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Abstract

Deep learning has demonstrated performance
advantages in a wide range of natural language
processing tasks, including neural machine
translation (NMT). Transformer NMT models
are typically strengthened by deeper encoder
layers, but deepening their decoder layers usu-
ally results in failure. In this paper, we first
identify the cause of the failure of the deep de-
coder in the Transformer model. Inspired by
this discovery, we then propose approaches to
improving it, with respect to model structure
and model training, to make the deep decoder
practical in NMT. Specifically, with respect to
model structure, we propose a cross-attention
drop mechanism to allow the decoder layers to
perform their own different roles, to reduce the
difficulty of deep-decoder learning. For model
training, we propose a collapse reducing train-
ing approach to improve the stability and effec-
tiveness of deep-decoder training. We experi-
mentally evaluated our proposed Transformer
NMT model structure modification and novel
training methods on several popular machine
translation benchmarks. The results showed
that deepening the NMT model by increasing
the number of decoder layers successfully pre-
vented the deepened decoder from degrading to
an unconditional language model. In contrast
to prior work on deepening an NMT model on
the encoder, our method can deepen the model
on both the encoder and decoder at the same
time, resulting in a deeper model and improved
performance.

1 Introduction

With the help of the deep neural network, the
feature extraction capability of models has been
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substantially enhanced (Schmidhuber, 2015; Le-
Cun et al., 2015). Deep neural network models
are also popular for natural language processing
(NLP) tasks. The most typical deep neural net-
work model in NLP is based on the convolutional
neural network (CNN) (Gehring et al., 2017) and
Transformer (Vaswani et al., 2017) structures, and
the deep pretrained Transformer language model
has begun to dominate NLP. The deep neural net-
work model has also attracted substantial interest
in neural machine translation (NMT), for both theo-
retical research (Wang et al., 2019; Li et al., 2020a,
2021a; Kong et al., 2021) and competition evalua-
tion (Zhang et al., 2020; Wu et al., 2020b,a; Meng
et al., 2020). Because it has been demonstrated that
deep neural network models can benefit from an
enriched representation, deep NMT models also
show advantages with respect to translation perfor-
mance (Wu et al., 2019; Wei et al., 2020).

Although deep models have been extensively
studied in machine translation and are frequently
used to improve translation performance, almost
all work on deepening models has focused on in-
creasing the number of encoder layers; there has
been very little research on deepening the decoder.
Through preliminary experiments on varying the
number of decoder layers in the Transformer NMT
model, we observed that, when the decoder is deep-
ened beyond a certain number of layers, the trans-
lation performance of the overall model fails to
improve; moreover, it declines rapidly to near zero.
This demonstrates that there are flaws in the current
structure or training method, and the deep-decoder
NMT model cannot be trained.

By analyzing the training process of the deep-
decoder model, we found that the training perplex-
ity of the model was relatively low, but the transla-
tion performance of the obtained model was much
worse than that of a shallow model. Inspired by this
phenomenon, we hypothesize that, as the decoder
deepens, the model may increasingly ignore the
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source inputs and degenerate to an unconditional
language model, even though a low perplexity can
be obtained on the training set. In this case, the
purpose of translation learning is not achieved, and
thus the model training fails.

According to our hypotheses, preventing the de-
coder from degenerating to an unconditional lan-
guage model is the key to overcoming the failure of
deep-decoder NMT model training. Consequently,
we propose two aspects of model improvement:
model structure and model training. In model struc-
ture, the only difference between the decoder of
the NMT model and that of the unconditional lan-
guage model is cross-attention; therefore, we focus
mainly on this structure. In model training, we aim
to make the decoder output distant from the output
of the unconditional language model to avoid fit-
ting the target sentences while ignoring the source
inputs in the training dataset.

Specifically, we propose a cross-attention drop
(CAD) mechanism for the deep-decoder layer struc-
ture. The original intention of this mechanism is
that we suspected that the degeneration of the deep
decoder to an unconditional language model was
caused by the training difficulties resulting from
too many cross-attentions. Because the purpose
of cross-attention is to force the decoder layer to
obtain features from the source representation, the
different layers in the deep decoder should per-
form distinct roles. However, the conventional
deep decoder requires each layer to extract source
features similarly, thus increasing the training dif-
ficulty. As a result, to minimize training loss, the
model chooses to memorize the training target sen-
tences directly and ignore the source inputs. In
this mechanism, we drop the cross-attention in
some decoder layers to lower the overall train-
ing difficulty, thereby preventing the failure of
deep-decoder training. In addition to structural
changes, we also propose a decoder dropout reg-
ularization (DDR) loss and anti-LM-degradation
(ALD) loss for joint model optimization, based
on contrastive learning; these increase the stability
of deep-decoder NMT model training and avoid
degeneration to an unconditional language model.

