-
ation, we randomly select N classes from base
classes, each with K instances to form a support
set S = {sik; i = 1, ..., N, k = 1, ...,K}. Mean-
while, G instances are sampled from the remain-
ing data of the N classes to construct a query set
Q = {qj ; j = 1, ..., G}. The model is optimized
by collections of few-shot tasks sampled from base
classes so that it can rapidly adapt to new tasks.

For an FSRE task, each instance consists of a
set of samples (x, e, y), where x denotes a natural
language sentence, e = (eh, et) indicates a pair
of the head entity and tail entity, generally called
statements, and y is the relation label. The name
and description for each relation are also provided
as auxiliary support evidence for relation extraction.

4 Proposed Method

In this section, we present the details of our pro-
posed approach. Figure 2 shows the overall struc-
ture, where three colors are used to represent differ-
ent relation types. The inputs are N -way K-shot
tasks (sampled from the auxiliary dataset Dbase),
where each task contains a support set S and a
query set Q. Meanwhile, we take the names and
descriptions of these N classes (i.e., relations) as
inputs as well. All input items share the same sen-
tence encoder. The prototype rectification module
utilizes relation representations and the mean value
of representations of the given instances, called
Original Prototypes, to generate the rectified pro-
totypes together. Then, the model calculates the
distance between the rectified prototypes and each
query for both training and predicting.

4.1 Sentence Encoder
We employ BERT (Devlin et al., 2019) as the en-
coder to obtain contextualized embeddings of sup-
port instances and query instances. Then, the state-
ments of these instances are obtained by concatenat-
ing the hidden states corresponding to start tokens
of two entity mentions following (Baldini Soares
et al., 2019). Denote statements of support in-
stances as {Si

k ∈ R2d; i = 1, ..., N, k = 1, ...,K}
(i.e., solid circles in Fig. 2), and statements of
query instances as {Qj ∈ R2d; j = 1, ..., G} (i.e.,
diamonds in Fig. 2), where d denotes the hidden
size of BERT output.

For each relation, we concatenate the name and
description with a template "name: description",
and then feed the sequence into the BERT encoder
to obtain relation embeddings. For example, we
combine the relation name "debut participant" with
its description "participant for whom this is their
debut appearance in a series of events" as the se-
quence "debut participant: participant for whom
this is their debut appearance in a series of events".
In more detail, we concatenate the hidden states
corresponding to the [CLS] token and the mean
value of hidden states of all tokens to obtain the
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Figure 2: The overall structure of our proposed method. The same sentence encoder is used to encode relations,
support set and query set. The relations and Original Prototypes are fed into the prototype recification module
together to obtain Rectified Prototypes.

relation representations {Ri ∈ R2d, i = 1, ..., N}
(i.e., squares in Fig. 2).

4.2 Prototype Rectification Module

Original Prototypes The FSRE task based on
the Prototype Network (Snell et al., 2017) paradigm
generally first obtains the statement representations
of the K instances in each relation class (a total of
N relations) in the support set with BERT encod-
ing, and then takes the average of the K statements
representations to obtain relation prototypes. We
call the prototype obtained in this way Original
Prototype (i.e., dotted circles in Fig. 2) and de-
note as {P i

ori ∈ R2d, i = 1, ..., N}. Since Original
Prototypes is completely obtained from the K in-
stances given for each relation type in the support
set, once the K instances are not "good" enough
and too far from the true class center, it will cause
the model to make wrong predictions.

Rectified Prototypes The name and description
of the relationship class (we will refer to them col-
lectively as "relations" in the paper for simplifica-
tion) are the naive pieces of information that can
characterize the overall class distribution and are
easily accessible for the FSRE task. Based on the
above facts, we propose to utilize relations to rec-
tify Original Prototypes, so that the Rectified Pro-
totypes (i.e., solid triangles in Fig. 2) contain both
the global distribution information in relations and
the local distribution information of the K specific
instances given for each relation class.

