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Abstract

Commonsense inference poses a unique chal-
lenge to reason and generate the physical, so-
cial, and causal conditions of a given event. Ex-
isting approaches to commonsense inference
utilize commonsense transformers, which are
large-scale language models that learn com-
monsense knowledge graphs. However, they
suffer from a lack of coverage and expressive
diversity of the graphs, resulting in a degrada-
tion of the representation quality. In this paper,
we focus on addressing missing relations in
commonsense knowledge graphs, and propose
a novel contrastive learning framework called
SOLAR1. Our framework contrasts sets of se-
mantically similar and dissimilar events, learn-
ing richer inferential knowledge compared to
existing approaches. Empirical results demon-
strate the efficacy of SOLAR in commonsense
inference of diverse commonsense knowledge
graphs. Specifically, SOLAR outperforms the
state-of-the-art commonsense transformer on
commonsense inference with ConceptNet by
1.84% on average among 8 automatic evalu-
ation metrics. In-depth analysis of SOLAR
sheds light on the effects of the missing rela-
tions utilized in learning commonsense knowl-
edge graphs.

1 Introduction

Commonsense inference, reasoning of unobserved
conditions from an observed event, is an important
but challenging task in natural language processing
(NLP) (Rashkin et al., 2018; Bosselut et al., 2019;
Yuan et al., 2020; Hwang et al., 2021). This is easy
for humans, but still out of the reach of current
artificial intelligence systems. Commonsense in-
ference aims to generate textual descriptions of the
inference results, which is more in line with the

∗These authors contributed equally to this work.
1Code available at https://github.

com/yongho94/solar-framework_
commonsense-inference

Figure 1: Illustration of missing relations of semanti-
cally similar events in commonsense KGs.

process of humans reasoning based on their knowl-
edge. For a given event “X walks into a hospital”,
the causal conditions (e.g., what to do before and
after the event), physical conditions (e.g., capabil-
ity and location of entities), and social conditions
(e.g., the intention and reaction of X) of the event
are to be inferred.

Recent studies on commonsense inference have
adopted commonsense transformers (Bosselut
et al., 2019), which are large-scale language models
trained on commonsense knowledge graphs (KGs)
like ATOMIC (Sap et al., 2019) and ConceptNet
(Speer et al., 2017). Such models are grounded on
the hypothesis that language models can memorize
facts in their parameters during training (Petroni
et al., 2019; Roberts et al., 2020). It is observed that
training language models on commonsense KGs
allows them to express commonsense knowledge
more accurately (Bosselut et al., 2019; Hwang et al.,
2021). Despite these efforts, commonsense trans-
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former models still suffer from two main obstacles
inherent in commonsense KGs: (1) lack of cover-
age and (2) expressive diversity of the graphs. First,
commonsense KGs lack the coverage required to
be applicable for diverse situations in the real world
(Li et al., 2016; Saito et al., 2018). In ATOMIC,
even with the possibility of far more commonsense
properties being relevant, any single node has only
2.2 commonsense properties directly related on av-
erage(Malaviya et al., 2020). Second, with the non-
canonical and free-form text representation for the
nodes in commonsense KGs, semantically identi-
cal or similar expressions of events are represented
as distinct nodes (Malaviya et al., 2020). For exam-
ple, “PersonX is fond of dogs” and “PersonX likes
dogs” are semantically identical, but represented
as distinct nodes. The expressive diversity makes
commonsense KGs substantially sparser than con-
ventional KGs. Owing to the lack of coverage and
expressive diversity, a significant amount of valid
relations between nodes are missing in common-
sense KGs.

In this study, we focus on learning from missing
relations in commonsense KGs for commonsense
inference. Our key observation is that semantically
identical or similar events can have the same rela-
tions as shown in Figure 1. For example, “PersonX
likes dogs” and “PersonX loves animals” are se-
mantically similar to “PersonX loves dogs”, and
the inference that “PersonX wants to adopt one”
can be drawn from any of those events. Modeling
such missing relations helps the model learn richer
representations from commonsense KGs. Current
approaches for alleviating the sparsity of common-
sense KGs, such as automatic commonsense KG
completion (Li et al., 2016; Saito et al., 2018;
Malaviya et al., 2020), do not effectively address
missing relations, because the completion models
only learn existing relations as valid.2 Therefore,
this problem remains unexplored.