Our experiments were conducted mainly on two
popular machine translation benchmarks: WMT14
English-to-German and English-to-French. The re-
sults of the experimental exploration of decoders
with different depths show that a successfully
trained depth decoder greatly benefits the overall

translation performance and can work with the deep
encoder to achieve higher translation performance.
Moreover, the novel training approaches that we
propose both increase the stability of the training
of the deep-decoder model and enable additional
improvements.

2 Related Work

2.1 Deep NMT Model

In computer vision tasks, it has been found that
increasing the depth of convolutional neural net-
works can significantly increase the performance
(He et al., 2016). As deep neural networks have
become widely used in NLP tasks, machine trans-
lation tasks have also incorporated deep neural
networks for modeling, using an encoder–decoder
architecture based on a recurrent neural network
(RNN) (Sutskever et al., 2014; Bahdanau et al.,
2015). Since the emergence of the Transformer-
based model (Vaswani et al., 2017), the deep model
has become the mainstream baseline model for ma-
chine translation (Li et al., 2021d). The Trans-
former NMT model employs a deeper architecture
than the RNN-based model, with six encoder lay-
ers and six decoder layers. During the same time
period, Gehring et al. (2017) introduced an encoder–
decoder architecture wholly based on CNNs, which
increased both the number of encoder layers and
the number of decoder layers to 20. In addition to
structural design, unsupervised learning have also
become another important branch of NMT (Lample
et al., 2018; Li et al., 2019a, 2020b, 2021c; Nguyen
et al., 2021).

Because greater model capacity has the poten-
tial to contribute significantly to quality improve-
ment (Zhang et al., 2019b; Li et al., 2019b; Parnow
et al., 2021), deepening a model is regarded as a
good method of boosting the capacity of the model
with the same architecture. It has been shown that
more expressive features are extracted (Mhaskar
et al., 2016; Telgarsky, 2016; Eldan and Shamir,
2016), which has resulted in improved performance
for vision tasks (He et al., 2016; Srivastava et al.,
2015) over the past few years. In Transformer
NMT models, there have also been numerous stud-
ies on deepening the model for better performance.
Bapna et al. (2018) took the first step toward train-
ing extraordinarily deep models by deepening the
encoders for translation, but discovered that simply
increasing the encoder depth of a basic Transformer
model was insufficient. Because of the difficulty of

460



training, models utterly fail to learn. Transparent
attention has also been proposed to regulate deep-
encoder gradients; this eases the optimization of
deeper models and results in consistent gains with
a 16-layer Transformer encoder.

Following research on deepening the encoder
to obtain a deep NMT model, as in (Bapna et al.,
2018), Wu et al. (2019) proposed a two-stage train-
ing strategy with three special model structural de-
signs for constructing deep NMT models with eight
encoder layers. Wang et al. (2019) proposed a dy-
namic linear combination mechanism and success-
fully trained a Transformer model with a 30-layer
encoder, with the proposed mechanism shorten-
ing the path from upper-level layers to lower-level
layers to prevent the gradient from vanishing or
exploding. Zhang et al. (2019a) proposed a depth-
scale initialization for improving norm preserva-
tion and a merged attention sublayer that integrates
a simplified average-based self-attention sublayer
into the cross-attention module. Fan et al. (2020)
employed a layer-drop mechanism to train a 12-6
Transformer NMT model and pruned subnetworks
during inference without fine-tuning. More re-
cently, Wei et al. (2020) proposed to attend the
decoder to multigranular source information with
different space-scales, thereby boosting the train-
ing of very deep encoders without special training
strategies. Li et al. (2020a) developed a shallow-
to-deep training strategy and employed sparse con-
nections across blocks to successfully train a 48-
layer encoder model. Kong et al. (2021) studied
using deep-encoder and shallow-decoder models
to improve decoding speed while maintaining high
translation quality. Most of these related studies
focused on deepening the encoder for deep NMT
models, whereas there have been very few studies
on deepening the decoder. Herein lies the most
significant dissimilarity between our work and this
related work.