Inspired by GRU (Cho et al., 2014), multiple
gate mechanisms are used to control how much
Original Prototypes are retained and how much
relations information is introduced for generating

Rectified Prototypes together. Firstly, we obtain
how much relation information is introduced and
how much relation information should be replaced
by Original Prototypes through a gate mechanism
performing on relations and Original Prototypes:

ri = σ(Wr · [Ri, P i
ori] + br) (1)

Ri
remain = ([1]− ri)×Ri

Ri
replace = ri ×Ri

(2)

where i = 1, ..., N ; [·, ·] denotes concatenation
operation; ri is a weight value for the relation class
i. Then another gate is used to control how much
information of Original Prototypes needed for the
Rectified Prototypes generation.

pi = σ(Wp · [Ri
replace, P

i
ori] + bp)

P i
ori−remain = pi × P i, i = 1, . . . , N

(3)

Finally, we obtain Rectified Prototypes by the sum-
mation of Ri

remain and P i
ori−remain:

P i
rec = Ri

remain + P i
ori−remain (4)

where i = 1, . . . , N ; P i
rec ∈ R2d. Note that All

the representations used above belong to the R2d

feature space.

4.3 Training Objective

The model uses the vector dot product way to cal-
culate the distance between the query instance Q
and each Rectified Prototypes {P i

rec, i = 1, ..., N},
and then feed the distance into cross entropy loss to
form the training loss, which is similar to the con-
trastive loss. Finally, the training loss L is defined
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Figure 3: PRM on NOTA scenario. An additional NOTA
description is utilized.

via Rectified Prototypes and query instances:

L = −
G∑

j=1

log
exp(P i

rec ·Qj)∑N
i=1 exp(P

i
rec ·Qj)

(5)

In the prediction stage, the model calculates the
distance between Rectified Prototypes and query
instances again and selects the relation class with
the shortest distance as the prediction result.

4.4 NOTA Scenario
To verify the effectiveness of the proposed PRM,
we further extend it to the none-of-the-above
(NOTA) scenario. NOTA is an advanced version
of the existing N -way K-shot setting. The original
N -way K-shot setting samples N classes, as well
as K supporting instances and several queries from
each class for each test batch, assuming that all
queries belong to the sampled N classes. However,
in few-shot NOTA, queries could also be none-of-
the-above (NOTA), which brings one more option
in classification (i.e., (N + 1)-way K-shot) and
challenges existing few-shot methods. The diffi-
culty in solving the NOTA scenario based on the
proposed PRM is how to obtain the representation
or distance with queries of the one more class, since
this additional class information does not refer to a
specific relation class, it represents a meaning that
the query instance does not belong to any relation
class in support instances.

We introduce an external description to describe
the NOTA class, that is "The relation of the query
is not the same as this prototype.". The NOTA
description also shares the same sentence encoder
as relations and instances. However, the NOTA
description does not share the same prototype rec-
tification module with relations. Specifically, we
feed the Original Prototypes and NOTA description
representations into another prototype rectification
module and get prototypes containing NOTA in-
formation for each relation in support set, named

as NOTA Prototypes, {P i
nota, i = 1, ..., N}. Then,

we calculate the vector dot product of each query
instance to NOTA Prototypes as the distance and
take the smallest distance value.

Dj
nota = min{P i

nota ·Qj , i = 1, ..., N} (6)

where j denotes the index of query instances and i
denotes the index of relations.

Finally, Dj
nota and distances between Rectified

Prototype and query instances are fed into cross
entropy loss together.

L = −
G∑

j=1

log
exp(P i

rec ·Qj) or Dj
nota∑N

i=1 exp(P
i
rec ·Qj)

(7)

If the true label is NOTA, then the numerator in the
formula above is Dj

nota during training.

5 Experiments

5.1 Dataset
Our proposed approach is evaluated on the com-
monly used large-scale FSRE dataset FewRel 1.0
and FewRel 2.0 (Han et al., 2018; Gao et al.,
2019b), which are constructed from Wikipedia and
consist of 100 relations, each with 700 labeled in-
stances. The average number of tokens in each
sentence instance is 24.99, and there are 124,577
unique tokens in total. In addition, the name and de-
scription of each relation are also given, providing
additional interpretability for each relation. FewRel
2.0 with none-of-the-above setting is a more chal-
lenging task to detect none-of-the-above (NOTA)
relations for queries. Moreover, FewRel 2.0 with
domain adaptation setting is used in the transfer-
ability analysis in Section 7.2 that is trained on
Wikipedia domain but tested on a different biomed-
ical domain. Only the names of relation labels are
given but their descriptions are not available, which
makes the task more challenging. Our experiments
follow the splits used in official benchmarks with
64 base classes for training, 16 classes for valida-
tion, and 20 novel classes for testing.