We propose a novel learning framework of
commonsense transformers, called Self-supervised
cOntrastive LeArning with missing Relations (SO-
LAR), to address the aforementioned problem. Our
framework trains large-scale language models to
learn both existing and missing relations with self-
supervised contrastive learning, distinguishing be-
tween the missing and valid relations as positive
and the invalid relations as negative. Specifically,

2Note that Malaviya et al. (2020) train their model only on
existing relations as valid, although utilizing synthetic links in
encoding node representations.

we construct sets of examples including semanti-
cally similar events and their relation-object pairs
based on the similarity of language representations
(e.g., Person likes dogs and PersonX loves animals).
We then contrast each set of examples with the
sets including dissimilar events and their relation-
object pairs. Our contrastive learning framework al-
lows the model to identify the interrelationship be-
tween semantically similar events and their relation-
object pairs, leading to a better understanding of
missing relations in commonsense KGs than a data
augmentation approach.

We evaluate our framework for commonsense
inference on three commonsense KGs: ConceptNet
(Speer et al., 2017), ATOMIC (Sap et al., 2019),
and ATOMIC20

20 (Hwang et al., 2021). Empirical
results show that SOLAR outperforms the state-
of-the-art commonsense transformers on common-
sense inference. In particular, for ConceptNet, SO-
LAR with BART-large (Lewis et al., 2020) outper-
forms COMET (Hwang et al., 2021) with BART-
large by 1.84% on average among 8 automatic eval-
uation metrics. In addition, we observe that SO-
LAR with BART-base produces comparable results
to COMET with BART-large, which validates that
our framework is superior to existing approaches
in terms of both effectiveness and efficiency. Our
main contributions are as follows:

• We present a novel contrastive learning frame-
work for commonsense transformers, called
SOLAR, that learns from both existing and
missing relations in commonsense KGs.

• We develop a principled scheme for construct-
ing positive and negative sets of examples
with commonsense KGs based on similarities
of events in language representations.

• We verify that SOLAR establishes new state-
of-the-art results in commonsense inference
across diverse commonsense KGs.

2 Related Work

2.1 Commonsense Inference
In the NLP domain, several studies have proposed
commonsense inference models that utilize com-
monsense KGs. Rashkin et al. (2018) proposed
Event2Mind, a commonsense KG that involves a
textual description of a person’s response or in-
tention of daily events. Sap et al. (2019) pro-
posed ATOMIC knowledge graph as an extension

1515



Figure 2: Illustration of contrastive learning of commonsense tuples. (a) Based on adversarially sampled root
subjects, semantically similar subjects are sampled. (b) Subjects and relation-object pairs connected to them are
projected to separate hidden representations through a generative language model and a projection layer. (c) Hidden
representations obtained from the same root subject are considered as positive pairs, and those obtained from other
root subjects are considered as negative pairs for contrastive learning.

of Event2Mind with more relations and tuples.
Both studies trained on the GRU model based on
their proposed graph to learn commonsense infer-
ence. Moreover, recent studies have shown that pre-
trained language models store various types of fact
knowledge in their latent parameters (Petroni et al.,
2019; Roberts et al., 2020). Bosselut et al. (2019)
revealed that language models can directly express
commonsense knowledge by training them on com-
monsense KGs. Hwang et al. (2021) showed that
KGs must be designed to contain knowledge that
is not already expressible by language models.
Gabriel et al. (2021) focused on discourse-level
commonsense inference, and Yuan et al. (2020)
proposed a language model architecture for logi-
cally consistent commonsense reasoning. Previous
studies have proposed training language models on
existing relations in commonsense KGs for com-
monsense inference. In our work, we focus on
addressing the missing relations of commonsense
KGs for better commonsense inference.

