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Abstract

Morphologically-rich polysynthetic languages
present a challenge for NLP systems due to data
sparsity, and a common strategy to handle this
issue is to apply subword segmentation. We
investigate a wide variety of supervised and un-
supervised morphological segmentation meth-
ods for four polysynthetic languages: Nahu-
atl, Raramuri, Shipibo-Konibo, and Wixarika.
Then, we compare the morphologically in-
spired segmentation methods against Byte-Pair
Encodings (BPEs) as inputs for machine trans-
lation (MT) when translating to and from Span-
ish. We show that for all language pairs except
for Nahuatl, an unsupervised morphological
segmentation algorithm outperforms BPEs con-
sistently and that, although supervised meth-
ods achieve better segmentation scores, they
under-perform in MT challenges. Finally, we
contribute two new morphological segmenta-
tion datasets for Raramuri and Shipibo-Konibo,
and a parallel corpus for Raramuri–Spanish.

1 Introduction

Polysynthetic languages are known because of their
rich morphology, that encodes most parts of the
semantics into verbs, leading to a high morpheme-
per-word rate. The resulting combinations of mor-
phemes and roots result in extreme type sparsity.
Thus, polysynthetic languages represent a challeng-
ing environment for NLP methods (Klavans, 2018).
Subword segmentation has been a common method
to reduce sparsity (Vania and Lopez, 2017). More-
over, as these languages are mostly extremely low-
resource (ELR), the challenge is even harder. Some
of the reasons behind this is that most of them are
endangered and spoken by minority groups (Mager
et al., 2018; Littell et al., 2018).

But what impact does morphological segmen-
tation have on downstream tasks like machine
translation (MT), when translating from or into
fusional languages? Linguistically inspired seg-
mentation was considered to be the best option to

handle rich morphology (Koehn et al., 2005; Virpi-
oja et al., 2007) until the appearance of Byte-Pair
Encodings (BPEs; Sennrich et al., 2016) and has
been adopted as the default segmentation technique.
BPEs earned this status for its good results, unsu-
pervised training and language independence. Sal-
eva and Lignos (2021) show that there is no signifi-
cant gain when using an unsupervised morphologi-
cal segmentation for the input over BPEs when eval-
uating those methods in moderate LR scenarios for
Nepali–English and Kazakh–English, contradict-
ing initial findings of Ataman and Federico (2018).
However, how would BPEs perform for polysyn-
thetic languages in ELR scenarios? Schwartz et al.
(2020) compare BPE, with Morfessor (Smit et al.,
2014) and Rule-Based morphological analyzers for
medium resourced Inuktitut–English, and for the
ELR Yupik–English and Guarani–Spanish. Their
results show that BPEs outperform Morfessor and
the morphological analyzer in all MT cases (but
with better Language Modeling capabilities of mor-
phological models over BPEs). However, most of
these studies only rely on the usage of a limited
set of segmentation methods and do not consider
the quality of the used morphological segmentation
methods.

This study aims to answer the following research
questions: i) is morphological segmentation bene-
ficial for MT where one language is polysynthetic
and ELR?; and ii) is higher morphological segmen-
tation quality correlated with higher MT scores?

To answer these questions, we perform seg-
mentation experiments on four polysynthetic lan-
guages:1 Nahuatl (nah), Raramuri (tar), Shipibo-
Konibo (shp) and Wixarika (hch) and apply those
segmentations to MT paired with Spanish (spa).
First, we revisit a wide set of supervised and un-
supervised methods and apply them to the input
of MT transformer models. This study is the first

1We choose the languages for this study based on the
availability of a morphological segmentation dataset.
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train dev test
tar spa tar spa tar spa

S 13,102 587 1,030
Nspa/Ntar 1.692 1.794 1.689
N 73,022 93,410 3,183 4,133 5,847 7,547
V 19,044 16,220 1,713 1,771 2,793 2,803
V1 12,894 10,021 1,402 1,365 2,221 2,120
V/N 0.261 0.174 0.538 0.429 0.478 0.371
V1/N 0.177 0.107 0.440 0.330 0.380 0.281
OOV 573 434 1,037 779
%OOV 0.334 0.245 0.371 0.277

Table 1: Parallel corpus’ description: S = number of
sentences; Nspa/Ntar = ratio of tokens between Spanish
and Rarámuri; N = number of tokens; V = vocabulary
size; V1 = number of tokens occurring once (hapax);
V/N = vocabulary growth rate; V1/N = hapax growth
rate; OOV = out-of-vocabulary words w.r.t. train set.