5.2 Implementation Details
Evaluation N -way K-shot (N -w-K-s or NwKs)
is commonly used to simulate the distribution of
FewRel in different situations, where N and K
denote the number of classes and samples from
each class, respectively. In the N -w-K-s scenario,
accuracy is used as the performance metric. To be
noted, consistent with the official evaluation scripts,
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Encoder Model 5-w-1-s 5-w-5-s 10-w-1-s 10-w-5-s

CNN
Proto-HATT 72.65 / 74.52 86.15 / 88.40 60.13 / 62.38 76.20 / 80.45
MLMAN 75.01 / — — 87.09 / 90.12 62.48 / — — 77.50 / 83.05

BERT

BERT-PAIR 85.66 / 88.32 89.48 / 93.22 76.84 / 80.63 81.76 / 87.02
Proto-BERT∗ 84.77 / 89.33 89.54 / 94.13 76.85 / 83.41 83.42 / 90.25
REGRAB 87.95 / 90.30 92.54 / 94.25 80.26 / 84.09 86.72 / 89.93
CTEG 84.72 / 88.11 92.52 / 95.25 76.01 / 81.29 84.89 / 91.33
ConceptFERE — — / 89.21 — — / 90.34 — — / 75.72 — — / 81.82
HCRP (BERT) 90.90 / 93.76 93.22 / 95.66 84.11 / 89.95 87.79 / 92.10
PRM (BERT) 91.08 / 94.22 93.72 / 96.51 84.67 / 91.42 88.82 / 92.79
MTB — — / 91.10 — — / 95.40 — — / 84.30 — — / 91.80
CP — — / 95.10 — — / 97.10 — — / 91.20 — — / 94.70
MapRE — — / 95.73 — — / 97.84 — — / 93.18 — — / 95.64
HCRP (CP) 94.10 / 96.42 96.05 / 97.96 89.13 / 93.97 93.10 / 96.46
PRM (CP) 95.10 / 96.64 97.11 / 98.05 91.12 / 94.55 94.90 / 96.55
∆ (BERT) +4.89 +2.38 +8.01 +2.54
∆ (CP) +1.54 +0.95 +3.35 +1.85

Table 1: Experimental results of FSRE on FewRel 1.0 validation/test set, where N-w-K-s stands for the abbreviation
of N-way-K-shot. The table divides the method with BERT as the encoder into two parts, from top to bottom
including approaches with the original BERT, and approaches with additional pre-training on BERT. Note that ∗
represents the results of our implementation, others are obtained from results reported by papers or CodaLab.

Model
5w1s 5w5s 5w1s 5w5s

Aver.
(0.15) (0.15) (0.5) (0.5)

BERT-PAIR 77.67 84.19 80.31 86.06 82.06
MNAV♮ 79.06 85.52 81.69 87.74 83.50
lfc♮ 82.61 87.46 80.17 80.84 82.77
PRM (BERT) 83.01 89.30 83.32 85.94 85.39
PRM (CP) 91.58 93.63 89.81 91.05 91.52

Table 2: Experimental results of FSRE on FewRel 2.0
(NOTA) test set, where 0.15, 0.5 specifies the rate be-
tween Q for NOTA and Q for positive, where ♮ denotes
the result obtained from Codalab.

we select the best model for the test by evaluating
our model on randomly sampling 10,000 tasks from
validation data. Since the label of the test set of
the FewRel is not publicly available, we submit
the prediction file of our best model to the official
leaderboard in CodaLab to obtain the final result
on the test set.

Training We use BERT-base-uncased and CP
(Wang et al., 2020) as the sentence encoder, where
CP is a further pre-trained model based on BERT
with contrastive learning. We set the total train iter-
ation number as 30,000, validation iteration number
as 1,000, batch size as 4, learning rate as 1e-5 and
5e-6 for BERT and CP respectively.