2.2 Contrastive Learning

Contrastive learning has shown promising perfor-
mances in computer vision (Chopra et al., 2005;
Henaff, 2020; He et al., 2020). SimCLR (Chen
et al., 2020b) introduced a simple but powerful
contrastive learning approach and showed a com-
petitive performance with supervised learning ap-
proaches. Contrastive learning is also widely used

in natural language processing, where a model ob-
tains unsupervised representations by learning to
predict positive or negative pairs. Mikolov et al.
(2013) proposed an efficient method for learning
word representations by classifying whether given
words appear in the same context or not. Further-
more, contrastive learning has been adopted to im-
prove the representations of pre-trained language
models. Reimers and Gurevych (2019); Zhang et al.
(2020b); Yan et al. (2021) introduced contrastive
learning frameworks for enhancing the sentence
representations. Lee et al. (2020) proposed a con-
trastive learning method to mitigate the exposure
bias problem. Inspired by these studies, we pro-
pose a novel contrastive learning framework for
commonsense representation learning with com-
monsense KGs. With our proposed framework,
the model learns inferential knowledge from both
existing and missing relations.

3 Methodology

In this section, we describe the model architecture
and training procedure of the proposed framework.

3.1 Notation
We define G = (V, E) as the commonsense knowl-
edge graph that consists of a set of nodes V and
a set of edges E. Following the notation from
COMET (Bosselut et al., 2019), we denote each
knowledge tuple from the knowledge graph as
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Algorithm 1 Set Construction Algorithm.

Input: root subjects Sroot, number of root sub-
jects N , edges E, set size 2m, threshold δ,
BERTScore function b(·, ·), base model f(·),
projection layer g(·)
for si ∈ Sroot do

Initialize Gi as ∅
for j ∈ {1, ...,m} do

if j = 1 then
sij ← si

else
repeat ▷ Sample similar subject

sij ← sample(S)
until b(f(sij), f(si)) > δ

end if
get tuple {sij , rij , oij} ∈ E containing sij
zi2j−1 ← g(f(sij))

zi2j ← g(f(rij ⊕ oij))

Gi ← Gi ∪ {zi2j−1, z
i
2j}

end for
end for
return G1, G2, ..., GN

{s, r, o}, where s is the phrase subject, r is the
relation, and o is the phrase object of the tuple.
Here, s and o are natural language sequences, and
r is a single special token (e.g., <xIntent>). Note
that s, o ∈ V and {s, r, o} ∈ E. We define S as
the set of all existing subjects from the knowledge
graph, and it follows that S ⊂ V . Finally, we de-
note the generative language model to be trained as
f(·) and a projection layer at the top of the model
as g(·). We use nonlinear projection layer proposed
by Chen et al. (2020b).

3.2 Commonsense Representation Learning
To improve commonsense representations of the
language model prior to learning commonsense
inference, we first proceed with commonsense rep-
resentation learning through contrastive learning
of commonsense tuples and commonsense recon-
struction.

Contrastive learning of commonsense tuples.
Inspired by our key observation that semantically
identical or similar events can have same relations,
we propose a novel commonsense representation
learning method based on contrastive learning.

The overall procedure of the proposed method
is depicted in Figure 2. First, we obtain a set of N
root subjects Sroot = {s1, s2, ..., sN} through ad-

versarial sampling on S. The adversarial sampling
procedure is designed such that pairwise semantic
similarity of subjects in Sroot lies between mini-
mum similarity α and maximum similarity β. Here,
we use BERTScore (Zhang et al., 2020a) between
phrase subjects as the semantic similarity metric.

We then obtain positive and negative pairs by
constructing N sets G1, G2, ..., GN containing hid-
den representations, where each Gi corresponds
to a root subject si ∈ Sroot. For an arbitrary
element si ∈ Sroot, we first sample m tuples
{sj , rj , oj} (j = 1, 2, ...,m) from E that contain
subjects sj semantically similar to si. Each sj
and rj ⊕ oj is projected to hidden representations
zi2j−1 = g(f(sj)) and zi2j = g(f(rj ⊕ oj)), and
added to Gi. Here, ⊕ denotes concatenation of
two sequences. Repeating for m times, the con-
structed set Gi contains 2m hidden representations
derived from subjects that are semantically similar
to the root subject si, and the relation-object pairs
connected to them. Algorithm 1 summarizes the
construction procedure.