2.2 Contrastive Learning in NLP

Contrastive learning (Hadsell et al., 2006) is an ef-
fective approach to learning and is usually used for
unsupervised learning because of its unique char-
acteristics. It has achieved significant success in
various computer vision tasks (Misra and van der
Maaten, 2020; Zhuang et al., 2019; Tian et al.,
2020; He et al., 2020; Chen et al., 2020). Gao
et al. (2021) introduced a simple contrastive learn-
ing framework for unsupervised learning of sen-

tence embedding, which performed as well as pre-
vious supervised approaches. Wu et al. (2020c)
employed multiple sentence-level augmentation
strategies—such as word and span deletion, re-
ordering, and substitution—with a sentence-level
contrastive learning objective to pretrain a language
model for a noise-invariant sentence representation.
Fang et al. (2020) pretrained language representa-
tion models using contrastive self-supervised learn-
ing at the sentence level by predicting whether two
back-translated sentences originate from the same
sentence. In (Giorgi et al., 2021), a universal sen-
tence embedding encoder was trained to minimize
the distance between the embeddings of textual
segments randomly sampled from nearby locations
in the same document by a self-supervised con-
trastive objective. Pan et al. (2021) demonstrated
the effectiveness of contrastive learning in NMT,
particularly for the zero-shot machine translation
situation. Current contrastive learning for NMT
primarily employs cross-lingual representation sim-
ilarity, whereas we aim to prevent the outputs of
the deep decoder and the unconditional language
model from becoming too similar, thus prevent-
ing degradation. Li et al. (2021b) presented an
contrastive learning-reinforced domain adaptation
approach for NMT. Part of our method is similar to
(Miao et al., 2021) in purpose, but it is designed to
avoid the NMT model from over-confident, while
ours is to tackle the problem of the deep decoder
collapsing into an unconditional language model.

3 Our Method

Given bilingual parallel sentences ⟨X,Y⟩, the
NMT model learns a set of parameters Θ by maxi-
mizing the likelihood J (Y|X,Θ), which is repre-
sented as the product of the conditional probabili-
ties of all target words:

JNLL(Y|X;Θ) =

|Y|∏
i=1

P (Yi|Y<i,X;Θ)

= −
|Y|∑
i=1

logP (Yi|Y<i,X;Θ),

(1)

where |Y| represents the sequence length of Y,
Yi represents the i-th token of sequence Y, and
Y<i represents all the tokens before the i-th to-
ken. Encoder–decoder architectures are commonly
employed in NMT to model the translation condi-
tional probabilities P (Y|X;Θ), where the encoder
and decoder can be implemented as RNNs (Wu
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et al., 2016), CNNs (Gehring et al., 2017), or self-
attention (Vaswani et al., 2017). In this study, we
used the most recent Transformer NMT model,
based on a self-attention structure, as our baseline.

3.1 Transformer NMT Model
The encoder and decoder in the Transformer NMT
model both consist of stacked multiple layers, with
each layer composed of attention networks. The
following is the basic form of an attention network:

ATTN(HQ,HKV) = WO

[
Softmax(

QKT

√
d

)V

]
,

Q,K,V = WQHQ,WKHKV,WVHKV,

(2)

where WQ,WK,WV, and WO are weight pa-
rameters, d is the hidden dimension, and HQ and
HKV are two input vectors for attention, with HQ

serving as a query and HKV serving as key and
value. When HQ and HKV are input into the
same vector, the attention becomes self-attention:
SELFATTN(HQKV) = ATTN(HQKV,HQKV). To
improve feature extraction capabilities, Vaswani
et al. (2017) advocated using a multihead mecha-
nism to enhance the original attention; we omit this
here for simplicity.

In the encoder, Le identical layers are stacked,
and each layer has a self-attention sublayer and
a pointwise feedforward sublayer. Layer normal-
ization (Ba et al., 2016) and skip residual connec-
tion (He et al., 2016) are employed for each sub-
layer’s input and output. The process in the l-th
encoder layer can be formalized as follows:

Ĥl
e = LN

(
SELFATTN(Hl−1

e ) +Hl−1
e

)
,

Hl
e = LN

(
FFN(Ĥl

e) + Ĥl
e

)
,

(3)

where Hl−1
e denotes the output of the (l-1)-th layer

in the encoder, FFN(·) is the pointwise feedforward
sublayer with a two-layer feedforward network and
ReLU activation function, and H0

e = EMB(X) de-
notes the initial representation from the embedding
layer.

