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Abstract

Training retrieval models to fetch contexts for
Question Answering (QA) over large corpora
requires labeling relevant passages in those cor-
pora. Since obtaining exhaustive manual an-
notations of all relevant passages is not fea-
sible, prior work uses text overlap heuristics
to find passages that are likely to contain the
answer, but this is not feasible when the task
requires deeper reasoning and answers are not
extractable spans (e.g.: multi-hop, discrete rea-
soning). We address this issue by identifying
relevant passages based on whether they are
useful for a trained QA model to arrive at the
correct answers, and develop a search process
guided by the QA model’s loss. Our experi-
ments show that this approach enables identi-
fying relevant context for unseen data greater
than 90% of the time on the IIRC dataset and
generalizes better to the end QA task than those
trained on just the gold retrieval data on IIRC
and QASC datasets.

1 Introduction

Answering questions over a large text corpus typ-
ically requires retrieving information relevant to
the question from the corpus, which is then used
by a Question Answering (QA) model to arrive at
the answer. Recent work (Guu et al., 2020; Lewis
et al., 2020; Ni et al., 2020) relies on retrieval mod-
els that learn dense representations of questions
and retrieval candidates (Karpukhin et al., 2020;
Khattab and Zaharia, 2020) trained separately or
jointly with the QA model. These learned retrieval
models are more effective than those that use sim-
ple word overlap signals (Robertson and Zaragoza,
2009; Chen et al., 2017), but they require the posi-
tive retrieval targets for each question labeled. It is
often difficult, if not impossible, to exhaustively la-
bel all the facts relevant to answering a question in
a large corpus of text. Consequently, even when the
datasets provide retrieval labels, it is often the case
that there exist alternative paths to the answer that

Gold
The digestive system breaks 
food into nutrients.

Q: The digestive system breaks food down into what?
a) meals         b) fats         c) fuel d) strength    …

Nutrients are fuel for 
your body.

Alternate Fact 1
Carbohydrate breaks down 
into glucose in the digestive 
system.

Alternate Fact 2
All carbohydrate foods 
become glucose, fuel 
for the body.

After a meal the digestive 
system breaks some food 
down into glucose.

Glucose, a simple 
sugar, is the body’s 
main fuel.

Properly digested food is 
our body’s fuel.

Food supplies fuel in 
the form of nutrients.

Figure 1: Retrieval annotations (gold) are often incomplete,
only providing one of many relevant contexts. Alternative
contexts can provide different views of the same information,
providing more robust training data.

are not labeled (Jhamtani and Clark, 2020), an ex-
ample of which is shown in Figure 1. The common
heuristic of considering all contexts that contain
mentions of the answer span (Clark and Gardner,
2018; Lee et al., 2019a) does not work when the
QA task is not extractive (e.g.: when the answers
are binary or require some numerical computation).

We propose to address this issue by augmenting
the set of labeled retrieval targets with additional
candidates that are not labeled as positive, but still
provide sufficient information to answer the corre-
sponding questions. Given question-answer pairs,
and a QA model trained to maximize the likelihood
of the correct answers conditioned on the labeled
retrieval targets and the questions, we search for
alternative contexts that also make the correct an-
swers likely. Concretely, our search process finds
those contexts not labeled as gold, that minimize
the loss of the QA model. We consider these con-
texts as alternative retrieval targets, and train the
retrieval model with the combination of these al-
ternative contexts and the gold labeled contexts as
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positives. Our method is particularly effective for
non-extractive QA tasks since it does not rely on
answer-span overlaps.

We evaluate our approach on two multi-hop
QA tasks, IIRC (Ferguson et al., 2020) and
QASC (Khot et al., 2019), and show that our search
for relevant contexts guided by the performance of
the QA model correctly identifies a relevant context
91% of the time on IIRC and 84% of the time on
QASC (Table 2a). Augmenting the retrieval train-
ing data with the results from our search process
increases recall on unseen questions, leading to an
improvement in the downstream QA performance
by 0.5 F1 points on IIRC and 2.1 accuracy points
on QASC (Section 3.2).