We consider samples from the same set as posi-
tive pairs, and those from different sets are negative
pairs in contrastive learning. We use NT-Logistic
(the normalized temperature-scaled logistic) objec-
tive function (Chen et al., 2020b) as our training
objective to maximize the agreement between posi-
tive pairs while minimizing the agreement between
negative pairs. The formal expression of our objec-
tive function is given by the following equations:

lposi = −
∑2m

p,q=1 log σ(z
i
p
T
ziq/τ)

2m
, (1)

lnegi = −
∑

i<j≤N

∑2m
p,q=1 log σ(−zip

T
zjq/τ)

m(N − 1)
,

(2)

Lcont =
1

N

N∑
i=1

(lposi + lnegi ), (3)

where lposi is the loss function over positive pairs in
set Gi, and lnegi is the loss function over negative
pairs among set Gi and the other sets. In addition, τ
denotes the temperature parameter for temperature
scaling. The model is trained to minimize the final
objective Lcont, which is the mean of lposi and lnegi

for all i = 1, 2, ..., N .

Commonsense reconstruction. To further im-
prove the representation of a single tuple, we pro-
pose a commonsense reconstruction task inspired
by Lewis et al. (2020), in which the model learns to
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reconstruct corrupted tuples into their original form.
More specifically, we corrupt a commonsense tuple
{s, r, o} by randomly choosing one of the three
elements, masking the span of the chosen element,
and shuffling the order of the tuple. The model is
trained to reconstruct the original tuple from the
corrupted tuple. We expect that the reconstruction
task allows the model to better understand the tuple
itself by learning to predict the masked span with
tuple context and reordering tuple elements. The
objective of the commonsense reconstruction task
is to minimize Lrecon computed by cross-entropy
between the decoder output and the original tuple.

The model learns commonsense representations
through multitask learning on the two aforemen-
tioned tasks simultaneously. Therefore, the final
objective function of our framework is to minimize
the combined loss:

Lrep = ωLcont + (1− ω)Lrecon. (4)

3.3 Fine-tuning on Commonsense KGs

After learning commonsense representations, we
remove the projection head and fine-tune the model
with commonsense KGs to learn commonsense
inference. The model learns to generate a phrase
object o given a concatenation of phrase subject s
and relation r. The objective function of the task is
as follows:

Linfer = −
|E|∑
i=0

logPθ(oi|si, ri) (5)

3.4 Language Model Architecture

While SOLAR is agnostic to its generative lan-
guage model architecture, for our experiments,
we use BART (Lewis et al., 2020) with its pre-
trained parameters as our base generative language
model. BART is a transformer-based sequence-
to-sequence language model with a bidirectional
encoder and a left-to-right autoregressive decoder.
For commonsense representation learning (Section
3.2), we add a projection layer that maps the BART
decoder output representations to a space where
contrastive loss is applied. The projection head
is then removed for fine-tuning on commonsense
KGs (Section 3.3).

4 Experiments

In this section, we demonstrate the efficacy of our
framework by comparing the commonsense infer-

ence performances of SOLAR with those of the
state-of-the-art commonsense transformers.

4.1 Dataset
Commonsense KGs are widely used for evaluat-
ing the commonsense inference capability by mea-
suring the plausibility of the generated inferences
given unobserved events or entities. Hwang et al.
(2021) developed an adversarial splitting method
for dividing training, validation, and test sets that
prevent overlapping subjects of knowledge tuples
between the sets. We utilize the splitting method
to evaluate the inference capability of the model
for unseen events or entities. We use three com-
monsense KGs in our experiments: ConceptNet
(Speer et al., 2017), ATOMIC (Sap et al., 2019),
and ATOMIC20

20 (Hwang et al., 2021).
ConceptNet is a general commonsense knowledge
graph. We use a subset of the graph provided by
Li et al. (2016), which involves 36 relations and
300K tuples. The subset is divided into 265K, 5K,
and 30K tuples for training, validation, and testing
respectively.
ATOMIC is a social commonsense knowledge
graph that involves 9 relations with 877K tuples.
The split of ATOMIC includes 710K, 80K, and
87K tuples for training, validation, and testing, re-
spectively.
ATOMIC20

20 is a recently proposed large-scale com-
monsense knowledge graph, which involves 23
commonsense dimensions and contains 1.33M tu-
ples. It includes physical-entity, social-interaction,
and event-centered commonsense. ATOMIC20

20 is
split into 1.08M, 10K, and 15K tuples for training,
validation, and testing, respectively.