The decoder consists of Ld identical layers. As
in the encoder, the self-attention network is used
to extract features from the target sequence in each
layer; however, in addition, a cross-attention is
used to extract features from the source sequence.
The process of the l-th layer in the decoder can be
formalized as follows:

Ĥl
d = LN

(
SELFATTN(CASUALMASK(Hd)) +Hl−1

d

)
,

H̃l
d = LN

(
CROSSATTN(Ĥl

d,H
Le
e ) + Ĥl

d

)
,

Hl
d = LN

(
FFN(H̃l

d) + H̃l
d

)
.

where H0
d = EMB(Y), CAUSALMASK(·) repre-

sents the causal mask mechanism (to make any i-th
token unable to see future tokens, thereby maintain-
ing unidirectional translation), CROSSATTN(·) is
the same as ATTN(·) in implementation, in which
the hidden state on the decoder is input as the query,
and the hidden state on the encoder is input as the
key and value. The output target sequence is pre-
dicted on the output hidden state HLd

d from the top
layer of the decoder:

P (Y|X;Θ) = Softmax(WDH
Ld
d ), (4)

where WD is the projection weight parameter,
which maps the hidden state to the probability in
the vocabulary space.

3.2 Deep Decoder Collapse
In theory, we can construct a deeper Transformer
NMT model by stacking more decoder layers in ad-
dition to more encoder layers. To illustrate the chal-
lenge of simply increasing the number of decoder
layers for a deep NMT model, we conducted a pre-
liminary experiment using the WMT14 En→De
translation task.
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Figure 1: Training perplexity vs. decoder depth and
BLEU score vs. decoder depth on WMT14 En→De
translation task.

Figure 1 shows the relationship between train-
ing perplexity and BLEU score on the test set with
different decoder depths after 200K training steps.
Except for the number of decoder layers, other
hyperparameters were kept consistent with those
used in the Transformer-based model setting. The
figure shows that, as the number of decoder lay-
ers increased, the training perplexity fell gradually
and then increased, whereas the BLEU score in-
creased at first and eventually declined to a very
low level. This phenomenon is referred to as deep-
decoder collapse. The perplexity on the training
set appeared to decrease but the translation per-
formance was very poor; we hypothesize that this
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phenomenon was caused by the model ignoring the
source inputs, leading the decoder to degenerate to
an unconditional language model. To verify our hy-
pothesis, we made improvements in two respects:
model structure and model training.

3.3 Cross-attention Drop

The sole fundamental difference between the de-
coder in Transformer NMT and the pure uncondi-
tional language model, such as GPT2, is the cross-
attention in Eq. (4). The cross-attention forces the
target representation to include features from the
source’s representation, rather than relying only on
the visible target tokens. Although the presence
of cross-attention intuitively prevents the decoder
from degenerating to an unconditional language
model, we argue that it is the presence of cross-
attention that makes the learning more difficult.
This is because each layer in the deep decoder plays
a more distinct role than in a shallow decoder but
each layer is forced to extract features from the
source representation. Thus, the decoder may aban-
don the cross-attention and act as an unconditional
language model, to achieve a lower training loss.

We propose a drop-net technique to ensure that
the features output by self-attention and the en-
coder are fully exploited. This technique, inspired
by dropout (Srivastava et al., 2014) and drop-path
(Larsson et al., 2017), can be employed to regu-
larize the network training. Specifically, for the
l-th decoder layer, given a drop-net rate of plnet, we
randomly sample a variable U l ∈ [0, 1], and the
calculation of H̃l

d in Eq. (4) becomes:

H̃l
d,drop-net = LN

(
1(U l > plnet) · Ĥl

d+

1(U l < plnet) · (CROSSATTN(Ĥl
d,H

Le
e ) + Ĥl

d)
)
.

where 1(·) is an indicator function. For layer l,
with probability plnet, only self-attention is used;
with probability (1 − plnet), both of the two atten-
tions are used. During the inference stage, both
attentions are used for the H̃l

d calculation. For
the simplicity of implementation, we adopted a
same fixed pnet for layers 1 ≤ l ≤ Ldr (i.e.
plnet = pnet, 1 ≤ l ≤ Ldr), while set plnet = 1.0
for layers l > Ldr. We denote Ldr as the drop
depth and pnet as the drop ratio.

3.4 Collapse Reducing Training

In addition to the model structure, we introduced
two extra losses into model training: one for stable
optimization and another to minimize the risk of the

decoder degenerating to an unconditional language
model. These are the DDR loss and ALD loss, both
of which are inspired by the concept of contrastive
learning.