to show that strong unsupervised morphological
approaches outperform BPEs consistently on ELR
polysynthetic languages, except for nah. These
results are related to Ortega et al. (2020), that found
that a morphologically guided BPE can improve
the MT performance for Guarani–Spanish. On the
other hand, even when supervised morphological
segmentation methods achieve better results for the
segmentation task, when it comes to MT systems
they under-perform all other approaches. We hy-
pothesize that this might be due to overfitting the
clean and out-of-domain morphological training
set. To make all these experiments possible we
introduce additionally two new morphologically
annotated datasets for tar and shp; and one par-
allel dataset for spa–tar2.

Polysynthetic languages. A polysynthetic lan-
guage is defined by the following linguistic fea-
tures: the verb in a polysynthetic language must
have an agreement with the subject, objects and in-
direct objects (Baker, 1996); nouns can be incorpo-
rated into the complex verb morphology (Mithun,
1986); and, therefore, polysynthetic languages have
agreement morphemes, pronominal affixes and in-
corporated roots in the verb (Baker, 1996), and
also encode their relations and characterizations
into that verb.

2The datasets are available under http://turing.
iimas.unam.mx/wix/mexseg

shp tar
train dev test train dev test

Words 604 163 329 504 136 274
SegWords 437 114 228 323 87 178
Morphs 1215 321 642 1028 273 563
UniMorphs 476 181 319 474 181 287
Seg/W 0.72 0.69 0.69 0.64 0.64 0.65
Morphs/W 2.01 1.97 1.95 2.04 2.01 2.06
MaxMorphs 5 5 5 5 5 5
OOV-M 93 179 93 163

Table 2: Number of words, segmentable words (Seg-
Words), total morphemes (Morphs), and unique mor-
phemes (UniMorphs) in our new datasets. Seg/W: pro-
portion of words consisting of more than one morpheme;
Morphs/W: morphemes per word; MaxWords: maxi-
mum number of morphemes found in one word; OOV-
M: morphemes in evaluation not seen in training.

2 Descriptions of Novel Datasets

2.1 Raramuri–Spanish Parallel Dataset

For the dataset, we manually extract phrases that
had a translation into Spanish from the Brambila
(1976) dictionary. Additionaly, given that the or-
thography in this book is out of use, we normalized
it to a modern version used in (Caballero, 2008).
The book does not specify the dialect of the sen-
tences. Table 1 shows the characteristics of the
dataset, and the dataset splits.

2.2 Morphological Segmentation Datasets

We also introduce two new morphologically anno-
tated datasets. For Raramuri we manually extracted
segmented morphemes from a specialized linguis-
tics paper (Caballero, 2010) and thesis (Caballero,
2008) that contain segmented and non-segmented
words. Both sources annotate the Raramuri variant
of the village of Choguita.

For Shipibo-Konibo, we adapted annotated sen-
tences for lemmatization and part-of-speech tag-
ging (Pereira-Noriega et al., 2017), and from a tree-
bank (Vasquez et al., 2018), which was segmented
in morphemes due to a particular phenomenon for
clitics in the dependencies annotation.

3 Experimental Setup

3.1 Resources

For the machine translation experiment we use the
following parallel datasets: the hch–spa transla-
tion of the fairy tales of Hans Christian Andersen
(Mager et al., 2017); the Shipibo-Konibo–Spanish
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translations from a bilingual dictionary and edu-
cational material (Galarreta et al., 2017); and for
nah–spa, the Axolotl dataset (Gutierrez-Vasques
et al., 2016). This dataset contains several variants
of Nahuatl. On top of that we also use our collected
tar–spa Parallel corpora (§2.1). The details of
the data splitting are described in Table 5 in the
appendix. For morphological segmentation we use
the nah and hch annotated datasets from Kann
et al. (2018b) and additionally we use the shp and
tar datasets introduced in section 2.2. We use the
same splits as reported by the original sources.

3.2 Metrics

For machine translation we use the standard BLEU
(Papineni et al., 2002) and chrF (Popović, 2015)
metrics from the SacreBLEU implementation (Post,
2018). To evaluate morphology, we compare all
outputs against the gold annotated test sets calculat-
ing accuracy and the EMMA F1 metric (Spiegler
and Monson, 2010).

3.3 Subword Segmentation

BPEs (BPEs; Sennrich et al., 2016) is our refer-
ence system we use the sentence piece implemen-
tation (Kudo and Richardson, 2018) of BPEs. We
tune the vocabulary size on a vanilla transformer
small for each language, and take the best model
evaluated on the development set.