4.2 Experimental Settings
Baseline We use COMET (Bosselut et al., 2019),
the state-of-the-art commonsense transformers in
commonsense inference, as the baseline. We use
the public HuggingFace (Wolf et al., 2019) imple-
mentation of pre-trained BART (Lewis et al., 2020)
as a language model and train it using SOLAR
and COMET for comparison. BART-base has 6
transformer layers for encoder and decoder each
with a hidden size of 768, whereas BART-large
has 12 transformer layers for encoder and decoder
each with a hidden size of 1024. For fine-tuning,
we empirically choose the best number of epochs,
learning rate, and batch size among {1, 3, 5, 7, 9,
12}, {1e-5, 5e-5}, and {16, 32, 64, 128}, respec-
tively, and use the Adam optimizer with β1 = 0.9,
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr BERTScore

ConceptNet COMET-base 15.60 10.26 6.88 4.84 11.79 16.61 33.41 53.18
SOLAR-base 17.12 11.55 8.10 5.79 12.90 18.25 38.91 53.86

ATOMIC COMET-base 53.03 33.97 23.13 16.90 34.05 56.07 74.63 64.57
SOLAR-base 53.59 34.51 23.89 17.82 34.42 56.60 75.24 64.78

ATOMIC20
20

COMET-base 44.99 26.95 17.44 11.77 31.20 48.33 59.48 63.11
SOLAR-base 45.42 27.62 18.15 12.47 31.59 48.84 61.12 63.27

Table 1: Evaluation results (%) of commonsense inference with base models.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr BERTScore

ConceptNet COMET-large 17.88 11.35 7.13 4.00 13.47 19.36 37.72 54.07
SOLAR-large 19.28 12.73 8.57 5.62 14.69 20.89 43.15 54.71

ATOMIC COMET-large 54.05 34.92 24.04 17.62 35.06 56.93 75.46 64.84
SOLAR-large 54.31 35.77 25.41 19.45 35.30 57.11 76.33 64.91

ATOMIC20
20

COMET-large 46.08 28.23 18.70 12.86 32.22 49.44 62.13 63.52
SOLAR-large 46.51 28.99 19.52 13.73 32.53 49.76 63.24 63.58

Table 2: Evaluation results (%) of commonsense inference with large models.

Cont. Recon. BLEU-3 CIDEr

SOLAR-base

✓ ✓ 18.15 61.12
✓ ✗ 18.02 61.02
✗ ✓ 17.89 60.90
✗ ✗ 17.44 59.48

Table 3: Ablation study of commonsense representation
learning methods on ATOMIC20

20

β2 = 0.999.

Training details of SOLAR. In contrastive learn-
ing of commonsense tuples, we extract n ∈
{4, 8, 16, 32} root subjects while maintaining the
similarity (%) between subjects3 with a minimum
of α ∈ {40, 50} and a maximum of β ∈ {70, 80}.
It is because too low minimum similarity (α) can
lead to trivial negative examples (e.g., PersonX
adopts a dog↔ A banana), while too high maxi-
mum similarity (β) can lead to training of similar
events as negative examples (Figure 4). We then
sample {4, 16, 32} semantically similar subjects
with greater than {85, 90} similarity to previously
extracted subjects. Note that the root subjects and
similar subjects are randomly sampled at each iter-
ation so that most tuples in the KG can be learned.
We set the temperature parameter τ to 0.1.

In reconstructive learning tasks, we corrupt tu-
ples by masking the span of each tuple elements
and randomly shuffling the order. The span length

3When measuring the similarity, we manually add the
prefix "concept related to" to subject with a sequence length
less than 3.