Because of the use of dropout and drop-net in
the decoder, we propose a simple regularization
loss, DDR loss, which is based on the randomness
of the model structure. The purpose of this loss,
which is inspired by R-drop (Wu et al., 2021), is
to regularize the output predictions from different
substructures of the deep decoder and increase the
stability of the optimization. Specifically, because
the same source representation and target tokens
are input twice, the two predicted distributions P1

and P2 are forced to be mutually consistent. The
probability forms of two separate passes for the
decoder only are written as P1(Yi|Y<i,H

Le
e ;Θd)

and P2(Yi|Y<i,H
Le
e ;Θd), in which Θd denotes

the parameters of the decoder. The similarity loss
of the two prediction distributions is implemented
as the minimization of the bidirectional Kullback–
Leibler (KL) divergence between the two distribu-
tions:

J DDR =
1

2

(
DKL(P1(Yi|Y<i,H

Le
e ;Θd)||P2(Yi|Y<i,H

Le
e ;Θd)+

DKL(P2(Yi|Y<i,H
Le
e ;Θd)||P1(Yi|Y<i,H

Le
e ;Θd)

)
,

where DKL(p||q) denotes the logarithmic differ-
ence between probabilities p and q. A decoder
with drop-net and dropout can converge stably by
contrastive learning from the two passes’ output
distributions of the same input.

With the DDR loss, regularization training is
applied to the deep decoder with dropout and drop-
net to help the decoder converge; however, the
risk of the model degenerating to an unconditional
language model remains. To solve this problem,
we propose the ALD loss, the primary purpose
of which is to allow the model to be aware that
the amount of source information used determines
the effect on the decoder output, when performing
contrastive learning. That is, the output with more
source information used should be more similar to
the output using full source information than the
output with less source information used.

The traditional definition of contrastive learn-
ing assumes a set of paired examples, D =
{(zi, z+i )}Mi=1, where zi and z+i are semantically
related. In contrastive learning, z+i is used as a pos-
itive instance of zi, and other in-batch examples are
used as the negative instances. Specifically, the loss
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Systems WMT14 En→De WMT14 En→Fr

Enc. Dec. Ratio Params Time BLEU sacreBLEU Params Time BLEU sacreBLEU

(Vaswani et al., 2017) (BIG) 6 6 1.0 213M N/A 28.40 N/A 222M N/A 41.00 N/A
(Shaw et al. 2018) (BIG) 6 6 1.0 210M N/A 29.20 N/A 222M N/A 41.30 N/A
(Ott et al., 2018) (BIG) 6 6 1.0 210M N/A 29.30 28.6 222M N/A 43.20 41.4
(Wu et al., 2019) (BIG) 8 8 1.0 270M N/A 29.92 N/A 281M N/A 43.27 N/A
(Wang et al., 2019) (BIG, DEEPE) 30 6 5.0 137M N/A 29.30 N/A N/A N/A N/A N/A
(Wei et al., 2020) (BASE, DEEPE) 48 6 8.0 272M N/A 30.19 N/A N/A N/A N/A N/A
(Wei et al., 2020) (BIG, DEEPE) 18 6 3.0 512M N/A 30.56 N/A N/A N/A N/A N/A
(Li et al., 2020a) (BASE, DEEPE) 24 6 4.0 118M 6.16 29.02 27.9 124M 33.81 42.42 40.6
(Li et al., 2020a) (BASE, DEEPE) 48 6 8.0 194M 10.65 29.60 28.5 199M 55.35 42.82 41.0
(Li et al., 2020a) (BIG, DEEPE) 24 6 4.0 437M 18.31 29.93 28.7 N/A N/A N/A N/A

BASE (Pre-Norm) 6 6 1.0 63M 4.79 27.05 26.0 65M 27.11 41.00 39.2
DEEPE 24 6 4.0 118M 8.66 28.95 27.8 119M 48.43 42.40 40.6
DEEPE 48 6 8.0 194M 16.38 29.44 28.3 195M 90.85 42.75 41.0
DEEP 15 15 1.0 123M 9.82 0.55 0.2 124M 49.96 0.93 0.3
DEEP+CAD+CRT 15 15 1.0 123M 10.52 29.09 28.1 124M 50.13 42.86 41.0
DEEP 27 27 1.0 199M 16.56 0.31 0.1 200M 78.82 0.65 0.1
DEEP+CAD+CRT 27 27 1.0 199M 17.92 30.31 28.8 200M 79.96 43.57 41.6

BIG (Pre-Norm) 6 6 1.0 210M 36.05 28.79 27.7 212M 97.51 42.40 40.6
DEEPE 24 6 4.0 437M 42.41 29.90 28.7 439M 102.14 43.11 40.9
DEEP 15 15 1.0 448M 45.32 0.40 0.2 449M 108.02 0.71 0.2
DEEP+CAD+CRT 15 15 1.0 448M 46.52 30.69 29.0 449M 110.5 43.95 41.9