Morfessor (Morfessor; Smit et al., 2014) As
an unsupervised method we use Morfessor 2.0,
that is a statistical model for the discovery of mor-
phemes using minimum description length opti-
mization.

FlatCat (FC; Grönroos et al., 2014), is a variant
of Morfessor. It consists of a category-base hid-
den Markov model and a flat lexicon structure for
segmentation.

LMVR (Ataman et al., 2017) modify the FC im-
plementation by adding a lexicon size restriction
and increase the tendency of the model to increase
segmentation of commonly seen words.

CRFs (CRFs) As our first supervised model we
use the conditional random fields (CRFs; Lafferty
et al., 2001) segmentation model of Ruokolainen
et al. (2014). We also investigate the capabilities
of semiCRFs (Sarawagi and Cohen, 2005) for
this particular task. For this, we use the Chipmunk
implementation (Cotterell et al., 2015).

Seq2seq We also use a vanilla RNN sequence-
to-sequence model with attention. The first vari-
ant (s2s) employs a supervised neural model.
Additionally, we use the most promising exten-
sion proposed by Kann et al. (2018b) adding ran-
dom generated strings in an auto-encoding fashion
(s2s+multi).

Pointer–Generator Networks (PtrSeg; See
et al., 2017) are commonly used in task where copy-
ing part of the input to the output is part of the task.
This model has been used successfully for canoni-
cal segmentation (Mager et al., 2020).

3.4 NMT System
As our translation models, we use an encoder-
decoder transformer model (Vaswani et al., 2017)
with the hyperparameters proposed by Guzmán
et al. (2019) as a baseline for low-resource lan-
guages. We use the vanilla version of this trans-
former without any further back-translation or other
enhancements, so that we can remove any addi-
tional variables from the experiment, and focus
only on the input segmentation. We use a 5k3

vocabulary size for all sides using BPE. We use
fairseq (Ott et al., 2019) for all translation experi-
ments. The polysynthetic languages are segmented
with the different investigated segmentation meth-
ods and Spanish always uses BPE in both transla-
tion directions.

4 Results

Morphology Table 3 shows that BPEs, a model
that is not intended for morphological segmenta-

3We searched for the best vocabulary size using 2k, 4k, 5k,
6k and 8k.

system hch nah tar shp
BPEs 53.17 53.38 62.54 71.41

Morfessor 61.51 60.48 59.05 59.45
FC 62.28 58.94 64.65 67.95
LMVR 61.27 60.55 65.46 67.58

semiCRFs 68.10 81.92 81.22 -
CRFs 82.43 87.83 89.79 -
s2s 82.42 84.62 88.47 82.25

s2s+multi 83.75 84.90 88.37 85.99
PtrSeg 65.60 83.85 90.13 78.22

Table 3: Test results of surface segmentation for hah,
nah and tar, and canonical segmentation for shp.
Values are F1 scores, bold numbers are the best systems
overall, underscored are the best unsupervised systems.
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Figure 1: chrF score difference for all morphological segmentation when compared to BPEs on the test sets for
both translation directions. We run a paired approximation test with 10000 trials using the BPEs system output
as the baseline. Diagonals indicates a p-value ≤ 0.05, while stars indicates a p-value > 0.05. Blue systems are
unsupervised, while Red ones are supervised.

tion, perform worst on all languages as expected,
with exception of tar. The unsupervised mor-
phological segmentation models (Morfessor,
FC and LMVR) are consistently the worst per-
forming models among the morphologically in-
spired models. The best performing systems
are supervised, with s2s+multi showing best
results for hch (83.7 F1) and shp (85.99 F1).
CRFs achieved the best result for nah with 87.8
F1 and PtrSeg achieved the best scores for tar
with 90.13 F1.

4.1 Discussion

MT Figure 1 shows the chrF score difference
against the BPEs baseline in all directions4. We
first observe that the supervised segmentation ap-
proaches under-perform in contrast with the unsu-
pervised ones in all the settings.

Moreover, with the polysynthetic languages in
the source side, FC has a significantly higher score
for hch-spa and tar-spa, and a statistical tie
in shp-spa; whereas LMVR obtains similar re-
sults to BPEs in hch-spa and shp-spa. In the
other direction, with the polysynthetic languages
as targets, LMVR is the method that significantly
surpasses the baseline for more language pairs:
spa-hch, spa-tar and spa-shp; whereas
FC obtains the maximum score in spa-hch and

4See Table 6 for the specific scores, BLEU ones included.

statistical ties in spa-tar and spa-shp. We
conclude that both methods are robust alternatives
for translating from and to a polysynthetic lan-
guage.