2 Method

Overview and Problem Our approach uses the
standard two-step pipeline for open-domain QA
seen in prior work. We first run a retrieval model
that takes as input a question, q, and a large corpus
of passages, C, and outputs a small subset of those
passages, c ⊂ C, that contains sufficient informa-
tion to answer the question. This subset is then
passed to the second step: the QA model. This
model takes as input the same question, q, and sub-
set of passages, c, from the first step, and outputs an
answer, a. Depending on the data, this answer can
take many forms, such as a span from the context,
a number, yes/no, or none of these if the question
is unanswerable.

For each question, there may be many valid sets
of context passages, where each set1 contains all
the information necessary to answer the question.
We refer to individual sets as c∗i , and the superset
of all such sets as c∗ = {c∗1 . . . c∗n}. As seen in
Figure 1, these different context sets may express
different reasoning paths reaching the answer, or
they may contain different ways of expressing the
same reasoning path. However, most datasets just
contain annotations of one such set per question,
c∗i . Our goal is to use these annotations to identify
alternate, unannotated, relevant context, c̄ ∈ c∗ \
{c∗i }, for each question. These additional contexts
is used to augment the retrieval training data.
Approach The goal of the retrieval model is
to identify context that maximizes the probabil-
ity of the correct answer when given to the QA
model. When supervised data, c∗i , is available,

1We apply our approach to datasets containing questions
that require multiple facts to answer, so we label sets of facts.

this is achieved by training the retrieval model
to predict the input that the QA model is trained
on i.e., θr = argmaxθ P (c∗i |q, θ), and θq =
argmaxθ P (a|q, c∗i , θ), where the retriever and the
QA models are parameterized by θr and θq. We
refer to this initial QA model as the base QA model.
When supervised data is not available, we can iden-
tify the retrieved contexts ĉ, by searching over the
corpus for the contexts that maximize the probabil-
ity of the correct answer under the base QA model:

ĉ = argmax
c⊂C

P (a|q, c, θq) (1)

Based on this, for each question, we search over
the corpus for the top k contexts, ĉ1 . . . ĉk, and add
them as additional data augmentation when training
a new retrieval model:

θ̂r = argmax
θ

P (c∗i |q, θ) +
k∑

j=1

P (ĉj |q, θ) (2)

Lastly, we train a final QA model using the gold
context, including the results of this new retrieval
model to incorporate the updated training and make
it more robust to noise:

cr =argmax
c∈C

P (c|q, θ̂r)

θ̂q =argmax
θ

P (a|q, {c∗i , cr}, θ)
(3)

Labeling sets of facts Because we apply our ap-
proach to datasets containing questions that require
multiple facts to answer, we need to label sets of
facts, not individual ones. For this reason, we train
our base QA models conditioned on sets of facts,
and while both labeling new contexts with the base
QA model, and retrieving contexts, we use beam
search to output sets of facts. In order to prevent the
base QA model from memorizing the gold contexts,
we use a 10-fold cross-labeling approach.2

3 Experiments

We show the effect of our approach on two multi-
hop QA datasets: IIRC (Ferguson et al., 2020) and
QASC (Khot et al., 2019).

3.1 Datasets and Setup
IIRC is a multi-hop QA open QA dataset, con-
sisting of a mix of yes/no questions, span selection
questions, unanswerable questions, and questions

2We train ten models, each on 90% of the data, and use
them to label the remaining 10%.