Table 1: Number of model parameters, training time (hours), BLEU scores (%), and sacreBLEU scores (%) of
translation models on WMT14 En→De and En→Fr tasks. We use BASE and BIG to represent the different parameter
settings of the NMT model, DEEP represents the deep NMT model, and DEEPE specifically refers to the deep NMT
model with a deep encoder.

of contrastive learning is realized as a cross-entropy
loss, and can be represented as follows:

JCL = − log
esim(G(zi),G(z+i ))/τ∑N
j=1 e

sim(G(zi),G(zj))/τ
, (5)

where N is the size of a mini-batch, G(·) denotes
a function that transforms a sequence input into a
final single-vector representation, sim(v1,v2) de-

notes the cosine similarity v⊤
1 v2

∥v1∥·∥v2∥ , and τ is a soft-
max temperature hyperparameter. In SimCSE (Pan
et al., 2021), the G(·) function is implemented as
the model with an additional pooling layer that
obtains the sentence representation. Because the
presence of dropout in the model results in differ-
ent outputs for the same input, the input is treated
as a positive instance of zi itself.

In ALD loss, our purpose is entirely different
from the above. We consider using more source
inputs as positive instances and fewer as negative
instances of zi, with all source inputs. Specifically,
for the translation pair ⟨X,Y⟩, we randomly sam-
ple a ratio γ ∈ [0, pALD), 0 < pALD < 0.5, replace
the token in X with UNK in the ratio γ to obtain
X+, and replace the X in the ratio (1 − γ) with
UNK to obtain X−.

JALD = − log
esim(G(X,Y),G(X+,Y))/τ∑

∗∈[+,−] e
sim(G(X,Y),G(X∗,Y))/τ

, (6)

where G(·, ·) denotes average pooling output on the
hidden state from the top layer of the decoder (i.e.,
G(X,Y) = AVGPOOL(HLd

d )). When using ALD
loss, if the decoder ignores the source inputs and
degenerates to an unconditional language model,
the source inputs will have very little impact on
the output: G(X,Y), G(X+,Y), and G(X−,Y)
will all be similar, resulting in confusion for the
contrastive learning.

3.5 Discussion

Inspired by the wildly discussed KL divergence
vanishing problem (Bowman et al., 2016) of varia-
tional autoencoder (VAE), in which the expressive
decoder does not rely on the latent variable to re-
construct the input data, i.e., the KL divergence
vanishes to be zero, we hypothesis the similar phe-
nomenon appears in the machine translation mod-
els that are enhanced with a deep decoder. We
presume that as the decoder goes deeper, the ex-
pressive capacity of the decoder is getting strong
enough to generate the target sentence ignoring
the information from the source sentence. In other
words, the machine translation model, which can
also be considered a conditional language model
P (Yi|Y<i, X), collapses to an unconditional lan-
guage model P (Yi|Y<i). Moreover, due to teacher
forcing training procedure is applied as standard
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practice, generating tokens at the end of the sen-
tence is much easier than generating tokens at the
beginning of the sentence. This is because suf-
ficient information from the ground-truth history
Y<t is already known to the decoder at this time
step t, thus it is completely feasible to generate
the next token with information from the source
sentence ignored. We claim this is the reason that
a low perplexity score can still be obtained but the
quality of translation, the BLEU score, is greatly
compromised.

According to these hypotheses, we claim that
preventing the decoder from collapsing to an uncon-
ditional language model is the key to overcoming
the failure of the NMT model with a deep decoder.
Following the two main approaches to mitigate the
posterior collapse problem, we proposed methods
from two aspects, i.e., model structure and model
training.

4 Experiment

4.1 Setup

Dataset To compare with previous work, we
conducted experiments on two classical machine
translation datasets: WMT14 English-to-German
(En→De) and English-to-French (En→Fr). The
corpus sizes are 4.5M and 36M for the En→De
and En→Fr datasets, respectively. Following
common practice, we concatenated newstest2012
and newstest2013 as the validation set and used
newstest2014 as the test set. We employed
tokenizer.pl in Moses (Koehn et al., 2007)
to tokenize En, De, and Fr sentences, and then used
BPE (Sennrich et al., 2016) to split the words into
subwords. A joint BPE strategy with 40K merge
operations between source and target languages
was adopted to construct the vocabulary.