Figure 3: Validation loss of COMET-large and SOLAR-
large on ATOMIC20

20

is drawn from a Poisson distribution (λ = 3). SO-
LAR learns commonsense representation through
multi-task approach, and we set the task weight
as ω = 0.8. In addition, we optimize the model
using the RecAdam (Chen et al., 2020a) optimizer
to prevent catastrophic forgetting during common-
sense representation learning. We set the hyper-
parameters of the optimizer to k = 0.001 and
t0 = 1000. After representation learning, we set
the same hyperparameters as the baseline. All the
above-mentioned hyperparameters are empirically
determined. We report the best results among pos-
sible hyperparameter settings.

Metrics. To measure the commonsense inference
capability of SOLAR, we use common evaluation
metrics in the text generation: BLEU (Papineni
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Subject Relation Ground truth COMET SOLAR

PersonX is
always busy

xReact exhausted busy tired

sugar cube ObjectUse eat as food mix with sugar sweeten coffee

PersonX gives
PersonY a cup

HinderedBy
PersonY is
not thirsty

PersonX is allergic
to water

PersonX doesn’t
have a cup

PersonX likes
the movie

HinderedBy
They were too
busy texting

PersonX is allergic
to the movie

The movie is
too boring

Table 4: Examples of commonsense inference from COMET and SOLAR in ATOMIC20
20.

Figure 4: Acceptance and overlap rates of gener-
ated missing relations. Similarity is measured by
BERTScore.

et al., 2002), ROUGE (Lin, 2004), CIDEr (Vedan-
tam et al., 2015) and BERTScore (Zhang et al.,
2020a).

Overall performance. We evaluate SOLAR and
COMET on three commonsense KGs and report
the automatic evaluation results of generated in-
ferences. In our result tables, we denote model
names in form of (framework)-(BART model con-
figuration). For example, SOLAR and COMET
with BART-base are denoted by SOLAR-base and
COMET-base, respectively.

Table 1 shows that SOLAR-base outperforms
COMET-base for all KGs. By averaging over all
metrics, SOLAR-base improves the performance
of COMET-base on ConceptNet, ATOMIC, and
ATOMIC20

20 by 1.74%, 0.57%, and 0.65%, respec-
tively. Experiments on large model configurations
establish the new state-of-the-art results on com-
monsense inference with KGs. Table 2 shows that
SOLAR-large outperforms COMET-large, the pre-
vious state-of-the-art, for all KGs and evaluation
metrics. We observe 1.84%, 0.70%, and 0.58%

average performance improvement on Concept-
Net, ATOMIC, and ATOMIC20

20 respectively. Fur-
thermore, SOLAR-base performs comparably to
COMET-large on ATOMIC and ATOMIC20

20, and
performs better on ConceptNet, despite using only
one-third of parameters. This shows the parameter-
efficiency of our approach compared to COMET.

4.3 Results

Analysis on commonsense inference. We pro-
vide further analysis on commonsense inference
results of SOLAR and COMET. Figure 3 shows
the validation loss curve for COMET-large and
SOLAR-large. It is clearly observed that SOLAR
gives smaller loss than COMET on validation sets,
which indicates that SOLAR generalizes common-
sense better than COMET. In addition, Table 4
shows examples of commonsense inference results
by COMET and SOLAR. It can be observed that
SOLAR generates plausible inferences with novel
expressions, whereas COMET extracts words from
the subject phrase to generate inferences, leading
to trivial or wrong results. Another observation
is that COMET is vulnerable to the annotation
bias in KGs. For example, in ATOMIC20

20, the
word “allergic” frequently appears with relation
“HinderedBy”, and COMET is biased to generate
wrong inferences like “allergic to the movie”. In
contrast, SOLAR makes better inference results
without such bias.

Ablation study. We conduct an ablation study to
measure the effectiveness of each component of our
proposed framework. Table 3 shows that learning
on both tasks performs better than learning on only
one of the two tasks. We observe that contrastive
learning of commonsense tuples is the key to our
performance improvement that SOLAR achieves,
and the reconstruction task also plays a role in the
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Similarity (%) Subject Relation – object Plausible

95.8 PersonX throws a huge party oReact-important
✓PersonX throws a big party oEffect-smile

95.3 handgun AtLocation-army
✓pistol AtLocation-pants

90.3 protective clothing ObjectUse-keep them safe
✓safety gear ObjectUse-protect from injury