2



requiring discrete reasoning such as arithmetic or
counting. Each question is associated with a para-
graph, and requires both information from that para-
graph, as well as information from one or more
pages linked to from within that paragraph.
QASC is a multiple-choice, multi-hop QA dataset
constructed from a corpus of 17M facts. Each ques-
tion is written by composing two facts from the
corpus, and includes eight answer choices.
eQASC (Jhamtani and Clark, 2020) includes a
more exhaustive annotation of relevant contexts
for QASC questions and enables a more accurate
evaluation of retrieval performance on QASC.
Evaluation We report recall@10 and the final
QA performance results that provide a more reli-
able evaluation of the retrieval performance. For
eQASC, we use mean-average precision (MAP) of
the positive examples.
Implementation Details Following prior work
on IIRC (Ni et al., 2020), we adopt a pipeline ap-
proach consisting of three steps: link selection us-
ing RoBERTa-base, retrieval, and answer selection
using NumNet++ (Ran et al., 2019). For QASC, we
initially filter the corpus using the two-step BM25
described in (Khot et al., 2019), selecting the top
1000 pairs of facts per answer choice. Similar
to IIRC, we then select the top 10 pairs using a
RoBERTa-base bi-encoder. Final QA model sep-
arately scores each answer choice using another
RoBERTa-base model, and computes a softmax to
get the final distribution over the choices.

3.2 Comparisons and Results

We compare our approach of identifying additional
relevant context using QA loss with other retrieval
baselines and alternate augmentation methods.

BM25: We use the top results from BM25 in lieu
of training a supervised model with the annotated
data. This is a commonly used heuristic when no
retrieval annotations are available.

SupA Models are trained using just the annotated
training data with no additional data provided.

SupA+BM25 We augment the annotated training
data with the top results from querying the corpus
using BM25 with the question and answer.

SupA+R We augment the annotated training data
with the top retrieval results conditioned on the
question and correct answer. As in the QA-loss
labeling approach, we use a 10-fold labeling proce-
dure to prevent memorizing the annotated context.

Approach QASC IIRC eQASC
R@10 Acc R@10 F1 MAP

BM25 45.1 71.9 18.0 42.0 36.0
SupA 46.1 71.8 39.5 51.1 41.9
SupA + BM25 41.7 69.3 38.0 49.2 40.3
SupA + R 46.2 71.5 39.3 51.0 35.4
SupA + QA 47.8 73.9 40.3 51.6 43.7

Prior Work - 71.9 - 50.6 -

Table 1: Comparison of different retrieval models. R@10 and
MAP are direct evaluations of retrieval performance, Acc is
the performance of the final QA model trained given retrieval
results. For IIRC, prior work is the state-of-the-art model (Ni
et al., 2020) that uses the same QA model as our work. For
QASC, prior work is RoBERTa-base model that uses the same
model size as ours and is trained and evaluated on the same
data used by (Khashabi et al., 2020).

Main Results Table 1 compares our approach,
SupA+QA, with the baselines and prior work.3 Our
approach results in improved performance on both
datasets with a larger improvement on QASC over
the baseline compared to IIRC. This is likely due
to the fact that QASC has a much larger number of
alternate contexts per question compared to IIRC
(discussed below in oracle analysis). We generally
see a correlation between retrieval recall of the gold
annotations, performance on eQASC, and down-
stream accuracy, indicating that providing more
accurate context to the downstream model does
help with QA performance.

We manually labeled the accuracy of the top re-
sult for 100 questions for each approach (results
in table 2a). We can see that using the QA model
to label data significantly outperforms the other
two approaches. In table 2b we also further break
down the accuracy based on the different types
of questions in IIRC. Our approach works well
on Binary and Numeric questions, where the span
heuristic cannot be applied. Our approach also out-
performs the it on Span Selection questions, where
the answer is a span from the context. Although
the heuristic can be applied on these questions, it
often returns false positives. Our approach strug-
gles with Span Compare questions, as discussed in
more detail in Error Analysis below.
Oracle Analysis Figure 2c shows an oracle study
of the same 100 questions from the previous section
to determine how many alternate contexts were
available in each dataset. For IIRC, we considered

3The state-of-the-art model (Khashabi et al., 2020) for
QASC uses roughly 100x more parameters than us (with the
results 89.6), but the same model with a comparable size
as ours is significantly worse, 50.8. Therefore, we use the
best-performing model that has the same size as ours.
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Approach IIRC QASC

BM25 38 41
Retrieval 39 45
QA Loss 91 84

(a)

Question type QA Span

Binary 100 -
Numeric 78 -
Span Selection 97 77
Span Compare 50 -

(b) (c)

Table 2: (a) Manual analysis Accuracy of different approaches based on manual analysis on 100 examples for different context
labeling approaches, (b) comparing span-selection retrieval baseline with our approach for different question types, and (c)
Comparison of the number of relevant contexts in each dataset.