Configuration We adopted the most widely
used Transformer (Vaswani et al., 2017) network
as our research basis1. Two typical parameter
settings are often used to fulfill various needs:
Transformer BASE and Transformer BIG. Both
settings employ a six-layer encoder and a six-
layer decoder. The differences between them
are the embedding width, feedforward network
size, and number of attention heads, which are
512/2048/8 for BASE and 1024/4096/16 for BIG.
We used multi-bleu.perl and detokenized

1Our code will be available at https://github.com/
bcmi220/ddnmt.

sacreBLEU2 to evaluate the translation perfor-
mance on test sets, for fair comparison with previ-
ous work. Other hyperparameter settings for model
training were consistent with (Vaswani et al., 2017).
The number of training steps was 200K for En→De
models and 400K for En→Fr models, the batch size
was 4096 tokens per GPU, and the models were
trained on eight NVIDIA V100 GPUs.

4.2 Main Results

Table 1 shows the results of our model on the
WMT14 En→De and En→Fr translation tasks. To
make it easier to compare the results of NMT mod-
els with the same depth, we set the total number
of layers of the model to be as consistent as pos-
sible with that used in related work. Because the
encoder is responsible for encoding the source lan-
guage, and the decoder is in charge of encoding the
target language, and the depth of the model affects
its abstraction ability, we argue that the encoder
should have a depth similar to that of the decoder.
Therefore, we employed the same number of layers
for the encoder and decoder in the NMT model.

On the basis of the baseline model, the results for
the deepened models (denoted by DEEP) suggest
that the training encountered failures, and deeper
models achieved worse results. When we applied
the CAD and CRT approaches to the Deep mod-
els, the training failure problem was resolved: the
full model both achieved better results than the
corresponding baselines and obtained performance
superior to that of the model with a deep encoder
only. This demonstrates that a deeper model has
performance advantages, and our proposed CAD
and CRT methods alleviate the problem of deep-
decoder collapse. In addition, it reveals that the
architecture with balanced encoder and decoder
outperforms the architecture with only a deep en-
coder. We also conducted experiments to deepen
the NMT models under the BIG parameter setting,
and the performance phenomenon was similar to
that observed under the BASE parameter setting.

Compared with (Wang et al., 2019), our model
achieved similar results but with fewer layers (30),
and did not require a special model structure design.
Our models achieved a better translation effect
with fewer parameters compared with the results of
(Wei et al., 2020), demonstrating that our proposed
method is simple and very effective. In comparison
with (Li et al., 2020a), our models performed simi-

2https://github.com/mjpost/sacreBLEU
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larly in En→De translation under the BASE setting,
and demonstrated better performance in En→Fr.
We believe that this is a consequence of the larger
quantity of training data in En→Fr, which allows
the decoder to be more fully trained. We obtained
generally better results in the BIG setting, whereas
Li et al. (2020a)’s results were comparable to those
of our DEEPE baseline.

4.3 Further Exploration

Effects of Drop Depth and Drop Ratio. As ex-
plained in model part, we propose the CAD ap-
proach for the deep NMT model structure. To in-
vestigate the impact of the drop depth and drop ra-
tio on final translation performance, we conducted
experiments on the WMT14 En→De task using the
BASE, DEEP-54L model with both CAD and ALD
techniques; the experimental results are presented
in Figure 2. We found that, when the drop depth
was very small for a 27-layer decoder, the model
also suffered from the problem of deep-decoder
collapse, and the translation performance was very
poor. When we increased the drop depth, the trans-
lation performance improved progressively, reach-
ing a peak at the 21st layer, confirming our hypoth-
esis that cross-attention is a contributing cause to
the problem of deep-decoder collapse.

As the drop depth was increased further, perfor-
mance suffered, even though there was no train-
ing failure. This demonstrates that cross-attention
is also an important component of the translation
model, and insufficient cross-attention also pre-
vents the model from extracting adequate source
information. Furthermore, we compared several
drop ratios and observed that, with a small drop
depth, pnet = 1.0 indicates that all cross-attention
drops in the corresponding layer will have a supe-
rior final effect. Conversely, with a greater drop
depth, a smaller pnet—which retains some of the
cross-attention—will achieve better results.

Hyperparameters in ALD Loss. To analyze the
effect of the hyperparameters—softmax tempera-
ture τ and sampling threshold pALD—in the ALD
loss, we conducted experiments on the WMT14
En→De task with the BASE, DEEP-30L model.
The results obtained are presented in Figure 3,
which shows that increasing the sampling threshold
improves the BLEU score. This is because a larger
pALD for UNK replacement can yield a greater di-
versity of negative examples, which is beneficial
for contrastive learning. However, if pALD is fur-
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Figure 2: Influence of different drop ratios and depths
on translation performance of deep NMT model.
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Figure 3: Influence of sampling threshold pALD and
temperature parameter τ on translation performance in
ALD loss.

ther increased, the difference between positive and
negative examples decreases, which has a detri-
mental impact on the final translation performance.
Compared with the sampling threshold pALD, the
temperature τ has a relatively small effect. The ex-
perimental results reveal that the BLEU score with
τ = 0.05 is slightly lower than that with τ = 0.1.
We believe that, when the value of the temperature
parameter is too small, the ALD loss is too large,
thus affecting the model’s convergence.