5.3 Comparable Models

5.3.1 General Scenario

We compare our proposed method with eleven
baselines in total. Based on the type of encoder,
the comparable models are divided into two types,
namely, two CNN-based models and nine BERT-
based models. Specifically, CNN-based models
include: 1) Proto-HATT (Gao et al., 2019a), pro-
totypical networks modified with hybrid attention
to focus on the crucial instances and features. 2)
MLMAN (Ye and Ling, 2019), a multi-level match-
ing and aggregation prototypical network. BERT-
based models include: 3) Proto-BERT (Garcia
and Bruna, 2018), a method that measures the sim-
ilarity of prototypes and query instances for each
relation. 4) BERT-PAIR (Gao et al., 2019b), a
method that measures the similarity of sentence
pairs. 5) REGRAB (Qu et al., 2020), a Bayesian
meta learning method with an external global rela-
tion graph. 6) CTEG (Wang et al., 2020), a model
that learns to decouple high co-occurrence rela-
tions, where two external information is added. 7)
ConceptFERE (Yang et al., 2021), introducing
the inherent concepts of entities to provide clues
for relation prediction. 8) MTB (Baldini Soares
et al., 2019), pre-train with their proposed matching
the blank task on top of an existing BERT model.
9) CP (Peng et al., 2020), an entity masked con-
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Model
5-w 5-w 10-w 10-w
-1-s -5-s -1-s -5-s

Proto-BERT 84.77 89.54 76.85 83.42
w/ relation info.

–Add 89.15 93.11 83.63 87.93
–Concat 80.34 85.11 73.78 80.85

w/ PRM 91.08 93.72 84.67 88.82

Table 3: Ablation Study in the validation set. w/ is
the abbreviations of with. PRM is the abbreviation of
Prototype Rectification Method/Module.

trastive pre-training framework for RE while uti-
lizing prototype networks for fine-tuning on FSRE.
10) MapRE (Dong et al., 2021), a framework con-
sidering both label-agnostic and label-aware se-
mantic mapping information in pre-training and
fine-tuning. 11) HCRP (Han et al., 2021), intro-
ducing three modules containing Hybrid Prototype
Learning, Relation-Prototype Contrastive Learn-
ing, and Task Adaptive Focal Loss for the model
improvement.

To be noted, MTB, CP and MapRE all employ
additional pre-training on BERT with Wikipedia
data or contrastive learning to get better contextual
representation. Moreover, we respectively use the
original BERT and CP as our back-end language
models. Therefore, among the 11 baselines men-
tioned above, Proto-BERT and CP are our most
basic baseline.

5.3.2 NOTA Scenario
We compare our proposed method with three base-
lines in NOTA scenario: 1) BERT-PAIR (Gao
et al., 2019b), a method that measures the simi-
larity of sentence pairs. 2) MNAV, the Rank 1
method reported on CodaLab. 3) lfc, the Rank 2
method reported on CodaLab.

6 Main Results

6.1 General Scenario

All experimental results are shown in Table 1.
CNN-based and BERT-based methods are both
contained in the table. Proto-BERT represents the
method on which our model is based, which means
that this is the result of the model without intro-
ducing any improvement we propose. This result
will also be analyzed and displayed in the ablation
study. We apply our proposed method to BERT and
CP. For obvious comparisons, the former is shown
in the first part of BERT-based models, and the
latter is shown in the second part of BERT-based
models. The last two rows show the increase on

the test set compared to the basic models used by
our method (i.e., Proto-BERT and CP).

There are several observations. We can observe
that, regardless of using BERT or CP, our proposed
model (i.e., PRM) outperforms all strong baselines.
Particularly, when compared to the base model (i.e.,
Proto-BERT and CP), PRM achieves significant im-
provements, as shown in the last two rows of Table
1, further confirming the effectiveness of our inno-
vation in explicitly utilizing relation information to
guide prototype representation learning. Besides,
the performances gains from the 5-w-1-s, 10-w-
1-s setting over the current state-of-the-art model
(i.e., HCRP) are larger than that of 5-w-5-s, 10-
w-5-s, indicating that PRM is more suitable for
the few-shot setting. The possible reason might
be that when only one instance is given for each
relation class (i.e., 1-shot condition), the Original
Prototype is the statement representation of the one
instance, which is more likely to deviate from the
class center. Explicit constraints in PRM have a
strong ability to pull this Original Prototype closer
to the class center, while implicit constraints in
HCRP are limited to dealing with such conditions.

6.2 NOTA Scenario

Results are shown in Table 2. MNAV and lfc are
derived from CodaLab competition website that are
1st and 2nd methods respectively. The proposed
PRM outperforms these methods with both BERT
and CP baseline models, which demonstrates the
effectiveness of PRM.