Q: Which play was published first?     A: A Midsummer Night’s Dream

Main context
… started his career in 1988 replacing 
Audi Vice Champion Frank Biela …

Q: How many championships had Biela won?     A: 10
Gold
His greatest achievements include 
winning: 1991 … 1993 … 

QA-loss
Biela comfortably won the title … being 
classified in the top ten …

BM25
After winning the ALMS 
series…

Main context
… performed in productions 
of Hamlet and A Midsummer 
Night’s Dream …

BM25
Shakespeare in the Arb has published…

To die, to sleep, is that all?

Main context
… and was expanded during 
the Seven Years’ War …

Q: What year did the war begin?     A: 1756
Gold
The Seven Years’ War … fought 
between 1756 and 1763

QA-loss
It is called the Seven Years’ War 
(1756 – 1763).

BM25
Pitt was the head of the government 
from 1756 to 1761, and…

Gold
written between 1599/1602.

written in 1595/1596.

QA-loss
Set in Denmark, the play depicts Prince Hamlet…

Usually dated 1595 or early 1596.

Figure 2: Example errors of our approach in IIRC. Relevant context is highlighted in green, and irrelevant context is in red.

all sentences from the gold articles, and for QASC
we considered the top twenty sentences according
to BM25. QASC has a much higher ceiling for this
form of data augmentation, as can be seen by the
fact that 70% of questions have multiple relevant
contexts, compared to IIRC where many questions
have only a single context. Additionally, many of
the questions in IIRC with exactly 2 contexts share
a similar structure, seen in the third example in
Figure 2. Although our approach is often able to
identify this alternate context, using it to augment
the data does not add much new information.
Error Analysis Figure 2 shows examples of
problems our approach encounters in IIRC. The
first question requires the model to count occur-
rences of an event, but the QA model instead se-
lects context containing a textual expression of the
answer. The second question is a span compare
example. The model has to identify context con-
taining attributes of two entities mentioned in the
original paragraph, but takes a shortcut and and
only selects context for the correct answer.

4 Related Work

Most similar to our work are recent approaches
using weak supervision for learning to retrieve for
QA, using only questions and answers. Lee et al.
(2019b) pretrain a retrieval model using an inverse
cloze task. Zhao et al. (2021) more recently pro-

posed to iteratively improve a retrieval model using
hard-EM. Both approaches filter the data using the
answer span heuristic. This heuristic breaks down
on multi-hop questions, as well as questions that
are not answerable by spans, such as true/false or
discrete reasoning questions. Izacard and Grave
(2021) and Yang and Seo (2021) propose using
knowledge distillation to incorporate QA informa-
tion into a supervised retriever, and while assum-
ing access to retrieval annotations, Ni et al. (2020)
jointly learn retrieval and QA by marginalizing over
potential contexts. All three of these approaches re-
quire encoding all potential contexts together with
the question, whereas ours does not have that re-
quirement, making ours more memory-efficient.

5 Conclusion

This work shows that using the loss of a QA model
trained on a partial set of labeled contexts to search
for alternative contexts for retrieval is an effective
method for augmenting the retriever’s training data.
Our results present a more label-efficient training
scheme for building supervised retrievers for QA.
They also suggest that creators of datasets for open
QA tasks that require supervised retrievers can bet-
ter allocate their annotation budgets by obtaining
retrieval labels for a small set of questions while
maximizing the number of question-answer anno-
tations.
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