87.0 trash bags ObjectUse-put things in
✓trashbins ObjectUse-get rid of garbage

82.0 PersonX takes PersonY to see a doctor oEffect–get checked by doctor
✗PersonX takes PersonY to the vet xWant-get dog checked

70.1 PersonX hugs PersonY back oReact-loved and needed
✗PersonX screams at PersonY oEffect-sweats in terror

Table 5: Qualitative analysis on examples of similarity-based tuple extraction from ATOMIC20
20. Similarity is

measured by BERTScore between the subjects of tuples. Humans evaluate whether the tuples are plausible after the
relation-objects are replaced by that of each other.

Method BLEU-3 CIDEr BERTScore

Baseline 17.44 59.48 63.11
Augmentation 17.38 59.11 63.08
Contrastive Learning 18.15 61.12 63.27

Table 6: Evaluation results of methods for learning from
missing relations.

framework.

Acceptance of missing relations. We conduct a
qualitative analysis of missing relations generated
through our approach. Table 5 shows examples of
tuple pairs and their similarity values measured by
BERTScore. In the first row, “PersonX throws a
huge party” and “PersonX throws a big party” are
semantically similar, and each relation-object can
be shared with the subject of the other (e.g., Per-
sonX throws a huge party - oEffect - smile ). In con-
trast, as in the last example, tuple pairs with a low
similarity between subjects cannot share relation-
object with one another. From these examples,
we observe that tuple pairs with higher similarity
between subjects generate more plausible tuples
when their relation-object pairs are shared, consis-
tent with our intuition.

We further provide a quantitative analysis by
measuring the acceptance rate of missing relations
generated through our approach and comparing it
with the overlap rate. Overlap rate is the proba-
bility of a missing relation already existing in the
graph. To measure the acceptance rate of missing
relations, we randomly sample 20 missing relations
per similarity interval (total 120 samples) and ask

human annotators to determine their plausibility4.
Three workers annotated each missing relation as
accept if it is plausible or reject otherwise, and we
used majority voting as the final annotation. Figure
4 shows the acceptance rate of the missing relations
regarding semantic similarity of subjects. It shows
that the acceptance rate of missing relation is pro-
portional to the similarity, and if the tuples have
a similarity of greater than 90%, then 90% of the
missing tuples are then valid. In contrast, when the
similarity drops below 85%, the acceptance rate
decreases drastically. The blue line in Figure 4 rep-
resents the overlap rate according to the similarity.
For tuple pairs of high similarity exceeding 90%,
the overlap rate is significantly lower (< 20%) than
the acceptance rate, which shows that novel miss-
ing relations can be effectively identified through
our method.

Methods for learning from missing relations.
We investigate the effectiveness of our method
for learning from missing relations. We compare
our contrastive learning method with a data aug-
mentation method where missing relations are di-
rectly added to a commonsense KG and learned
in fine-tuning. We use missing relations generated
on subjects with exceeding 90% similarity. Ta-
ble 6 shows that our proposed contrastive learning
method shows best performance, whereas the data
augmentation method is worse than the baseline.
We speculate that direct fine-tuning on augmented
KGs is vulnerable to unacceptable relations, while

4We evaluate the missing relations with three graduate
students fluent in English.
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our proposed contrastive learning framework is ro-
bust to them. These results indicate that directly
learning from missing tuples harm the common-
sense inference capability of the model. We specu-
late that our approach can handle noises (e.g., un-
acceptable relations) owing to the implicit nature
of contrastive learning.

5 Conclusion

We have presented a novel contrastive learning
framework of commonsense transformers, called
SOLAR, to effectively learn from missing relations
in commonsense KGs. Moreover, we have devel-
oped a new construction scheme for positive and
negative sets of examples based on similarities in
language model representations. By utilizing our
carefully designed methods, SOLAR effectively
learns both existing and missing relations of events,
alleviating the difficulties in learning commonsense
KGs. Our empirical evaluations of diverse com-
monsense KGs demonstrate the efficacy of SOLAR
in commonsense inference. In particular, SOLAR
consistently outperforms the state-of-the-art com-
monsense transformers across all the evaluation
metrics and commonsense KGs.
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