7 Analysis
7.1 Ablation Study

In order to analyze the effect of each component
in our model (i.e., relations combination way and
Prototype Rectification Method/Module), we con-
ducted ablation study experiments on FewRel 1.0
and the results are reported in 3. Since labels of the
test set of FewRel are not accessible, ablation exper-
iments are performed on the validation set. There
are two parts in Table 3. Proto-BERT means the
baseline method without any relation information.
The second part in the table represents the result ob-
tained after adding a certain module, i.e., relations
and PRM. In w/ relation info., instead of PRM,
we perform two simple way: 1) Add: add relation
representations to Original Prototypes directly. 2)
Concat: concatenate relation representations and
Original Prototypes, then through a linear layer for
dimension reduction.
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HCRP PRM
Para. 110.66M 109.49M

Parameters to be adjusted

Training
learning rate

batch size
max iteration

Loss
λ

none
γ

Table 4: Comparison on the model complexity.

Model 5w1s 5w5s 10w1s 10w5s Aver.
Proto-ADV 42.21 58.71 28.91 44.35 43.55
BERT-PAIR 67.41 78.57 54.89 66.85 66.93
HCRP (BERT) 76.34 83.03 63.77 72.94 74.02
PRM (BERT) 73.98 88.38 62.72 79.43 76.13

Table 5: Accuracy (%) of few-shot classification on
the FewRel 2.0 domain adaptation test set, where Aver.
denotes the average value of four settings.

We can obtain several observations. First, Add
achieves better results than Proto-BERT, which
proves that the idea of using relations to directly
rectify the Original Prototypes is indeed effective.
However, Concat obtains relatively poor results
and is even inferior to the original Proto-BERT. A
possible reason might be Concat needs to introduce
an extra linear layer to reduce the dimension and
thus bring some harmful parameters. Second, w/
PRM obtain further improvements on four settings,
which demonstrates the effectiveness of PRM.

7.2 Model Complexity and Transferability
As we mentioned in Section 1, our method is sim-
pler and has good transferability compared to the
state-of-the-art, i.e., HCRP.

Complexity. The parameters of the two models
are shown in Table 4. HCRP utilized three modules
to jointly improve the model results, i.e., hybrid
features generation, relation-prototype contrastive
learning, and task adaptive loss function, whereas
PRM only uses the GRM. More details and com-
parisons can be found in Appendix A, where PRM
is compared with different modules of HCRP.

Transferability. We have already demonstrated
that PRM still works in the NOTA scenario. In this
section, we conduct experiments on domain adap-
tation settings with FewRel 2.0 and compare the
results with HCRP, which is shown in Table 5. It
can be seen that PRM is overall better than HCRP,
which shows that PRM is also transferable to the
domain adaptation setting. The possible reason

Figure 4: Prototypes Visualization. Left: Original Pro-
totypes; Right: Rectified Prototypes

Figure 5: Instances Visualization. Left: Instances in
Proto-BERT; Right: Instances in proposed PRM.

why PRM is worse than HCRP on 5w1s and 10w1s
is that the FewRel 2.0 with domain adaptation set-
ting only provides the name of relations without
a specific description, which causes the model to
fail to generate a strong relation representation for
rectifying the prototypes.

7.3 Visualization

In order to further explore how PRM uses relations
to rectify the original prototypes, we give the visu-
alization results in Fig. 4, 5 with BERT on 5-way
1-shot of the validation set of FewRel 1.0. Fig. 4
and Fig. 5 show the visualization of prototypes and
query instances respectively, where different colors
represent different relation classes. From left to
right in figures, Left means the original prototypes
or statements of query instances without any rela-
tion information, Right means rectified prototypes
or statements of query instances with the proposed
PRM.

It can be seen that when the relations are not
introduced into the model (Left), although the pro-
totypes and instances can also be divided into differ-
ent classes, the intra-class distances are not close
enough, and there are multiple error points (i.e.,
black points). After introducing the relation infor-
mation (Right), we can see that the error points
are reduced while the representations of the same
class are closer, especially for prototypes in Fig. 4.
The observation shows that our proposed method
of explicitly introducing relations has a part of the
role of contrastive learning and is indeed beneficial
to the improvement of the model.
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8 Conclusion
In this paper, we proposed a prototype rectifica-
tion method, PRM, with relations based on pro-
totype framework, where a prototype rectification
module is used for obtaining rectified prototypes.
We further extended PRM to a none-of-the-above
(NOTA) setting in few-shot learning. Extensive
experiments demonstrate the effectiveness of the
proposed method. We believe that the idea of find-
ing global information to rectify prototypes explic-
itly with fewer parameters is general and can be
extended to other few-shot tasks.
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