Effects of Encoder Depth and Decoder Depth.
Because our method allows for a deep encoder and
decoder, we investigated the effect of encoder and
decoder depth on translation performance. We se-
lected the BASE, DEEP-30L model as the basis and
conducted experiments on the WMT14 En→De
translation task, changing only the depth of the
encoder or decoder. The results are illustrated in
Figure 4. When the encoder depth was 1, the trans-
lation performance was significantly poorer than
when the decoder depth was 1, indicating that the
encoder has a more obvious performance limit at
this shallow level. This is because the encoder is
directly responsible for the extraction of the source
representation, and a shallow encoder cannot ex-
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Figure 4: Effects of different encoder and decoder
depths when using CAD and CRT methods.

Enc. Dec. BLEU sacreBLEU

24 6 28.95 27.8
6 24 28.21 27.0

15 15 29.09 28.1

Table 2: Performance of deep NMT models with differ-
ent combinations of encoder and decoder depth.

tract enough source information. This suggests that,
if resources are restricted and the number of layers
needs to be decreased to obtain a smaller model, it
is more effective to reduce the number of decoder
layers; this finding is compatible with Kasai et al.
(2021)’s conclusion. In addition, increasing the
depth of both the encoder and the decoder improves
the model’s translation performance, implying that
increasing the number of decoder layers is effective
in a deep NMT model.

The balance between the number of encoder lay-
ers and the number of decoder layers in a deep
model is another important consideration. To inves-
tigate this, we compared translation performance
in three typical cases on WMT14 En→De with the
total number of encoder and decoder layers set to
30. As shown in Table 2, the model with an equal
number of encoder and decoder layers achieved the
best results, outperforming the pure deep-encoder
and deep-decoder models.

5 Ablation Study

We conducted ablation studies on the modifications
that we made to both the model structure and train-
ing to investigate their respective effects on the
translation performance. The ablation research was
conducted on the WMT14 En→De task, as before,
and the model employed was the BASE, DEEP-30L-
Full model. We began by adding extra R-Drop,
DDR, ALD, and CAD techniques to its baseline
model (BASE, DEEP-30L). The results in Table 3
show that the baseline training was unsatisfactory,

System BLEU sacreBLEU

BASE, DEEP-30L 0.55 0.2
+R-Drop 0.97 0.5
+DDR 1.01 0.4
+ALD 1.45 0.7
+CAD 28.35 27.2

BASE, DEEP-30L-Full 29.09 28.1
-CAD 1.39 0.7
-DDR 28.77 27.6
-ALD 28.52 27.4

Table 3: Ablation studies on model structures and train-
ing approaches.

even with the addition of the better training meth-
ods (R-Drop, DDR, and ALD). However, when we
dropped cross-attention after applying CAD, the
model training became normal, indicating that the
model structure has a significant impact on its per-
formance. When we compared the results of BASE,
DEEP-30L+CAD with those of BASE, DEEP-30L-
Full, we found that the training methods DDR and
CAD were beneficial to improving performance,
demonstrating their effectiveness.

We also conducted ablation evaluation of the
model structure and training method on the en-
tire model. According to the results, CAD had
the greatest influence on the translation perfor-
mance, which is consistent with the conclusion
stated above, based on the results in Table 3. Addi-
tionally, when comparing DDR and ALD, we found
that ALD had a greater influence on translation be-
cause it directly mimics the deep-decoder collapse
problem, whereas DDR is mostly employed to in-
crease the stability of the training of the drop-net
mechanism in CAD, by incorporating regulariza-
tion.

6 Conclusion

In this paper, we investigated the problem of deep-
decoder collapse in NMT when the decoder is deep-
ened. We introduced a CAD mechanism, DDR
loss, and ALD loss to solve this problem. Using
this model, we demonstrated that a deep model
with balanced numbers of encoder and decoder
layers outperforms either encoder deepen only or
decoder deepen only NMT models. Our model out-
performed previous similar models on the WMT14
En→De and En→Fr tasks, confirming the effective-
ness of our approach. For future work, we intend
to incorporate methods from related work on deep
NMT to further improve the performance of our
translation model.
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