Despite the good results of s2s,
s2s+multi or PtrSeg in morphological
segmentation, for MT they have the worst per-
formance. We argue that these kind of methods
innovate new subwords in their output, which can
aid for morphological segmentation, but for MT
only adds noise in the input for the model.

Overall, we notice that in contrast to other lan-
guages (Saleva and Lignos, 2021), segmentation
methods matter for polysynthetic ones. Poor suited
methods can strongly decrease the performance of
down-stream tasks like MT. However, the question
on which segmentation method is better for MT is
still open.

4.2 Analysis

To better understand the current results, we explore
the outputs of different systems. For simplicity, we
choose the best performing segmentation system
for each of the segmentation paradigms. For un-
supervised morphological inspired segmentation,
we use LMVR, s2s+multi for supervised mor-
phological segmentation, and BPEs for frequency-
based segmentation.

First, we explore the impact of morphologi-
cal richness on each of the systems. We use
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Figure 2: Relation between morphological richness of each polysyntetic language with relation to its chrF score, in
each translation direction. The scores are analysed for BPEs, LMVR and s2s+multi.
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Figure 3: Number of out-of-vocabulary tokens (UNK) found for each polysynthetic language classified by system.
The scores are analysed for BPEs, LMVR and s2s+multi.

Morfessor to infer the segmentation for each
polysynthetic language data point and divide the
number of found morphemes by the total number
of tokens. Figure 2 shows that there is no clear
correlation between morphological richness and
systems’ performance for nah and for shp. How-
ever, for hch we observe that a richer morphology
implies a loss in translation quality. The same cor-
relation can be seen for the tar-esp direction.
This correlation is stronger when the polysynthetic
language is in the source and weaker when it is
in the target. Overall, a similar behavior can be
observed between LMVR and BPEs.

Second, we explore the impact of out-of-
vocabulary (UNK) tokens that each segmentation
model introduces because having a high number
of UNK tokens can negatively influence the MT
results. In figure 3, we show the number of UNK
tokens that each segmentation has when used with
the dictionary of an MT system. The supervised
s2s+multi has the highest amount of UNK sym-
bols. We suggest that the reasons behind this phe-
nomena could be the strong generative power of
such systems and well-known artifacts that such

models introduce (i.e., string repetitions). However,
LMVR has a slightly higher number of UNK tokens,
leaving BPEs the best vocabulary coverage. This
can explain the surprisingly low performance of
supervised models.

5 Conclusion

In this paper, we compared a wide set of morpho-
logical segmentation models with BPEs when ap-
plied to the input of Neural Machine Translation
systems for extreme low-resource polysynthetic
languages. We found that unsupervised morpho-
logical segmentation outperformed BPEs signifi-
cantly on 5 out of 8 language pairs, setting a con-
sistent overall performance. Surprisingly SOTA
supervised morphological segmentation achieved
the lowest performance of all systems. In future,
we will explore Adaptor-Grammars (Johnson et al.,
2006; Narasimhan et al., 2015; Eskander et al.,
2020) for segmentation, and also the way to make
unsupervised segmentation more robust and suit-
able for MT including the reduction of produced
UNK symbols.
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Ethical Considerations

The datasets introduced in this paper for machine
readable training and evaluations are extracted
from previous specialized linguistic work. We stick
to the ethical standards giving credit to the original
author in the spirit of fair scientific usage. We fur-
ther strongly encourage future work that use these
resources to cite also the original sources of the
data. Additionally we found another ethical risks
of this work: for the down-stream task of MT, a
translation system should not be deployed with low
quality translations, as it can mislead the user, and
have implicit biases. Finally, want to state that the
authors of this paper have a long record of working
with the studied indigenous languages. Some have
conducted field studies with the communities in
the past, and Manuel Mager is part of the Wixarika
community. This allows the authors to have a better
understanding of the concerns of the communities
that speak the discussed languages.
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A Appendix

A.1 Data set splitting

Train Dev. Test
hch–spa 665 167 553
nah–spa 540 134 449
tar–spa 604 163 329
shp–spa 504 136 274

Table 4: Data splitting (in number of instances) used for
out the Morphological Segmentation experiments for all
languages.

Train Dev. Test
hch–spa 7442 447 1075
nah–spa 14208 644 1291
tar–spa 12987 582 1021
shp–spa 13102 587 1030

Table 5: Data splitting (in number of phrases) used
for out Machine Translation experiments, from and to
Spanish.

A.2 The Languages of new collected datasets

Raramuri (also known as Tarahumana) is a Yuto-
Aztecan language, spoken in the northern part of
the Mexican Sierra Madre Occidental by 89,503
speakers (INEGI, 2020). Raramuri is a polysyn-
thetic and agglutinative language and has a Subject-
Object-Verb (SOV) word order with morphonolog-
ical fusion indicated by verbal suffixes (Caballero,
2008).

Shipibo-Konibo is a Panoan language spoken by
around 26,000 people in the Amazonian region of
Perú. This language is polysynthetic, with a strong
tendency to agglutination, but also with certain
degree of fusion. Its word order is mainly SOV
(Dixon and Aikhenvald, 1999).

A.3 Additional related work

Morphological segmentation was firs introduced by
Harris (1951). Unsupervised methods are popular
with the Morfessor (Creutz and Lagus, 2002, 2007;
Poon et al., 2009) family of segmentors. They also
have a semi-supervised version (Kohonen et al.,
2010; Grönroos et al., 2014). Recently Adaptor
Grammars have been applied with great success to
the task (Eskander et al., 2019, 2020). Supervised
methods have achieved the best results with meth-
ods like CRFs (Ruokolainen et al., 2013), LSTM

taggers (Wang et al., 2016), seq2seq RNNs (Kann
et al., 2018a), CNNs (Sorokin, 2019), pointer net-
works (Yang et al., 2019), and pointer generator
networks (Mager et al., 2020).

For the MT down-stream task, few research has
been done (Schwartz et al., 2020; Roest et al.,
2020). New research has been done in context
of the WMT 2020 shared task on Inuktitut-English
Bawden et al. (2020); Kocmi (2020); Knowles et al.
(2020); Roest et al. (2020).

A.4 Machine translation results
Table shows the translation results using BLEU5

and chrF6.

5BLEU + case.mixed + numrefs.1 + smooth.exp + tok.13a
+ v.1.5.0

6chrF2 + numchars.6 + space.false + v.1.5.0
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system hch-spa nah-spa tar-spa shp-spa
BLEU chrF BLEU chrF BLEU chrF BLEU chrF

bpe 15.04 30.50 15.37 37.63 11.44 32.64 11.85 32.59
morfessor 15.12 29.23 13.84* 35.29* 12.05 30.35* 9.65* 30.69*

flatcat 15.89* 31.44* 14.89 36.99* 15.55* 35.09* 12.29 33.38
lmvr 16.61* 30.96 14.78* 36.76* 12.97* 33.93* 11.14 32.60
crfs 10.66* 26.45* 12.48* 32.81* 8.42* 24.38* - -

seq2seq 9.23* 26.64* 12.13* 34.62* 7.69* 27.10* 10.27* 31.10*
seq2seq-rand-mt 11.46* 26.77* 12.22* 32.93* 8.31* 24.79* 9.51* 27.79*

pointernet 10.33* 25.49* 11.78* 32.16* 7.85* 23.46* 8.91* 27.97*
system spa-hch spa-nah spa-tar spa-shp

BLEU chrF BLEU chrF BLEU chrF BLEU chrF
bpe 16.98 31.18 13.29 40.25 10.70 29.60 10.84 36.54

morfessor 12.26* 29.60* 8.52* 35.55* 5.95* 26.72* 5.00* 33.24*
flatcat 18.70* 35.12* 12.42* 39.59* 8.66* 29.52 11.68 37.58
lmvr 17.44 33.79* 12.26* 40.11 12.88* 33.76* 12.84 38.99*
crfs 9.37* 25.40* 6.41* 30.33* 2.27* 16.28* - -

seq2seq 9.64* 28.48* 1.29* 24.62* 2.96* 24.06* 0.77* 25.21*
seq2seq-rand-mt 7.76* 26.11* 3.79* 25.54* 1.16* 16.29* 0.13* 22.06*

pointernet 4.22* 23.22* 2.76* 25.77* 0.76* 13.97* 0.06* 22.78*

Table 6: Translation results on test for both directions. Maximum scores are in bold. We run a paired approximation
test with 10000 trials using the BPEs system output as the baseline, and “*” indicates a p-value < 0.05.
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